Subclinical Hemorrhage of ACTH-secreting Pituitary Adenomas in Children and Adolescents Changes Their Biochemical Profile

Journal of the Endocrine Society, Volume 6, Issue 7, July 2022, bvac080,



Subclinical pituitary hemorrhage, necrosis, and/or cystic degeneration (SPH) presents mainly in large tumors and prolactinomas. The characteristics of patients with Cushing disease (CD) and SPH are not known.


To determine if SPH affects the presentation and biochemical profile of young patients with CD.


Pediatric and adolescent patients who were diagnosed with CD between 2005 and 2021 and available magnetic resonance imaging images were evaluated for SPH. The clinical and biochemical characteristics of patients with and without SPH were compared.


Evidence of possible SPH was present in 12 out of 170 imaging studies (7.1%). Patients with and without SPH had similar age at diagnosis and sex distribution but differed in disease duration (median duration: 1.0 year [1.0-2.0] in the SPH group vs 2.5 years [1.5-3.0] in the non-SPH group, P = .014). When comparing their biochemical evaluation, patients with SPH had higher levels of morning adrenocorticotropin (ACTH) (60.8 pg/mL [43.5-80.3]) compared to patients without SPH (39.4 pg/mL [28.2-53.2], P = .016) and the degree of cortisol reduction after overnight high dose (8 mg or weight-based equivalent) dexamethasone was lower (–58.0% [–85.4 to –49.7]) compared to patients without SPH (85.8 [–90.5 to –76.8], P = .035). The presence of SPH did not affect the odds of remission after surgery or the risk of recurrence after initial remission.


SPH in ACTH-secreting pituitary adenomas may affect their biochemical response during endocrine evaluations. They may, for example, fail to suppress to dexamethasone which can complicate diagnosis. Thus, SPH should be mentioned on imaging and taken into consideration in the work up of pediatric patients with CD.

Acute hemorrhage or necrosis of pituitary adenomas (PAs), defined as pituitary apoplexy, is a rare life-threatening condition that requires emergent neurosurgical evaluation [1]. However, subclinical hemorrhage, necrosis, intratumor cystic degeneration, and/or infarct of PAs, herein all events included in the term subclinical pituitary hemorrhage (SPH) for brevity, may occur in up to 7% to 22% of all pituitary tumors [2-9]. SPH is not associated with significant clinical symptoms and is often discovered at the time of routine diagnostic evaluation [2-9].

Previous studies suggested that SPH is more common in large tumors, prolactin-secreting or nonfunctioning PAs, while other factors, such as initiation or withdrawal of treatment with dopamine agonists, use of anticoagulants and others, have also been hypothesized to be involved in this process [56]. Overall, adrenocorticotropin (ACTH)-secreting PAs represent small percentage of SPH (0%-3.2% of cases reported) [3568]. Although pituitary apoplexy is associated with pituitary hormone deficiencies, SPH has a lower if any effect on the function of the remaining pituitary gland when it occurs in nonfunctioning adenomas [34].

The diagnosis of Cushing syndrome (CS) involves elaborate and time-dependent tests that are based on cortisol secretion and its regulation by ACTH [10]. Furthermore, the differential diagnosis of ACTH-dependent causes between ACTH-secreting PAs (Cushing disease, CD) and ectopic ACTH secretion is based on several dynamic tests, such as corticotropin-releasing hormone (CRH) stimulation and dexamethasone suppression [11]. The biochemical profile of corticotropinomas with SPH to both baseline and dynamic endocrine tests is not known.

Materials and Methods


Individuals enrolled under the protocol 97-CH-0076 ( identifier NCT00001595) at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), from 2005 to 2020 with confirmed diagnosis of CD, were screened for eligibility in the study. Pediatric and adolescent patients (diagnosis age < 21 years) with imaging studies available before any surgical intervention were included in the analysis. Patients with previous surgery of the pituitary gland or who were evaluated during recurrence were excluded from the study since postoperative changes make imaging findings difficult to distinguish from true SPH, and biochemical presentation at recurrence often differs in severity from initial diagnosis. CS diagnosis was based on criteria defined by the Endocrine Society guidelines and adjusted for the pediatric and adolescent population as needed (abnormal measurements in at least 2 of the following criteria: elevated 24 hour urinary free cortisol [UFC], elevated midnight serum cortisol [> 4.4 mcg/dL in children or > 7.5 mcg/dL for patients age > 18 years], and/or failure to suppress cortisol to 1 mg [or weight-based equivalent dose] overnight dexamethasone suppression test [postdexamethasone cortisol > 1.8 mcg/dL]). CD diagnosis was based on postoperative histologic confirmation of ACTH-secreting PA in most cases, or remission after pituitary surgery even if histologic report failed to identify a PA in the studied material. Remission was defined as postoperative cortisol nadir of less than 2 mcg/dL and/or clinical/biochemical remission during follow-up.

Informed consent was obtained from parents and assent from patients if developmentally appropriate. Study procedures were approved by the NICHD and/or central National Institutes of Health Institutional Review Board.

Magnetic Resonance Imaging Scans

SPH was defined as minimal or no clinical symptoms reported by the patients (apart from those commonly associated with hypercortisolemia) and magnetic resonance imaging (MRI) findings consistent with hemorrhage, intratumor infarction, and/or intratumor cyst formation (suggesting old infarcts) based on the radiologist and the principal investigator’s (C.A.S.) assessment [1213]. MRI scans were performed based on standard clinical protocols as previously described [14]. Briefly, MRIs at the National Institutes of Health were performed before and after intravenous administration of gadolinium contrast material, with a gradient echo sequence and thin slices (≤ 1.5 mm). MRIs were performed in either a 1.5 Tesla or 3 Tesla MR machine from various manufacturers over time.

Clinical and Biochemical Data

Clinical and biochemical data were extracted from electronic medical records. Tumor size was recorded as the maximum dimension retrieved from the histology report. In cases where histologic report was not available, failed to identify a PA in the studied material, or if the histology report recorded only dimensions on fragments of the tumor, the maximum dimension was retrieved from the MRI images. If the MRI was negative and the histology was negative (but the patient achieved remission after surgery), the tumor size was recorded as missing.

Serum cortisol and plasma ACTH levels were calculated as the average value of the corresponding levels performed at 23:30 h and 00:00 h (reported as midnight values) and 07:30 h and 08:00 h (reported as morning values). Twenty-four–hour UFC was calculated as the average of the first 2 or 3 samples reported in the electronic medical records. Given the possible differences in the assays and reported reference range for UFC, we calculated the increase of UFC based on the upper limit of normal according to the following formula: UFC fold change = UFC/upper limit of the reference range. Serum cortisol was measured with solid-phase, competitive chemiluminescent enzyme immunoassay on a Siemens Immulite 2500 analyzer. Plasma ACTH was measured with a chemiluminescence immunoassay on a Siemens Immulite 200 XPi analyzer. UFC was measured with a chemiluminescent enzyme immunoassay until 2011 and with high-performance liquid chromatography–tandem mass spectrometry since 2011. High-dose dexamethasone suppression test was performed as previously described. Briefly, oral dexamethasone (120 mcg/kg, max 8 mg) was administered at 23:00 and cortisol was measured before (8 AM the day of administration) and after (9 AM the day after dexamethasone administration). The change of cortisol was calculated as: 100* [(postdexamethasone cortisol – predexamethasone cortisol)/predexamethasone cortisol]. Levels of cortisol lower than the lower limit of detection of the assay (< 1 mcg/dL) were substituted with the intermediate value (0.5) for all analyses. CRH stimulation test was performed as previously described. Briefly, an intravenous catheter was placed in the forearm the night before testing; the patient was fasting and lying in bed, and ovine CRH (oCRH) was administered (1 mcg/kg, max 100 mcg). Samples for cortisol and ACTH were taken at –5, 0, 15, 30, and 45 minutes after the administration of oCRH. The response to the last was expressed as the percentage change from baseline by subtracting the pretest cortisol and ACTH values from the posttest values and dividing by the former. The mean cortisol increase was estimated at 30 and 45 minutes from baseline. For ACTH the mean increase was estimated at 15 and 30 minutes after the administration of oCRH. CRH stimulation test was not performed after the discontinuation of oCRH by the company in November 2020.

Statistical Analysis

Categorical data are described as counts (proportions) and were compared between groups using the Fisher exact test. Fisher odds ratio (OR) was used to assess the odds of remission based on the presence of SPH and is presented as OR and 95% CI.

Continuous data were checked for normality and not normally distributed data are presented as median (first quartile to third quartile) and were compared between 2 groups using Wilcoxon rank-sum test. The Cox proportional hazards test was used to assess the risk of recurrence based on the presence of SPH and is presented as hazard ratio (HR) and 95% CI. Statistical analyses were performed in R.


Clinical Data

Out of 170 patients with available MRI before first surgery, 12 patients had evidence of possible SPH (7.1%) (Table 1). Various MRI findings were noted (Fig. 1), most commonly hyperintense lesions in T1 and T2 precontrast images (Fig. 1A and 1B), while some patients had intratumor heterogeneity suggestive of cystic formation (Fig. 1C-1F). As expected, the tumor size of patients with SPH as noted in histology reports or MRI images was higher than that in patients without SPH (median size: 8.5 mm [7.0-11.25] in the SPH group vs 5.4 mm [4-8] in the non-SPH group; P < .001).


Table 1.

Characteristics of patients with and without subclinical pituitary hemorrhage, necrosis, and/or cystic degeneration

No SPH (N = 158) SPH (N = 12) P
Age at diagnosis, y 13.0 (10.6 to 15.4) 12.5 (10.6 to 15.6) .95
 Female 89 (56.3%) 5 (41.7%) .49
 Male 69 (43.7%) 7 (58.3%)
Disease duration, y 2.50 (1.5 to 3.0)
n = 138
1.00 (1.0 to 2.0)
n = 10
Morning cortisol, mcg/dL 16.2 (12.6 to 20.4)
n = 139
18.4 (13.7 to 27.5)
n = 10
Midnight cortisol, mcg/dL 14.0 (10.7 to 19.7)
n = 133
16.3 (11.0 to 23.0)
n = 9
UFC fold change 4.89 (2.51 to 8.50)
n = 131
8.81 (6.86 to 9.42)
n = 9
Morning ACTH, pg/mL 39.4 (28.2 to 53.2)
n = 143
60.8 (43.5 to 80.3)
n = 10
Cortisol change during CRH stimulation test, % 68.7 (33.3 to 111)
n = 128
46.0 (–7.46 to 90.7)
n = 8
ACTH change during CRH stimulation test, % 145 (59.6 to 260)
n = 127
103 (–5.75 to 278)
n = 8
Cortisol change during high-dose dexamethasone suppression test, % –85.8 (–90.5 to –76.8)
n = 120
–58.0 (–85.4 to –49.7)
n = 9
 Yes 127 (80.4%) 10 (83.3%) .99
 No 25 (15.8%) 2 (16.7%)

Number in each cell reports the number of patients with available results.

Abbreviations: ACTH, adrenocorticotropin; CRH, corticotropin-releasing hormone; SPH, subclinical pituitary hemorrhage, necrosis, and/or cystic degeneration; UFC, urinary free cortisol.


Figure 1.

Imaging findings in patients with subclinical pituitary hemorrhage, necrosis, and/or cystic degeneration. A, T1, and B, T2 magnetic resonance imaging (MRI) scans of the same patient showing area of high intensity inside the tumor suggesting acute/subacute episode. C, T2, and D, T1 MRI scans of the same patient showing heterogeneity in a large tumor with high-intensity areas suggesting blood-filled cavities and/or necrosis. E, T1, and F, T2 MRI scans of the same patient showing fluid inside the tumor.

Imaging findings in patients with subclinical pituitary hemorrhage, necrosis, and/or cystic degeneration. A, T1, and B, T2 magnetic resonance imaging (MRI) scans of the same patient showing area of high intensity inside the tumor suggesting acute/subacute episode. C, T2, and D, T1 MRI scans of the same patient showing heterogeneity in a large tumor with high-intensity areas suggesting blood-filled cavities and/or necrosis. E, T1, and F, T2 MRI scans of the same patient showing fluid inside the tumor.

Patients with and without SPH were similar in age (median age: 12.5 years [10.6-15.6] in the SPH group vs 13.0 years [10.6-15.4] in the non-SPH group; P = .95) and sex distribution (n of female = 5 (41.7%) in the SPH group vs 89 (56.3%) in the non-SPH group; P = .49). Patients with SPH had a shorter duration of disease as noted by changes in their growth chart parameters (median duration: 1.0 [1.0-2.0] year in the SPH group vs 2.5 [1.5-3.0] years in the non-SPH group; P = .014).

Patients in the 2 groups did not differ on their anthropometric characteristics, including height and body mass index z scores(P > .05). They also had similar blood pressure parameters and did not differ in terms of the frequency of hypertension diagnosis. No patient was on anticoagulation treatment nor had received radiation at the time of the MRI. One patient in the SPH group had a history of lower leg deep vein thrombosis and was previously on low-heparin therapy, but he had stopped treatment at least 6 months before the MRI.

Biochemical Evaluation of Hypercortisolemia

Morning and midnight serum cortisol and 24-hour UFC levels were similar in both groups, but patients with SPH had higher levels of morning ACTH (60.8 pg/mL [43.5-80.3]) compared to patients without SPH (39.4 pg/mL [28.2-53.2]; P = .016). Changes in cortisol and ACTH levels during the CRH stimulation test were similar between the 2 groups, but patients with SPH who underwent the overnight high-dose dexamethasone suppression test (n = 8) had lower suppression of cortisol after dexamethasone (–58.0% [–85.4 to –49.7]) compared to patients without SPH (n = 120) (–86.0% [–90.5 to –76.7]; P = .035) (Fig. 2). When the cutoff of suppression of more than 69% was considered, patients with SPH had a lower chance of suppressing more than 69% compared to patients without SPH (OR: 0.18; 95% CI, 0.03-0.95).


Figure 2.

Cortisol levels before and after high-dose dexamethasone suppression test in patients with and without subclinical pituitary hemorrhage, necrosis, and/or cystic degeneration (SPH).

 Cortisol levels before and after high-dose dexamethasone suppression test in patients with and without subclinical pituitary hemorrhage, necrosis, and/or cystic degeneration (SPH).

Remission After Surgical Treatment and Risk for Recurrence

The chance of immediate postoperative remission after surgery was similar in patients with and without SPH. For patients with initial remission and follow-up of at least 3 months, analysis of the risk of recurrence did not show a difference in recurrence rate between the 2 groups (HR: 1.12; 95% CI, 0.13-9.4, in the SPH group compared to the non-SPH group, adjusting for the neurosurgeon).


SPH is often an incidental finding in the imaging evaluation of patients with PAs. The frequency of SPH in patients with CD is low (7.1% in our study) but these patients may differ in terms of their history of shorter duration of symptoms and the biochemical evaluation. More specifically, patients with CD and SPH showed higher ACTH levels and lower suppression of cortisol to high-dose dexamethasone. This, however, did not affect their prognosis in terms of immediate postoperative remission and long-term risk of recurrence.

SPH has been mainly studied in cohorts of patients with various types of PAs. From these studies important conclusions have been made suggesting that the risk of SPH is higher in patients with large nonfunctioning PAs or prolactinomas. Other risk factors for pituitary apoplexy are thought to be size of the adenoma, change in size, initiation, and withdrawal of dopamine agonists, type of dopamine agonist, use of anticoagulants, diabetes mellitus, hypertension, head trauma, radiotherapy, and preceding dynamic endocrine testing.

Patients with CD often represent a small portion of these cohorts, and to our knowledge there is no study to investigate how these patients respond to stimulation/suppression tests. For that reason, we evaluated these findings in our cohort of only patients with ACTH-secreting adenomas. As most of our referrals involve pediatric patients, we limited our cohort only to patients diagnosed at younger than 21 years to have a more homogeneous group.

The pathogenesis of pituitary apoplexy has been hypothesized to lie in more friable vessels in PAs, which, while the tumor increases in size, are more susceptible to rupture or cause surrounding feeding vessels to extend and bleed [715]. CS, because of the coexisting hypercortisolemia, leads independently to endothelial dysfunction and coagulation defects, which are often apparent as easy bruising, thrombotic events, and other signs. However, review of the literature and the estimated frequency of SPH in our cohort suggest that patients with CD are not at increased risk for SPH, potentially related to the relatively small adenomas present in these patients [1617].

The main difference of patients with CD and SPH compared to those without lies in their biochemical testing, more characteristically in lower suppression to dexamethasone. The overnight high-dose dexamethasone suppression test was originally designed to differentiate various types of CS [18]. Although originally described as a highly accurate test, in clinical practice, cutoffs of 50% to 80% have shown variable sensitivity and specificity and certain centers opt not to use this test unless all other diagnostic evaluations yield confounding results [19-21]. In previous studies a threshold of suppression of more than 69% showed the highest accuracy (sensitivity: 71%, specificity: 100%), and we have incorporated this in our diagnostic algorithm (acknowledging the limitations of the test) [2223]. In our analysis, patients with SPH had lower suppression of cortisol under the effect of high-dose dexamethasone and a higher chance of not passing the aforementioned threshold. The mechanism for the lower suppression to dexamethasone of these tumors may be due to lower vascular circulation of dexamethasone at the level of the tumor, and/or the lower sensitivity of necrotic cells to the negative feedback by circulating glucocorticoids.

A limitation of this study was that the diagnosis of SPH was based on MRI findings. However, MRI sequences and machines differed between patients and over time. Thus, although large hemorrhagic/necrotic lesions are probably accurately identified, it is possible that smaller lesions are misclassified as negative; the effect of smaller hemorrhagic areas to the biochemical testing may however be smaller as well. Further, the MRIs were not read by a central radiologist, but rather from the radiologist on call at each time point, and this could lead to discrepancies in readings. In addition, our cohort’s data may not be generalized to the pediatric or adult CD population, as often our referrals consist of patients with difficult to treat, small, or otherwise unusual tumors.

In conclusion, SPH may be incidentally identified in up to 7% of patients with CD. Patients with CD and SPH may differ in terms of their response to endocrine tests, and this finding should be incorporated in their evaluation.



  • ACTH


  • CD

    Cushing disease

  • CRH

    corticotropin-releasing hormone

  • CS

    Cushing syndrome

  • HR

    hazard ratio

  • MRI

    magnetic resonance imaging


    Eunice Kennedy Shriver National Institute of Child Health and Human Development

  • OR

    odds ratio

  • PA

    pituitary adenoma

  • SPH

    subclinical pituitary hemorrhage

  • UFC

    urinary free cortisol

Financial Support

This work was supported by the intramural research program of the Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD 20892, USA.


Dr Stratakis holds patents on the function of the PRKAR1APDE11A, and GPR101 genes and related issues; his laboratory has also received research funding on the GPR101 gene, and on abnormal growth hormone secretion and its treatment by Pfizer, Inc. He is currently employed by ELPEN, SA and has been consulting for Lundbeck Pharmaceuticals and Sync, SA. The other authors have nothing to disclose.

Data Availability

Some or all datasets generated during and/or analyzed during the current study are not publicly available but may be available from the corresponding author on reasonable request.

Published by Oxford University Press on behalf of the Endocrine Society 2022.
This work is written by (a) US Government employee(s) and is in the public domain in the US.
Published by Oxford University Press on behalf of the Endocrine Society 2022.

Successful Immunomodulatory Treatment of COVID-19 in a Patient With Severe ACTH-Dependent Cushing’s Syndrome

Introduction: Patients with Cushing’s syndrome (CS) represent a highly sensitive group during corona virus disease 2019 (COVID-19) pandemic. The effect of multiple comorbidities and immune system supression make the clinical picture complicated and treatment challenging.

Case report: A 70-year-old female was admitted to a covid hospital with a severe form of COVID-19 pneumonia that required oxygen supplementation. Prior to her admission to the hospital she was diagnosed with adrenocorticotropic hormone (ACTH)-dependent CS, and the treatment of hypercortisolism had not been started yet. Since the patient’s condition was quickly deteriorating, and with presumend immmune system supression due to CS, we decided on treatement with intraveonus immunoglobulins (IVIg) that enabled quick onset of immunomodulatory effect. All comorbidities were treated with standard of care. The patient’s condition quickly stabilized with no direct side effects of a given treatment.

Conclusion: Treatment of COVID-19 in patients with CS faces many challenges due to the complexity of comorbidity effects, immunosupression and potential interactions of available medications both for treatment of COVID-19 and CS. So far, there are no guidelines for treatment of COVID-19 in patients with active CS. It is our opinion that immunomodulating therapies like IVIg might be an effective and safe treatment modality in this particularly fragile group of patients.


Dealing with corona virus disease 2019 (COVID-19) focused medical attention on several sensitive population groups. While the knowledge is still improving, some of the recognized risk factors for severe form of the disease are male sex, older age, obesity, hypertension, diabetes mellitus, and cardio-vascular disease (1). This constellation of morbidities is particularly intriguing from endocrine point of view, since they are all features of patients with Cushing’s syndrome (CS). Another relevant feature of CS is a propensity for infections due to profound immune suppression, with prevalence of 21-51%; even more so, infections are the second cause of death (31%) in CS after disease progression, and are the main cause of death (37%) in patients who died within 90 days of diagnosis (2).

Immune system alterations in CS lead to depression of both innate and adaptive immune responses, favoring not only commonly acquired but also opportunistic bacterial infections, fungal infections, and severe, disseminated viral infections (3). Susceptibility to infections directly positively correlates with cortisol level, and is more frequent in ectopic ACTH secretion (EAS). Hypercortisolism hampers the first-line response to external agents and consequent activation of the adaptive response (3). Consequently, there is a decrease in total number of T-cells and B-cells, as well as a reduction in T-helper cell activation, which might favor opportunistic and intracellular infections. On the other hand, an increase in pro-inflammatory cytokine secretion, including interleukine-6 (IL-6) and tumor necrosis factor-α (TNF-α) leads to persistent, low-grade inflammation. It is important to note that immune system changes are confirmed both during the active phase and while in remission of CS (3).

In view of the aforementioned data, a few topics emerge regarding patients with CS and COVID-19. Initial clinical presentation may be altered – low-grade chronic inflammation and poor immune reaction might limit febrile response in the early phase of infection, aggravating timely diagnosis (4). Increased cytokine levels may put patients with CS at increased risk of severe course and progression to acute respiratory distress syndrome (ARDS). On the other hand, the rise in cytokine levels associated with exposure to external agents is significantly hampered, probably because of persistently elevated pro-inflammatory cytokine secretion (45). Patients with CS have a possibility for prolonged duration of viral infections and risk for superinfections leading to sepsis and increased mortality risk; this is especially relevant for hospitalized patients and mandates empirical prophylaxis with broad-spectrum antibiotics (6). Both COVID-19 and CS individually represent disease states of increased thromboembolic (TE) risk, requiring additional care (6).

Due to very limited data, it is still not possible to address these topics with certainty and make recommendations for optimal management of these patients. Current clinical practice guidance for management of CS during COVID-19 commissioned by the European Society of Endocrinology (ESE) emphasizes prompt and optimal control of hypercortisolism and adequate treatment of all comorbidities (7). Although individual circumstances must always be considered, we need more direct clinical experience, especially regarding the actual treatment of COVID-19 in this sensitive group. So far, there are only five published case studies of patients with CS and COVID-19, with eight patients in total (812). In this study, we present a patient with newly diagnosed ACTH-dependent CS who was diagnosed with COVID-19 before the initiation of specific medical treatment.

Case Report

A 70-year-old female was admitted to our Covid hospital due to bilateral interstitial pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Six days before she was discharged from endocrinology department of another hospital where she was hospitalized due to newly diagnosed diabetes mellitus. Her personal history was unremarkable, and she was vaccinated with two doses of inactivated COVID-19 vaccine Sinopharm BBIBP. During this hospitalization Cushingoid features were noted (moon face, centripetal obesity, thin extremities with multiple hematomas, bilateral peripheral edema), as well as diabetes mellitus (HbA1c 8.7%), arterial hypertension (BP 180/100 mmHg), hypokalemia (2.0 mmol/L), mild leukocytosis (WBC 12.9x10e9/L) with neutrophilia, and mildly elevated CRP (12.3 mg/L). Hormonal functional testing confirmed ACTH-dependent Cushing’s syndrome: morning ACTH 92.6 pg/mL (reference range 10-60 pg/mL), morning serum cortisol 1239 nmol/L (reference range 131-642 nmol/L), midnight serum cortisol 1241 nmol/L, lack of cortisol suppression in overnight dexamethasone suppression test (978 nmol/L). Pituitary MRI was unremarkable other than empty sella, and CT scan of thorax normal other than left adrenal hyperplasia. Diabetes mellitus was successfully controlled with metformin, hypertension with ACE-inhibitor, Ca-channel blocker and beta-blocker, and hypokalemia with potassium supplementation along with spironolactone. Steroidogenesis inhibitors were not available in this institution, but before referral to a tertiary care hospital she was tested for SARS-CoV-2, and the test came back positive (sample was obtained by nasopharyngeal swab). Since she was asymptomatic, with normal thoracic CT scan and stabile CRP level (9.1 mg/L), she was discharged with detailed recommendations for conduct in case of progression of COVID symptoms.

Next day she started feeling malaise with episodes of fever (up to 38.2°C). Symptomatic therapy was advised in an outpatient clinic (no antiviral therapy was recommended), but 5 days later respiratory symptoms ensued. During examination, the patient was weak, with dyspnea and tachypnea (RR 22/min), afebrile (36.9°C) and with oxygen saturation (SO2) of 85% measured by pulse oximeter. Chest X-ray confirmed bilateral interstitial pneumonia with parenchymal consolidation in the right lower lung lobe, so she was referred to the COVID hospital.

Laboratory analyses upon admission are presented in the Supplementary Table 1. In addition to her previous testing, elevated chromogranin A (CgA) level was verified (538.8 ng/mL, reference range 11-98.1). The patient was treated with supplemental oxygen with maximal flow of 13 l/min. For the reason of previously confirmed severe endogenous hypercortisolism, glucocorticoids were not administered. Due to limited therapeutic options and presumed further clinical deterioration, we decided to treat the patient with intravenous immunoglobulins (IVIg) 30 g iv for 5 days, starting from the 2nd day of hospitalization. We did not observe any side effects of a given treatment. In parallel, the patient received broad-spectrum antibiotics (ceftazidime and levofloxacin), proton pump inhibitor, LMWH in prophylactic dose, oral and parenteral potassium supplementation along with spironolactone. She continued with her previous antihypertensive therapy with good control of blood pressure. While the patient was on oxygen supplementation, glycaemia was controlled with short acting insulin before meals. Following given treatment, we observed clinical, biochemical (Supplementary Table 1.) and radiological improvement (Supplementary Figure 1). Oxygen supplementation was gradually discontinued. With regard to D-dimer levels and risk factors for TE events due to COVID-19 and CS, we performed color Doppler scan of lower extremities veins, and CT pulmonary angiography, but there were no signs of thrombosis. During hospital stay, there were no signs of secondary infection and cotrimoxazole was not added to the current treatment. The patient was discharged with advice to continue her prior medical therapy along with increased dose of spironolactone and initiation of rivaroxaban. She was referred to the tertiary institution for the initiation of steroidogenesis inhibitor and further diagnostics.


Endogenous Cushing’s syndrome is a rare disease with an incidence of 0.7-2.4 million person-years in European population-based studies (13). Significant morbidity yields a standard mortality ratio of 3.7 (95%CI 2.3–5.3), with the highest mortality during the first year after initial presentation. COVID-19 pandemic imposes additional challenge to this fragile group of patients. Due to lack of solid experience, it is still difficult to define potential clinical course and outcome of patients with CS and COVID-19. In addition, currently there are no guidelines for management of SARS-CoV-2 infection in patients with active CS.

So far, only two small case series followed patients with Cushing’s disease (CD) in various disease stages (not all were active) during COVID-19 pandemic (912). Small number of SARS-CoV-2 positive cases (3/22 and 2/61) is clearly biased by shortness of analyzed period (one and a half, and three and a half months). Additionally, a small number of patients was actually tested by nasopharyngeal swab for SARS-CoV-2 even in the presence of indicative symptoms, albeit mild. Nevertheless, all these limitations included, it seems that the prevalence of COVID-19 might be greater in patients with CD than in general population (12). This is accordant with studies on patients on exogenous glucocorticoid (GC) treatment. Overall, there is a growing body of evidence that patients on chronic GC therapy are at higher risk for SARS-CoV-2 infection and a severe course of disese, regardless of age and comorbidities (14). In many studies patients on high-dose GC therapy were at particularly high risk for a severe course of disease, so it is reasonable to assume that there is a dose-dependent effect (14).

All patients except one with endogenous CS and COVID-19 presented in literature were hospitalized, with majority of them requiring oxygen supplementation, which classified them as serious cases of disease (812). Parameters of inflammation (namely CRP) were highly variable (from normal to elevated) and did not seem to reflect severity of COVID-19 consistently. Two patients had fatal outcome; one with postoperative hypocortisolism that required stress doses of hydrocortisone, and with terminal kidney failure as significant comorbidity; the other with suspected EAS who developed ARDS in contrast to normal CRP and absence of fever (912). Based on reported cortisol levels in these patients, it seems that the severity of COVID-19 pneumonia depended on severity of hypercortisolism (812). A patient with probable EAS even developed ARDS, which adds to ongoing controversy regarding the risk of ARDS due to SARS-CoV-2 in patients with CS (315). We ourselves have treated a severely obese female patient with active CD on pasireotide, who developed ARDS despite addition of high doses of methylprednisolone (unpublished data). Additional risk imposed by comorbidities cannot be underestimated (1516). This is particularly relevant for obesity, that not only hampers immune system (leading to increased levels of IL-1, IL-6, and TNF-α), but adipocytes represent a reservoir of SARS-CoV-2 thanks to ACE2 receptor, crucial for virus attachment (15).

Majority of depicted patients with active CS were already medically treated for hypercortisolism but with various compliance (sometimes very poor), and two young patients have just started steroidogenesis inhibitors (metyrapone/ketoconazole). Infection with SARS-CoV-2 was treated by national protocols that were mostly based on supportive care. These protocols changed over time, so a few patients received antiviral therapy (favipiravir), and one young patient with suspected EAS was treated with methylprednisolone along with high doses of ketoconazole (10). Treatment was complicated with adrenal insufficiency (AI) in three patients (81112).

We have presented a patient with CS and rapid development of serious case of COVID-19 pneumonia that required hospital admission and oxygen support. She was febrile and had positive laboratory parameters of inflammation. Her CS was active, with very high cortisol levels, no prior medical treatment and with clinical suspicion of EAS (ACTH-dependent disease of short duration, severe hypercortisolism, hypokalemia, very high CgA, no visible pituitary tumor). With this in mind, and with regard to rapid progression of COVID-19 pneumonia, it was our opinion that the patient required treatment with quick onset and presumable immune system modulation.

A logical approach to treatment of CS during COVID-19 pandemic includes meticulous therapy for comorbidities (namely antihypertensives, anti-diabetic drugs, low molecular weight heparin, etc.), and steroidogenesis inhibitors for treatment for hypercortisolemia (7). While some of these drugs demonstrate quick onset of action regarding normalization of cortisol level (and hence improve clinical comorbidities), rapid effects on immune system responses are not likely, which might be of great relevance in case of acute infection. Secondly, adrenolytic therapy increases a risk of AI, which can be even more perilous than CS in case of infection or other stress situations (8121516). A modified “block and replace” approach may be considered, where addition of hydrocortisone could diminish the risk of AI (7). Still, there are a few potential pitfalls with this regimen as well. Some people fail to respond to high doses of adrenal-blocking agents due to genetic differences in the steroidogenic enzymes, since therapeutic responses to metyrapone and ketoconazole in patients with CS are associated with the polymorphism in the CYP17A1 gene (17). Additionally, there are not enough data about possible interactions between adrenolytic drugs (majority of them being metabolized through the CYP450/CYP3A4 pathway) and medications used to treat COVID-19, most of which are only just emerging (18). Special concerns, amplified with similar potential effects of SARS-CoV-2 itself as well as specific therapies are liver dysfunction (metyrapone, ketoconazole), hypokalemia (metyrapone, ketoconazole), QT-interval prolongation (ketoconazole, osilodrostat), gastrointestinal distress (mitotane, osilodrostat, etomidate) (18). Metyrapone may cause accumulation of androgenic precursors secondary to the blockade of cortisol synthesis, that can virtually enhance expression of transmembrane protease serine 2 (TMPRSS2), found to be essential to activate the viral spikes, induce viral spread, and pathogenesis in the infected hosts (19). Another important issue concerns biochemical estimation of disease control (and hence risk for AI), since most commercially available assays can overestimate cortisol level in patients treated with metyrapone due to cross-reactivity with the precursor 11-deoxicortisol (715). Mass spectrometry is a method of choice to overcome this problem, but it is not available in many centers. Some centers advocate titration and/or temporary halting medical therapies in the treatment of patients with CS in the context of COVID-19 infection (20). Treatement was stopped in a few patients with severe COVID-19 symptoms who were then given high dose GC for a few days with no long-term complications, and with full recovery (20).

There are no data about the effect of anti-viral drugs in patients with CS and COVID-19. A special concern refers to adipose tissuse, as adipose tissue is difficult for antiviral drugs to reach. It cannot be excluded that the constant release of viral replicas from the adipose tissue reservoir may interfere with COVID-19 infection treatment, delaying its resolution and favoring a worse prognosis (15). If antiviral drugs are started, it is suggested that immunocompromised patients may require prolonged therapy (18). However, the timing is difficult in practice and candidates for antivirals are limited.

Since the clinical course of COVID-19 only initially depends on viral replication, immunomodulatory therapy emerged as a valuable treatment option to control the host immune response. This became apparent ever since RECOVERY trial proved efficacy of glucocortiods (21). But this therapeutic option is fairly inapplicable in patients with active CS, since glucocorticoid treatment in chronic hypercortisolism seems to enhance immune system alterations (22). In parallel with the development of new agents, it is prudent to study the efficacy of existing therapeutic options with acceptable safety profile (20). Beside glucocorticoids, inflammation blockers, intravenous immunoglobulin and convalescent plasma were used in various settings (23).

Intravenous immunoglobulin (IVIg) is a blood product prepared from the serum pooled from thousands of healthy donors, containing a mixture of polyclonal IgG antibodies, mostly IgG1 and IgG2 subclasses (2425). Initial rationale for its use was immunodefficiency due to hypoglobulinemia. Since then it has been shown that IVIg exerts pleiotropic immunomodulating action involving both innate and adaptive immunity and it has been used in a variety of diseases (26). In previous studies on MERS (Middle East Respiratory Syndrome) and SARS (Severe Acute Respiratory Syndrome) using IVIg showed beneficial clinical effects (25). Although pathogenesis of COVID-19 has not be fully elucidated, there is a consensus that immune-mediated inflammation plays an important role in the progression of this disease, just as it did in prior coronavirus infections (27). In this context, the actual role of IVIg in COVID-19 patients might be not to boost the immune system, but through its immunomodulatory effect to suppress a hyperactive immune response that is seen in some patients (28). So far, a limited number of studies, case series and meta-analyses demonstrate a promising potential of IVIg in patients with COVID-19. The effect was demonstrated in terms of mortality, improvement of clinical symptoms, laboratory examinations, imaging and length of hospital stay, especially in patients with moderate/severe form of the disease, and with emphasis on early administration (within 3 days of admission) (24252731). A recent double blind, placebo-controlled, phase 3, randomized trial tested hyperimmune intravenous immunoglobulin (hIVIg) to SARS-CoV-2 derived from recovered donors with no demonstrated effect compared with standard of care, but therapy was administered in patients symptomatic up to 12 days (32). Additional clinical trials are underway, hopefully with more guidance for proper selection of patients that might benefit from this type of treatment.


To our knowledge, this is the first case of IVIg treatment in a COVID-19 patient with CS. It is our opinion that immune-modulating properties of IVIg might present an attractive treatment option, especially in those CS patients that show rapid clinical progression and positive laboratory parameters of inflammation. While we await for new therapeutic modalities for COVID-19 and while some of the modalities remain not widely available, IVIg is more accessible, safe method, which could be rescuing in carefully selected patients. Of note, we consider our patient’s vaccinal status as an unquestionable positive contributor to the favorable outcome

Data Availability Statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Ethics Statement

Ethical review and approval was not required for the study on human participants in accordance with the local legislation and institutional requirements. The patients/participants provided their written informed consent to participate in this study. Written informed consent was obtained from the individual(s) for the publication of any potentially identifiable images or data included in this article.

Author Contributions

BP, AS, JV, TG, MJ-L, JV, VS, ZG and TA-V analyzed and interpreted the patient data. BP, AP, DI, and DJ were major contributors in writing the manuscript. All authors contributed to the article and approved the submitted version.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary Material

The Supplementary Material for this article can be found online at:


1. Hu J, Wang Y. The Clinical Characteristics and Risk Factors of Severe COVID-19. Gerontology (2021) 67(3):255–66. doi: 10.1159/000513400

PubMed Abstract | CrossRef Full Text | Google Scholar

2. Valassi E, Tabarin A, Brue T, Feelders RA, Reincke M, Netea-Maier R, et al. High Mortality Within 90 Days of Diagnosis in Patients With Cushing’s Syndrome: Results From the ERCUSYN Registry. Eur J Endocrinol (2019) 181(5):461–72. doi: 10.1530/EJE-19-0464

PubMed Abstract | CrossRef Full Text | Google Scholar

3. Hasenmajer V, Sbardella E, Sciarra F, Minnetti M, Isidori AM, Venneri MA. The Immune System in Cushing’s Syndrome. Trends Endocrinol Metab (2020) 31(9):655–69. doi: 10.1016/j.tem.2020.04.004

PubMed Abstract | CrossRef Full Text | Google Scholar

4. Pivonello R, Isidori AM, De Martino MC, Newell-Price J, Biller BM, Colao A. Complications of Cushing’s Syndrome: State of the Art. Lancet Diabetes Endocrinol (2016) 4(7):611–29. doi: 10.1016/S2213-8587(16)00086-3

PubMed Abstract | CrossRef Full Text | Google Scholar

5. Martins-Filho PR, Tavares CSS, Santos VS. Factors Associated With Mortality in Patients With COVID-19. A Quantitative Evidence Synthesis of Clinical and Laboratory Data. Eur J Intern Med (2020) 76:97–9. doi: 10.1016/j.ejim.2020.04.043

PubMed Abstract | CrossRef Full Text | Google Scholar

6. Pivonello R, Ferrigno R, Isidori AM, Biller BMK, Grossman AB, Colao A. COVID-19 and Cushing’s Syndrome: Recommendations for a Special Population With Endogenous Glucocorticoid Excess. Lancet Diabetes Endocrinol (2020) 8(8):654–6. doi: 10.1016/S2213-8587(20)30215-1

PubMed Abstract | CrossRef Full Text | Google Scholar

7. Newell-Price J, Nieman LK, Reincke M, Tabarin A. ENDOCRINOLOGY IN THE TIME OF COVID-19: Management of Cushing’s Syndrome. Eur J Endocrinol (2020) 183(1):G1–7. doi: 10.1530/EJE-20-0352

PubMed Abstract | CrossRef Full Text | Google Scholar

8. Beretta F, Dassie F, Parolin M, Boscari F, Barbot M, Busetto L, et al. Practical Considerations for the Management of Cushing’s Disease and COVID-19: A Case Report. Front Endocrinol (Lausanne) (2020) 11:554. doi: 10.3389/fendo.2020.00554

PubMed Abstract | CrossRef Full Text | Google Scholar

9. Belaya Z, Golounina O, Melnichenko G, Tarbaeva N, Pashkova E, Gorokhov M, et al. Clinical Course and Outcome of Patients With ACTH-Dependent Cushing’s Syndrome Infected With Novel Coronavirus Disease-19 (COVID-19): Case Presentations. Endocrine (2021) 72(1):12–9. doi: 10.1007/s12020-021-02674-5

PubMed Abstract | CrossRef Full Text | Google Scholar

10. Rehman T. Image of the Month: Diagnostic and Therapeutic Challenges in the Management of Ectopic ACTH Syndrome: A Perfect Storm of Hypercortisolism, Hyperglycaemia and COVID-19. Clin Med (Lond) (2021) 21(3):231–4. doi: 10.7861/clinmed.2021-0005

PubMed Abstract | CrossRef Full Text | Google Scholar

11. Yuno A, Kenmotsu Y, Takahashi Y, Nomoto H, Kameda H, Cho KY, et al. Successful Management of a Patient With Active Cushing’s Disease Complicated With Coronavirus Disease 2019 (COVID-19) Pneumonia. Endocr J (2021) 68(4):477–84. doi: 10.1507/endocrj.EJ20-0613

PubMed Abstract | CrossRef Full Text | Google Scholar

12. Serban AL, Ferrante E, Carosi G, Indirli R, Arosio M, Mantovani G. COVID-19 in Cushing Disease: Experience of a Single Tertiary Centre in Lombardy. J Endocrinol Invest (2021) 44(6):1335–6. doi: 10.1007/s40618-020-01419-x

PubMed Abstract | CrossRef Full Text | Google Scholar

13. Sharma ST, Nieman LK, Feelders RA. Cushing’s Syndrome: Epidemiology and Developments in Disease Management. Clin Epidemiol (2015) 7:281–93. doi: 10.2147/CLEP.S44336

PubMed Abstract | CrossRef Full Text | Google Scholar

14. Vogel F, Reincke M. Endocrine Risk Factors for COVID-19: Endogenous and Exogenous Glucocorticoid Excess. Rev Endocr Metab Disord (2021) 23(2):233–50. doi: 10.1007/s11154-021-09670-0

PubMed Abstract | CrossRef Full Text | Google Scholar

15. Guarnotta V, Ferrigno R, Martino M, Barbot M, Isidori AM, Scaroni C, et al. Glucocorticoid Excess and COVID-19 Disease. Rev Endocr Metab Disord (2021) 22(4):703–14. doi: 10.1007/s11154-020-09598-x

PubMed Abstract | CrossRef Full Text | Google Scholar

16. Chifu I, Detomas M, Dischinger U, Kimpel O, Megerle F, Hahner S, et al. Management of Patients With Glucocorticoid-Related Diseases and COVID-19. Front Endocrinol (Lausanne) (2021) 12:705214. doi: 10.3389/fendo.2021.705214

PubMed Abstract | CrossRef Full Text | Google Scholar

17. Valassi E, Aulinas A, Glad CA, Johannsson G, Ragnarsson O, Webb SM. A Polymorphism in the CYP17A1 Gene Influences the Therapeutic Response to Steroidogenesis Inhibitors in Cushing’s Syndrome. Clin Endocrinol (Oxf) (2017) 87(5):433–9. doi: 10.1111/cen.13414

PubMed Abstract | CrossRef Full Text | Google Scholar

18. Berlinska A, Swiatkowska-Stodulska R, Sworczak K. Old Problem, New Concerns: Hypercortisolemia in the Time of COVID-19. Front Endocrinol (Lausanne) (2021) 12:711612. doi: 10.3389/fendo.2021.711612

PubMed Abstract | CrossRef Full Text | Google Scholar

19. Barbot M, Ceccato F, Scaroni C. Consideration on TMPRSS2 and the Risk of COVID-19 Infection in Cushing’s Syndrome. Endocrine (2020) 69(2):235–6. doi: 10.1007/s12020-020-02390-6

PubMed Abstract | CrossRef Full Text | Google Scholar

20. Fleseriu M. Pituitary Disorders and COVID-19, Reimagining Care: The Pandemic A Year and Counting. Front Endocrinol (Lausanne) (2021) 12:656025. doi: 10.3389/fendo.2021.656025

PubMed Abstract | CrossRef Full Text | Google Scholar

21. Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, et al. Dexamethasone in Hospitalized Patients With Covid-19. N Engl J Med (2021) 384(8):693–704. doi: 10.1056/NEJMoa2021436

PubMed Abstract | CrossRef Full Text | Google Scholar

22. Bergquist M, Lindholm C, Strinnholm M, Hedenstierna G, Rylander C. Impairment of Neutrophilic Glucocorticoid Receptor Function in Patients Treated With Steroids for Septic Shock. Intensive Care Med Exp (2015) 3(1):59. doi: 10.1186/s40635-015-0059-9

PubMed Abstract | CrossRef Full Text | Google Scholar

23. Cao W, Li T. COVID-19: Towards Understanding of Pathogenesis. Cell Res (2020) 30(5):367–9. doi: 10.1038/s41422-020-0327-4

PubMed Abstract | CrossRef Full Text | Google Scholar

24. Tzilas V, Manali E, Papiris S, Bouros D. Intravenous Immunoglobulin for the Treatment of COVID-19: A Promising Tool. Respiration (2020) 99(12):1087–9. doi: 10.1159/000512727

PubMed Abstract | CrossRef Full Text | Google Scholar

25. Mohtadi N, Ghaysouri A, Shirazi S, Sara A, Shafiee E, Bastani E, et al. Recovery of Severely Ill COVID-19 Patients by Intravenous Immunoglobulin (IVIG) Treatment: A Case Series. Virology (2020) 548:1–5. doi: 10.1016/j.virol.2020.05.006

PubMed Abstract | CrossRef Full Text | Google Scholar

26. Schwab I, Nimmerjahn F. Intravenous Immunoglobulin Therapy: How Does IgG Modulate the Immune System? Nat Rev Immunol (2013) 13(3):176–89. doi: 10.1038/nri3401

PubMed Abstract | CrossRef Full Text | Google Scholar

27. Cao W, Liu X, Hong K, Ma Z, Zhang Y, Lin L, et al. High-Dose Intravenous Immunoglobulin in Severe Coronavirus Disease 2019: A Multicenter Retrospective Study in China. Front Immunol (2021) 12:627844. doi: 10.3389/fimmu.2021.627844

PubMed Abstract | CrossRef Full Text | Google Scholar

28. Bongomin F, Asio LG, Ssebambulidde K, Baluku JB. Adjunctive Intravenous Immunoglobulins (IVIg) for Moderate-Severe COVID-19: Emerging Therapeutic Roles. Curr Med Res Opin (2021) 37(6):903–5. doi: 10.1080/03007995.2021.1903849

PubMed Abstract | CrossRef Full Text | Google Scholar

29. Gharebaghi N, Nejadrahim R, Mousavi SJ, Sadat-Ebrahimi SR, Hajizadeh R. The Use of Intravenous Immunoglobulin Gamma for the Treatment of Severe Coronavirus Disease 2019: A Randomized Placebo-Controlled Double-Blind Clinical Trial. BMC Infect Dis (2020) 20(1):786. doi: 10.1186/s12879-020-05507-4

PubMed Abstract | CrossRef Full Text | Google Scholar

30. Ali S, Uddin SM, Shalim E, Sayeed MA, Anjum F, Saleem F, et al. Hyperimmune Anti-COVID-19 IVIG (C-IVIG) Treatment in Severe and Critical COVID-19 Patients: A Phase I/II Randomized Control Trial. EClinicalMedicine (2021) 36:100926. doi: 10.1016/j.eclinm.2021.100926

PubMed Abstract | CrossRef Full Text | Google Scholar

31. Xiang HR, Cheng X, Li Y, Luo WW, Zhang QZ, Peng WX. Efficacy of IVIG (Intravenous Immunoglobulin) for Corona Virus Disease 2019 (COVID-19): A Meta-Analysis. Int Immunopharmacol (2021) 96:107732. doi: 10.1016/j.intimp.2021.107732

PubMed Abstract | CrossRef Full Text | Google Scholar

32. Polizzotto MN, Nordwall J, Babiker AG, Phillips A, Vock DM, Eriobu N, et al. Hyperimmune Immunoglobulin for Hospitalised Patients With COVID-19 (ITAC): A Double-Blind, Placebo-Controlled, Phase 3, Randomised Trial. Lancet (2022) 399(10324):530–40. doi: 10.1016/S0140-6736(22)00101-5

PubMed Abstract | CrossRef Full Text | Google Scholar

Keywords: Cushing’s syndrome, COVID-19, IVIg, hypercortisolism, immunomodulation, immunosuppression

Citation: Popovic B, Radovanovic Spurnic A, Velickovic J, Plavsic A, Jecmenica-Lukic M, Glisic T, Ilic D, Jeremic D, Vratonjic J, Samardzic V, Gluvic Z and Adzic-Vukicevic T (2022) Successful Immunomodulatory Treatment of COVID-19 in a Patient With Severe ACTH-Dependent Cushing’s Syndrome: A Case Report and Review of Literature. Front. Endocrinol. 13:889928. doi: 10.3389/fendo.2022.889928

Received: 04 March 2022; Accepted: 17 May 2022;
Published: 22 June 2022.

Edited by:

Giuseppe Reimondo, University of Turin, Italy

Reviewed by:

Nora Maria Elvira Albiger, Veneto Institute of Oncology (IRCCS), Italy
Miguel Debono, Royal Hallamshire Hospital, United Kingdom

Copyright © 2022 Popovic, Radovanovic Spurnic, Velickovic, Plavsic, Jecmenica-Lukic, Glisic, Ilic, Jeremic, Vratonjic, Samardzic, Gluvic and Adzic-Vukicevic. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Bojana Popovic,

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.


Eyelid Edema Due to Cushing’s Syndrome


Cushing’s syndrome (CS) shows diverse signs such as centripetal obesity, moon face, and buffalo hump, which can complicate the diagnosis. Facial features including eyelid edema, as an underrecognized sign, can be diagnostic clues for an excess of corticoids in a CS patient.

A 49-year-old woman presented with amenorrhea and weight gain that had continued for 2 years. Her medical history was dyslipidemia, hypertension, and osteoporosis. Physical examination revealed eyelid edemas (Figure 1A), moon face, buffalo hump, abdominal purple striae, and centripetal obesity (body mass index (BMI), 30.8 kg/m2). Basal plasma adrenocorticotropin was undetectable and serum cortisol level was high (16.9 μg/dl) without circadian rhythms. Free cortisol level in a 24-h urine collection was elevated (158.7 μg/day). Overnight administration of dexamethasone (1 mg) did not reduce serum cortisol level (17.4 μg/dl). Magnetic resonance imaging suggested bilateral adenomas. We made a diagnosis of adrenal Cushing’s syndrome (CS). Since 131l-adosterol scintigraphy showed specific uptake in the left adrenal gland, left adrenalectomy was laparoscopically performed. Histopathology of the tumor was compatible with adrenocortical adenoma. Three months after surgery, her BMI decreased to 25.0 kg/m2 and eyelid edemas were ameliorated (Figure 1B).

Details are in the caption following the image

(A) Bilateral eyelid edemas due to Cushing’s syndrome are shown. (B) These findings were improved three months after surgery for left adrenal adenomas

Eyelid edema, in addition to centripetal obesity, moon face, and buffalo hump, is also a significant sign of CS; however, it has scarcely been reported in countries other than Japan.12 Increased capillary permeability, insufficient venous return due to muscle atrophy, and sodium retention due to mineralocorticoid actions conceivably cause edema in CS.


KY wrote the first draft and managed all the submission processes. KO and KH contributed to the clinical management of the patient. FO organized the writing the manuscript.




The authors declare no conflicts of interest.


Written informed consent was obtained from the patient to publish this case report.

  • 1Lacroix A, Feelders RA, Stratakis CA, Nieman LK. Cushing’s syndrome. Lancet. 2015; 386: 913- 927.
  • 2Komiya I, Takasu N, Ohara N, et al. Forty-one cases of Cushing’s syndrome: a comparison between Cushing’s syndrome (adrenal adenoma) and Cushing’s disease (adrenal hyperplasia). Nihon Naibunpi Gakkai Zasshi. 1992; 68: 607- 622.


Long-term Outcomes and Complications from Endoscopic Versus Microscopic Transsphenoidal Surgery for Cushing’s Disease – a 15-year Single-center Study



Endoscopic endonasal surgery is the main transsphenoidal approach for pituitary surgery in many centers, however few studies compare the endoscopic and microscopic surgical approach with regard to long-term follow-up. This single-center study aimed to compare the two techniques over 15 years.


Medical records and magnetic resonance images from 40 patients with primary transsphenoidal surgery for Cushing’s disease at Sahlgrenska University Hospital between 2003 and 2018 were reviewed. Fourteen patients who underwent microscopic surgery and 26 patients who underwent endoscopic surgery were included in this study.


In the microscopic group, 12 of 14 patients achieved endocrine remission, compared to 19 of 26 patients in the endoscopic group (n. s.). Three patients in each group developed a late recurrence. Complications were seen in 5 patients in the microscopic group and in 8 patients in the endoscopic group (n. s.). No serious complications, such as carotid artery damage, cerebrovascular fluid leakage, epistaxis, or meningitis, occurred in any group. The postoperative hospital stay was shorter in the endoscopic than the microscopic group.


Endoscopic endonasal surgery for Cushing’s disease showed no difference in remission, recurrence, and complication rates compared to the microscopic approach. The endoscopic group had a shorter postoperative hospital stay than the microscopic group, which in part may be due to the minimal invasiveness of the endoscopic approach.

References (0)

Cited by (0)

Conflicts of interest

The authors have no conflicts of interest.

Author statements

Conceptualization: D. Farahmand, E. Backlund, O. Ragnarsson and P. Trimpou

Data curation: Dan Farahmand, Erica Backlund, J. Carlqvist, T. Skoglund, T. Hallén, O. Ragnarsson, P. Trimpou.

Formal Analysis: D. Farahmand, E. Backlund

Funding acquisition: D. Farahmand

Investigation: D. Farahmand, E. Backlund, O. Ragnarsson and P. Trimpou

Methodology: D. Farahmand, E. Backlund, O. Ragnarsson and P. Trimpou

Project administration: D. Farahmand, E. Backlund, O. Ragnarsson and P. Trimpou

Supervision: D. Farahmand

Writing – original draft: Penelope Trimpou

Writing – review & editing: E. Backlund, O. Ragnarsson, T. Skoglund, T. Hallén, G. Gudnadottir, J. Carlqvist and D. Farahmand.

View full text


MRI-negative Cushing’s Disease


Cushing’s disease (CD) is among the most common etiologies of hypercortisolism. Magnetic resonance imaging (MRI) is often utilized in the diagnosis of CD, however, up to 64% of adrenocorticotropic hormone (ACTH)-producing pituitary microadenomas are undetectable on MRI. We report 15 cases of MRI negative CD who underwent surgical resection utilizing a purely endoscopic endonasal approach.


Endoscopic endonasal transsphenoidal surgery (EETS) was performed on 134 CD cases by a single surgeon. Fifteen cases met inclusion criteria: no conclusive MRI studies and no previous surgical treatment. Data collected included signs/symptoms, pre- and post-operative hormone levels, and complications resulting from surgical or medical management. Data regarding tumor diameter, location, and tumor residue/recurrence was obtained from both pre- and post-operative MRI. Immunohistochemistry was performed to assess for tumor hormone secretion.


Aside from a statistically significant difference (P = 0.001) in histopathological results between patients with negative and positive MRI, there were no statistically significant difference between these two groups in any other demographic or clinical data point. Inferior petrosal sinus sampling (IPSS) with desmopressin (DDAVP®) administration was performed on the 15 patients with inconclusive MRIs to identify the origin of ACTH hypersecretion via a central/peripheral (C/P) ratio. IPSS in seven, five and three patients showed right, left, and central side lateralization, respectively. With a mean follow-up of 5.5 years, among MRI-negative patients, 14 (93%) and 12 patients (80%) achieved early and long-term remission, respectively. In the MRI-positive cohort, over a mean follow-up of 4.8 years, 113 patients (94.9%) and 102 patients (85.7%) achieved initial and long-term remission, respectively.


Surgical management of MRI-negative/inconclusive Cushing’s disease is challenging scenario requiring a multidisciplinary approach. An experienced neurosurgeon, in collaboration with a dedicated endocrinologist, should identify the most likely location of the adenoma utilizing IPSS findings, followed by careful surgical exploration of the pituitary to identify the adenoma.

Peer Review reports


Cushing’s disease (CD) is the most common cause of hypercortisolism [1]. Left untreated, CD can result in multiple complications, most often cardiovascular disease or infection, and has a mortality rate 1.7–4.8-times higher than the general population [2,3,4]. Although MRI is the imaging modality of choice for identifying these tumors, imaging is often inconclusive [5].

Prior studies have shown that adrenocorticotropic hormone (ACTH)-producing pituitary microadenomas are undetectable on MRI in 36–64% of cases [5]. However, the development and widespread utilization of 3-T MRI (3TMRI) has led to much higher tumor detection rates [67]. With a negative predictive value of approximately 19–94% and variable sensitivity and specificity, anywhere from 4 to 54% of MRIs are incorrectly reported, especially in the setting of ACTH-secreting pituitary adenomas [89]. With such variation in radiographic appearance, reliance on imaging for the management of CD patients can cause significant uncertainty for neurosurgeons and endocrinologists alike.

The choice approach in the surgical management of these adenomas is via an endoscopic endonasal transsphenoidal surgery (EETS) [21011], resulting in overall post-operative remission rates of 64–93% globally and 50–71% for cases without a conclusive MRI [12,13,14,15]. Inconclusive MRIs pose a significant challenge in the surgical management of CD, with the decision to pursue surgery for MRI-negative CD remaining highly controversial [8101416]. In this study, we report 15 cases of CD without positive MRIs who underwent adenoma resection via EETS.

Patients, materials and methods

Patients population

Between January 2005 and December 2018, EETS was performed in 134 CD cases by a single surgeon at Loghman hakim and Erfan hospitals. Of those patients, 15 cases met inclusion criteria: inconclusive MRI studies and no prior surgical treatment. The population consisted of 12 women (mean age 32.5 years; range 14–65 years) and 3 men (mean age 35 years; range 22–60 years). Data collected included signs/symptoms, pre- and post-operative hormone levels, and complications resulting from surgical or medical management. Data regarding tumor diameter, location, and tumor residue/recurrence was obtained from both pre- and post-operative MRIs. Immunohistochemistry was performed to assess for tumor hormone secretion.

Ethics approval and consent to participate

All procedures performed in this study involving human participants were in accordance with the ethical standards and approved by the Shahid Beheshti Medical University (SBMU) Ethical Committee and the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Also, a written informed consent was obtained from all subjects (or their parent or legal guardian in the case of children under 16).


All patients underwent pre- and post-operative dynamic pituitary MRI via a superconducting 1.5-T scanner. Prior to gadolinium injection, T1-weighted Spin Echo (SE) and T2-weighted turbo SE images, followed by coronal dynamic acquisition (T1-weighted turbo SE), were obtained in the coronal plane using the following protocol: TR/TE, 400/20 ms; 288 · 192 matrix; two excitations; 18 · 18 cm field of view (FOV); 3 mm in thickness with 0.3-mm intersection gap. Afterwards, with simultaneous gadolinium injection, coronal and sagittal T1-weighted SE images were obtained 2 minutes following injection. All images were independently reviewed by both a radiologist and a neurosurgeon.

MRIs studies were categorized into direct and indirect signs of CD. Direct signs consisted of any inhomogeneity found in the pituitary, such as a lesions with diminished enhancement. Indirect signs included pituitary stalk deviation and bulging or erosion of the sellar contour. MRI studies were considered negative (normal) if no direct or indirect signs were identified.

In some cases, small lesions with diameters under 6 mm may be seen on MRI however are not considered indicative of CD due to the high prevalence of incidentalomas in this region. MRIs in which these lesions were present were classified as inconclusive.

Any uncertainty in interpreting the MRIs by any of the reviewers resulted in exclusion of the image from this study.

Pre-operative endocrine examination

All cases were ACTH-dependent Cushing syndrome showing clinical features including weight gain, proximal myopathy, and wide base purple striae. Furthermore, all cases demonstrated laboratory abnormalities consistent with CD, including increased 24-hour urinary free cortisol (UFC) excretion, loss of the cortisol circadian rhythm, high basal ACTH level, failure of low-dose dexamethasone to suppress cortisol secretion in addition to serum suppression or 24-hour UFC after high-dose dexamethasone. Additionally, pre- and post-operative levels of anterior pituitary hormone including prolactin, growth hormone (GH), insulin-like growth factor I (IGF-I), thyroid stimulating hormone (TSH), free/total Triiodothyronine (T3)/ Thyroxine (T4), follicle-stimulating hormone (FSH), Luteinizing hormone (LH), and free/total testosterone (men) or estradiol (premenopausal women) were measured.

The 15 cases of MRI negative CD were diagnosed and categorized according to their endocrine profile in order to distinguish the ACTH-dependent CD from pseudo-cushing syndrome.

Bilateral inferior petrosal sinus sampling (BIPSS)

All 15 cases of MRI-negative ACTH-dependent Cushing’s syndrome underwent bilateral inferior petrosal sinus sampling (BIPSS). To confirm that the elevated ACTH secretion originated from the pituitary, BIPSS was simultaneously performed with central/peripheral (C/P) ACTH gradient measurement, utilizing the calculations described by Oldfield et al. [17].

No significant complications occurred in performing the procedures. A petrosal to peripheral ACTH ratio ≥ 2.0 in the basal state, a peak ratio ≥ 3.0 after desmopressin (DDAVP®) administration, or a normalized IPS:P ratio > 0.8 were considered diagnostic of CD. Additionally, tumor lateralization was specified when the interpetrosal gradient ratio of ACTH was ≥1.4 [18].

Endoscopic Endonasal Transsphenoidal surgical approach

All patients underwent surgery by a single neurosurgeon and otolaryngologist (ENT) with extensive experience in pituitary tumor excision via EETS. Exposure to the sellar floor was provided by an ENT surgeon while drilling of the sella was performed by the neurosurgeon. Extensive drilling of the sellar floor laterally up to the carotid artery bilaterally provided a wide view of the medial wall of the cavernous sinus as well as exposure of the anterior and posterior intercavernous sinuses was performed in all cases. The dura was then opened to expose the pituitary gland. Following tumor identification, adenomectomy was performed with selective removal of a rim of normal pituitary tissue. In cases where a tumor was not visualized on initial exposure of the pituitary, the pituitary gland was explored laterally via a horizontal paramedian incision on the IPSS suggesting side. If a tumor was not visualized at this stage, a vertical paramedian incision was then performed. In some cases, a cream-like substance was drained from the pituitary incision. Although this was suspicious of a tumor and tissue biopsy was obtained, it was not considered a definite tumor diagnosis and thus surgical exploration (EXP) was done in the same manner on the other side of the pituitary. In the scenario where no distinct adenoma was found, both sides of the pituitary gland underwent EXP with emphasis on lateralizing sides distinguished by IPSS. However, we did not rely solely on IPSS lateralization, as whole gland EXP was performed in all cases. Although ACTH secreting pituitary adenomas are the most common cause of Cushing syndrome, pituitary adenomas can also be ectopic, forming outside of the sella turcica with no direct connection to the pituitary gland [19]. After EXP of each side of the gland, ipsilateral periglandular inspection with visualization of the medial wall of the cavernous sinus and diaphragm was performed to identify a potential ectopic microadenoma in the periglandular region. Although the exact origin of ectopic ACTH-producing pituitary adenomas is unclear, they likely emerge from remnants of Rathke’s pouch during its development course [20]. As a result, these tumors can be discovered in the nasopharynx, sphenoid sinus, cavernous sinus, clivus, or suprasellar area [21]. Detecting an adenoma at this stage may prevent further unnecessary EXP of pituitary gland. If a visible tumor was still not detected, a vertical medial incision was made on the pituitary gland adjacent to the pituitary stalk and neurohypophysis. If a tumor could not be reliably identified by extensive EXP of the entire pituitary gland or BIPSS failed to localize a pituitary adenoma, we did not progress to performing incomplete or complete hypophysectomy. Figures 1 and 2, respectively, demonstrate the surgical management algorithm and pituitary incisions for MRI-negative CD.

Fig. 1

figure 1

Eight-step MRI negative Cushing’s disease surgical management

Fig. 2

figure 2

Schematic illustration of 8 steps in endoscopic endonasal approach to MRI inconclusive Cushing’s disease (Resembling half Georgia flag)

If an ectopic ACTH-secreting adenoma is not easily found, permanent destructive or ablative surgeries such as bilateral adrenalectomy and hypophysectomy may be required [20]. Despite the danger of Nelson syndrome, bilateral adrenalectomy remains a feasible option in the management of refractory CD [2223].

Histological examination

All intraoperative tissue specimens obtained underwent histological examination by a pathologist. Pituitary specimens were fixed in buffered 10% formalin and embedded in paraffin wax. All specimens were first examined by Hematoxylin and Eosin (H&E) staining to detect regions which had loss of acinar organization. Additionally, reticulin and periodic Acid-Schiff (PAS) staining was implemented for a more accurate histopathologic diagnosis. Immunohistochemistry staining was used to identify cytokeratin and anterior pituitary hormones, including ACTH, in the case of a pituitary adenoma not being detected by H&E staining. The presence of ACTH-secreting cells was examined via immunocytochemistry using specific anti-ACTH antibodies.

Post-operative endocrinologic assessment and follow up

Serum cortisol and ACTH levels were monitored for 2–5 days following surgery. Initial follow-up occurred 2 weeks post-operatively with a subsequent visit occurring 3 months postoperatively, during each visit a complete pituitary hormonal evaluation was performed. This evaluation was repeated every 3 months for up to 2 years and every 6 months after that. An initial postoperative pituitary MRI was typically performed within 3 months after surgery. For patients to be considered to be in initial post-operation remission, a basal plasma cortisol level lower than 140 nmol/L (5 μg/dL) or adequate suppression of plasma cortisol (≤56 nmol/L) (≤1.8 μg/dL) following the 1-mg dexamethasone suppression test was necessary during the first month following surgery. Long term remission was defined as a plasma cortisol lower than 84 nmol/L (3 μg/dL) after a 1-mg dexamethasone suppression test at the final visit. Recurrence was defined as a recurring case of hypercortisolism with insufficient suppression of plasma cortisol (> 140 nmol/L) after a 1-mg dexamethasone suppression test. Clinical criteria for remission included significant symptomatic improvement or resolution without additional therapy (radiotherapy, adrenalectomy). Patients achieving remission had to meet both laboratory and clinical criteria to be classified as such. Glucocorticoids were not given postoperatively except when there was laboratory evidence of hypercortisolism and/or clinical manifestations of glucocorticoid insufficiency. Additionally, 4 to 6 weeks post-operatively, thyroid and gonadal axis function was assessed by measuring free T4, TSH, FSH, and LH levels in addition to end-organ hormones (estradiol in women and testosterone in men).

Statistical analysis

SPSS software (version 26, Chicago, IL) was used to analyze the data. For continuous data, we calculated descriptive statistics, mean and standard deviation (SD), and for categorical variables, frequency and percentages were calculated. The chi-square or Fisher’s exact test was used to analyze categorical data, while the student’s t-test or Mann- Whitney U test was used to analyze continuous variables’ means, depending on the distribution’s normality. Statistical significance was defined by a p value of < 0.05.


Demographic and clinical data of 134 patients with CD who underwent EETS are shown in Table 1. Fifteen (11.2%) of the 134 CD patients who underwent EETS were MRI-negative and 119 patients (88.8%) were MRI positive. The female/male ratio in the MRI-negative group was four to one while this ratio in the MRI-positive cohort was 2.6. With regards to sex distribution, Fisher’s exact test found no statistically significant difference between these two groups (P = 0.565). All patients had clinical manifestation of Cushing’s syndrome including obesity, hirsutism, glucose intolerance, and hypertension. As shown in Table 1, pre-operative ACTH level was 134.02 ± 21.78 ng/l and 151.76 ± 44.17 ng/l in MRI-negative and MRI-positive patients, respectively, and no statistically significant difference was observed between these two groups (P = 0.781). As demonstrated in Table 1, UFC was 462.3 ± 43.98 μg/24 h and 478.4 ± 73.02 in MRI-negative and MRI-positive patients, respectively, and no statistically significant difference was observed between these two groups (P = 0.832).

Table 1 Demographic and clinical data

IPSS with DDAVP® administration was performed on the 15 MRI-negative patients to identify the origin of ACTH hypersecretion via the C/P ratio. Seven patients showed right-sided lateralization and five patients showed left-sided lateralization. In remaining three patients, IPSS did not show an ACTH interpetrosal gradient ratio greater than the cutoff point, which was interpreted as an ACTH hypersecretion with central origin. On EXP, adenomas were found in 2 of the 3 patients, with no adenoma being found in the 3rd. The IPSS results were in concordance with our observations during EXPs in 60% of patients. However, in 13% of patients, no adenoma was detected, and in 26% an adenoma was found on the opposite side of the pituitary where pre-operative IPSS results initially reported a tumor or was suggestive of one being present. In 60% of MRI-negative patients, histological examination demonstrated an adrenocorticotropic pituitary adenoma, but in 40% no adenoma was found after pathological examinations. In MRI-positive patients, positive histology was observed in 112 patients (94.1%), while in 7 patients (5.9%) histopathological studies were negative. Fisher’s exact test revealed that the difference between MRI-negative and MRI-positive patients in terms of histopathological result was statistically significant (P = 0.001).

In all four patients who had discordant IPSS results as well as the patients who had negative or inconclusive findings on EXP, tissue samples were obtained from suspicious sites during EXP and were sent for histopathological examination. Histopathology demonstrated adrenocorticotropic adenoma tissues in 3 of them on the opposite side of the IPSS suggested region, while in 1 of them the histological results were inconclusive. This patient (case 10) achieved initial remission, however she experienced recurrence after 25 months, and similarly to her initial presentation, MRI findings were negative and IPSS suggested right sided lateralization. She underwent revision surgery, and a distinct adenoma was detected on the right side, which was confirmed by histological examination, after which she went into remission following selective adenectomy (Table 2).

Table 2 Presents summary of patients’ demographics, IPSS and surgical exploration results

Among the patients with inconclusive MRI, 14 (93%) achieved initial remission, 12 of which (80%) went on to long term remission with a mean follow up of 5.5 years. Two patients (cases 10 and 11) developed recurrence following initial remission; according to the IPSS suggested side, partial hypophysectomy was performed in both cases however neither was able to achieve remission afterwards. One patient (case 13) was unable to achieve initial remission following the initial surgery and thus required continued medical management. With a mean follow-up of 4.8 years among the 119 patients with positive MRI, 113 patients (94.9%) and 102 patients (85.7%) achieved initial and long-term remission, respectively. There were no statistically significant differences between these two groups in terms of either initial (P = 0.767) or long-term remission (P = 0.457). Among the 102 patients who achieved long-term remission, 12 patients (11.7%) experienced disease recurrence. With regards to recurrence rate, there was no statistically significant difference between patients with either positive or negative MRI (P = 0.542).

In two patients (cases 2 and 6) the adenoma was not found during EXP, however tissue samples obtained from the IPSS suggested side demonstrated adrenocorticotropic pituitary adenoma in both patients on histopathological examination.

Diabetes insipidus (DI) was the most frequent complication associated with CD. Transient DI occurred in seven cases with resolution prior to discharge. There was one case of permanent DI diagnosed in follow-up. Additionally, one patient developed symptomatic adrenal insufficiency requiring glucocorticoid replacement. Two patients developed hypothyroidism requiring hormone replacement. Panhypopituitarism was not seen following the initial surgeries however occurred in one case following revision surgery (partial hypophysectomy) which required hormone replacement therapy. Cerebrospinal fluid (CSF) leak resulting in meningitis was seen in one patient, however no other complications occurred during the post-operative period. None of our patients demonstrated clinical or endocrinological signs of gonadal insufficiency in follow-up aside from the aforementioned case of panhypopituitarism following revision partial hypophysectomy. In the MRI-positive cohort, 51 patients showed transients DI (42.8%), with 4 of the patients (3.4%) experiencing DI till last follow-up. Partial anterior pituitary insufficiency and complete anterior pituitary insufficiency was observed in one (0.8%) and two (1.6%) patients, respectively. Syndrome of inappropriate antidiuretic hormone (SIADH) secretion was observed in 3 patients (2.5%).


In this study we present the outcomes of pure endoscopic endonasal surgical treatment of fifteen patients with MRI-negative Cushing’s disease. Due to the arduous nature of treatment in this patient population, we used a precise method of EXP as described above, resulting in initial remission in 93% of patients post-operatively. Based on the work of Bansal et al., patients with a definite adenoma on MRI who underwent microscopic transsphenoidal surgery had a statistically significant greater rate of early remission and lower rates of persistent disease than those with negative/equivocal findings [24]. However, in terms of late remission and recurrence, there was no statistically significant difference between these two groups [24]. Negative/equivocal MRI results and the incidence of macroadenoma, particularly in patients with cavernous sinus invasion, were found to predict poor remission rates [24]. According to some investigations, MRI-negative CD patients had a poorer remission rate [2526]. In other studies, however, there was no statistically significant difference in remission between those who had MRI-negative CD and those who had a MRI-positive CD, which is consistent with our result [1427,28,29,30,31,32]. Recurrence occurred in 2 patients, while 12 patients showed no clinical or endocrinological signs of recurrence during the mean follow-up of 5 years, and one patient did not go to remission. Aside from one CSF leak leading to meningitis and one case of permanent DI, there were no major surgery related complications. Pituitary CD is a common and potentially lethal condition that, if left untreated, can lead to sequelae such as morbid obesity, hypertension, and diabetes mellitus. Diagnosis and treatment of CD is more challenging than other functional pituitary adenomas. Currently, trans-sphenoidal pituitary EXP is considered the standard of care for CD [33,34,35]. CD is typically diagnosed by endocrinologist through clinical symptoms, and supported by laboratory tests such as the 8 AM blood or saliva cortisol level, 24 hours urinary free cortisol level, low- and high-dose dexamethasone suppression tests, and the corticotropin-releasing hormone (CRH) stimulating test [36,37,38]. When ACTH-dependent CD is diagnosed, or clinical signs and symptoms are highly suggestive of it, MRI imaging of the pituitary is often the next step to identify the causative agent i.e., a pituitary adenoma. With regards to pituitary lesions, MRI is considered the most sensitive imaging modality, however reported sensitivity varies significantly between studies, with reported rates ranging from 22 to 92% [39,40,41].

The rate of MRI-negative microadenomas is reported to be between 36 to 63% [5]. Hofmann et al. reported no identified tumor in 49.3% of 270 MRIs [29]. Yamada et al. reported a lower frequency (17%) of MRI-negative CD in their series [42]. In our series, only 15 out of 134 (11.19%) CD patients were MRI-negative. In general, negative-MRIs could be explained by several factors such as field strength, technique (the correct pulse sequence and parameters), radiologist interpretation errors, or tumor size. Identifying tumors smaller than 3 mm in diameter is difficult in MRIs with 2.5- to 3-mm-thick image sections [29]. Dynamic MRI and 3-TMRI can result in a higher sensitivity in identifying ACTH-secreting microadenomas [6743]. In addition, spoiled gradient-recalled echo sequence (SPGR) view can help to increase sensitivity [44]. The relatively low number of negative-MRIs in our study can be attributed to the more extensive review of MRI images, utilization of high-field strength MRI (1.5 T), as well as the implementation of SPGR dynamic studies with 1.5- to 2.0-mm-thick sections, in addition to standard methods. Additionally, assessment of images by experienced pituitary neuroradiologists may have reduced the negative-MRI rate in our series. Although small tumor size is a likely factor in MRI-negative CD, prior studies have reported examples of MRI-negative microadenomas 4-6 mm in size, typically large enough to be easily identified on EXP [42].

If MRI is unable to identify the tumor definitively, the next best step is venous sampling to confirm CD. There are various indication for BIPSS, including patients who have clinical and laboratory findings of CD but normal or inconclusive MRI results [45], cases that do not have a clear hormone test response, or cases where there are inconsistencies between laboratory and imaging results [46]. BIPSS is also recommended by some as standard for any case of confirmed ACTH-dependent Cushing’s syndrome [4748]. In our institution, BIPSS is reserved for MRI-negative Cushing’s patients. Newell-Price et al. reviewed 21 studies with 569 total patients, and found that BIPSS with CRH stimulation had a 96% sensitivity and 100% specificity in separating CD from pseudo-Cushing’s states [49]. Most studies report a 90–100% sensitivity and specificity for BIPSS [50,51,52]. In the majority of cases of CD, a pituitary microadenoma can be found eccentric to one side of the pituitary, having venous drainage directly into the ipsilateral inferior petrosal sinus (IPS) [53].

This phenomenon is the basis for utilizing BIPSS as a means of lateralizing ACTH secreting pituitary tumors. There are many instances where EXP fails to detect a pituitary adenoma, despite conformation of pituitary origin of ACTH secretion via BIPSS. Evidence of lateralization prior to surgery can convince the surgeon to perform a guided hemi hypophysectomy. In our series, the accuracy of BIPSS for lateralizing adenomas was 60%, similar to the reported accuracy in the literature of approximately 70% [17]. Inaccurate lateralization from BIPSS has been attributed to asymmetrical venous drainage with shunting of blood toward the dominant side. Thus, BIPSS appears to be a superior diagnostic tool compared to other means of lateralization, and neurosurgeons should be wary of making operative decisions solely from BIPSS data [49].

The standard of care for MRI-negative CD is highly disputed. There is evidence suggesting surgical exploration is more problematic than watchful waiting [8], or that it is not indicated in MRI-negative CD [54]. Many advancements have led to the widespread adoption of transsphenoidal approach during the last three decades, especially the endoscope [31]. Regardless of the width or depth of access, the endoscopic approach allows the surgeon to have a large panoramic view. Many cases in the literature have reported successfully treating functional pituitary tumors via endoscopic surgery [273155,56,57,58]. The results suggest that they are on par with, if not superior to, traditional microscopic approaches. When patients were operated on utilizing a microscopic technique assisted by a pre-operative ACTH gradient, the overall rate of partial adenomectomy (partial hypophysectomy) was 30%, including 19% in patients with positive MRIs and 40% in those with negative MRIs [28]. However, endoscopic visualization of pituitary adenomas has allowed for the need for partial adenomectomy to be reduced to less than 2%, limiting the damage to the normal pituitary gland during operation [28]. A recently published meta-analysis demonstrated that although there was no statistically significant differences between EETS and microscopic endonasal transsphenoidal surgery in the sub-analysis with regards to recurrence rate, remission rate, and persistence rate, the recurrence rate in the microscopic endonasal transsphenoidal surgery group was almost three times higher than in the EETS group [11]. As a result, EETS appears to be a possible suggested therapeutic method, while more studies are needed to establish the therapeutic method of choice [59].

In general, pituitary surgery is not advisable in cases of MRI-negative CD where IPSS is not able to prove a central origin of ACTH secretion [42]. However, when IPSS demonstrates central ACTH secretion, surgical intervention has been proposed as a first line treatment in MRI-negative CD [25324260]. The outcome of surgical intervention in MRI-negative patients is variable in the literature. Some reports indicated lower remission rate in these patients [4261], while others have concluded that EXP results in greater complications in this population [815]. Additionally, several studies have shown no significant difference in outcomes of pituitary surgery between MRI-negative and MRI-positive patients [142532]. Pivonello et al. found the lack of tumor detection on pre-operative MRI operation to be a negative prognostic factor in surgical management [62]. In the present study, surgery was performed for all MRI-negative Cushing’s patients with positive IPSS results. We achieved 93% initial remission and 80% long term remission rates, comparable to mean remission rates in patients with preoperative identification of tumor, as reported in the literature, ranging from 52.6–100% [62].

Failure to identify an adenoma on EXP or in histologic examination is not uncommon in the surgical management of CD. Intraoperative detection of the adenoma has been shown to be a factor of favorable prognosis [63,64,65]. Similarly, failure to identify an adenoma on histopathology has been found to be a negative prognostic indicator. Specifically, remission rates were significantly lower in cases where no histological tumor identification could be provided [146366]. In our study, two cases revealed no adenoma on EXP, however the tissue samples subsequently obtained from the IPSS suggesting side were consistent with pituitary adenoma on histologic examinations. In six cases, a cream-like substance was identified within the pituitary following incision, however histologic examination failed to demonstrate adrenocorticotropic adenoma in any of them. Nonetheless, 5 of the 6 patients went into remission following surgery, potentially due to the small size of tissue samples obtained which in turn made accurate histopathological assessment more difficult [1467].

In cases where EXP does not result in localization of an adenoma, surgical decision making becomes complicated. Generally, total hypophysectomy is not advisable due to high rates of endocrine complications as well as failing to provide significantly increased remission rates over partial hypophysectomy [6268]. In this scenario, multiple studies have recommended partial hypophysectomy based on IPSS lateralization as the next best step in management [6369]. Carr et al. suggested the advantage of 2/3 gland resection on remission rate in MRI-negative CD [60], but as previously discussed, IPSS may incorrectly lateralize adenomas, and thus surgeons should be hesitant when making decisions regarding tumor lateralization based solely on BIPSS data [1749]. Moreover, both adenomectomy and hypophysectomy are not without risks and potential complications. Surgical aggressiveness is correlated with increased likelihood of pituitary loss-of-function, supported by literature showing that the larger the amount of resection, the higher the rate of hypopituitarism. It has been reported that patients undergoing adenomectomy, hemi-hypophysectomy, and-total hypophysectomy had mean rates of hypopituitarism of 6.6, 20.2, and 80.2%, respectively [637071]. As most CD patients are females of reproductive age, preserving child-bearing capacity is an important consideration, one which results in reluctance to perform hemi-hypophysectomy. In our series, we performed selective adenectomy when distinct adenomas were found, and in the cases where no adenoma was detected, meticulous EXP of pituitary gland bilaterally was performed. Subsequently, if EXP was inconclusive, a vertical median incision was made near the pituitary stalk to explore central part of the gland, which is believed to be the nest for adrenocorticotropic cells. Although an important step in localizing the adenoma, this also likely explains the high rate of postoperative DI in our study. No additional hemi-hypophysectomy was performed during the initial surgery in our study. With this technique, we achieved acceptable results with regards to remission rates, and none of our patients experienced panhypopituitarism in postoperative follow-ups. In one patient where CD recurred 2 years post-operatively, inadequate bony exposure and limited visualization of the medial wall of the right cavernous sinus resulted in failure to identify the adenoma during the initial surgery, further supporting the strategy of creating extensive exposure of the operative field in MRI-negative CD. Another possible reason for recurrence in this patient would be growth of a previously undetected microadenoma.


Surgical treatment of MRI-negative Cushing’s disease is a demanding scenario necessitating multidisciplinary management. An experienced neurosurgeon working in collaboration with an endocrinologist should specify the most likely region of the tumor via IPSS. Additionally, surgical exploration of the pituitary is an invaluable tool in identifying adenomas while reducing the need for aggressive hypophysectomy, thus decreasing the likelihood of complications. Although MRI-negative Cushing’s disease presents significant challenges to neurosurgeons, surgical management remains essential in achieving remission.

Availability of data and materials

The authors confirm that the data supporting the findings of this study are available within the article.


  1. Mehta GU, Lonser RR, Oldfield EH. The history of pituitary surgery for Cushing disease: historical vignette. J Neurosurg. 2012;116(2):261–8.

    PubMed Article Google Scholar

  2. Hammer GD, Tyrrell JB, Lamborn KR, Applebury CB, Hannegan ET, Bell S, et al. Transsphenoidal microsurgery for Cushing’s disease: initial outcome and long-term results. J Clin Endocrinol Metabol. 2004;89(12):6348–57.

    CAS Article Google Scholar

  3. Nieman LK. Cushing’s syndrome: update on signs, symptoms and biochemical screening. Eur J Endocrinol. 2015;173(4):M33–8.

    CAS PubMed PubMed Central Article Google Scholar

  4. Swearingen B, Biller BM, Barker FG, Katznelson L, Grinspoon S, Klibanski A, et al. Long-term mortality after transsphenoidal surgery for Cushing disease. Ann Intern Med. 1999;130(10):821–4.

    CAS PubMed Article Google Scholar

  5. Lüdecke DK, Flitsch J, Knappe UJ, Saeger W. Cushing’s disease: a surgical view; this publication is dedicated to our professor emeritus Dr. med. Rudolf Kautzky. J Neuro-Oncol. 2001;54(2):151–66.

    Article Google Scholar

  6. Bartynski WS, Lin L. Dynamic and conventional spin-echo MR of pituitary microlesions. Am J Neuroradiol. 1997;18(5):965–72.

    CAS PubMed PubMed Central Google Scholar

  7. Erickson D, Erickson B, Watson R, Patton A, Atkinson J, Meyer F, et al. 3 tesla magnetic resonance imaging with and without corticotropin releasing hormone stimulation for the detection of microadenomas in Cushing’s syndrome. Clin Endocrinol. 2010;72(6):793–9.

    CAS Article Google Scholar

  8. Semple PL, Vance ML, Findling J, Laws ER Jr. Transsphenoidal surgery for Cushing’s disease: outcome in patients with a normal magnetic resonance imaging scan. Neurosurgery. 2000;46(3):553–9.

    CAS PubMed Article Google Scholar

  9. Tabarin A, Laurent F, Catargi B, Olivier-Puel F, Lescene R, Berge J, et al. Comparative evaluation of conventional and dynamic magnetic resonance imaging of the pituitary gland for the diagnosis of Cushing’s disease. Clin Endocrinol. 1998;49(3):293–300.

    CAS Article Google Scholar

  10. Nieman LK, Biller BM, Findling JW, Murad MH, Newell-Price J, Savage MO, et al. Treatment of Cushing’s syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2015;100(8):2807–31.

    CAS PubMed PubMed Central Article Google Scholar

  11. Sabahi M, Shahbazi T, Maroufi SF, Vidal K, Recinos PF, Kshettry VR, et al. MRI-negative Cushing’s disease: a review on therapeutic management. World Neurosurg. 2022.

  12. Ciric I, Zhao J-C, Du H, Findling JW, Molitch ME, Weiss RE, et al. Transsphenoidal surgery for Cushing disease: experience with 136 patients. Neurosurgery. 2012;70(1):70–81.

    PubMed Article Google Scholar

  13. Netea-Maier R, Van Lindert E, Den Heijer M, Van der Eerden A, Pieters G, Sweep C, et al. Transsphenoidal pituitary surgery via the endoscopic technique: results in 35 consecutive patients with Cushing’s disease. Eur J Endocrinol. 2006;154(5):675–84.

    CAS PubMed Article Google Scholar

  14. Salenave S, Gatta B, Pecheur S, Fo S-G, Visot A, Lasjaunias P, et al. Pituitary magnetic resonance imaging findings do not influence surgical outcome in adrenocorticotropin-secreting microadenomas. J Clin Endocrinol Metab. 2004;89(7):3371–6.

    CAS PubMed Article Google Scholar

  15. Semple PL, Laws ER. Complications in a contemporary series of patients who underwent transsphenoidal surgery for Cushing’s disease. J Neurosurg. 1999;91(2):175–9.

    CAS PubMed Article Google Scholar

  16. Lonser RR, Nieman L, Oldfield EH. Cushing’s disease: pathobiology, diagnosis, and management. J Neurosurg. 2017;126(2):404–17.

    PubMed Article Google Scholar

  17. EH OLDFIELD, ME GIRTON, JL DOPPMAN. Absence of intercavernous venous mixing: evidence supporting lateralization of pituitary microadenomas by venous sampling. J Clin Endocrinol Metab. 1985;61(4):644–7.

    Article Google Scholar

  18. Mamelak AN, Dowd CF, Tyrrell JB, McDonald JF, Wilson CB. Venous angiography is needed to interpret inferior petrosal sinus and cavernous sinus sampling data for lateralizing adrenocorticotropin-secreting adenomas. J Clin Endocrinol Metab. 1996;81(2):475–81.

    CAS PubMed Google Scholar

  19. Thompson LD, Seethala RR, Müller S. Ectopic sphenoid sinus pituitary adenoma (ESSPA) with normal anterior pituitary gland: a clinicopathologic and immunophenotypic study of 32 cases with a comprehensive review of the English literature. Head and neck pathology. 2012;6(1):75–100.

    PubMed PubMed Central Article Google Scholar

  20. Seltzer J, Lucas J, Commins D, Lerner O, Lerner A, Carmichael JD, et al. Ectopic ACTH-secreting pituitary adenoma of the sphenoid sinus: case report of endoscopic endonasal resection and systematic review of the literature. Neurosurg Focus. 2015;38(2):E10.

    PubMed Article Google Scholar

  21. Langford L, Batsakis JG. Pituitary gland involvement of the sinonasal tract. Ann Otology, Rhinology & Laryngology. 1995;104(2):167–9.

    CAS Article Google Scholar

  22. Gurazada K, Ihuoma A, Galloway M, Dorward N, Wilhelm T, Khoo B, et al. Nasally located ectopic ACTH-secreting pituitary adenoma (EAPA) causing Nelson’s syndrome: diagnostic challenges. Pituitary. 2014;17(5):423–9.

    CAS PubMed Article Google Scholar

  23. Pluta RM, Nieman L, Doppman JL, Watson JC, Tresser N, Katz DA, et al. Extrapituitary parasellar microadenoma in Cushing’s disease. J Clin Endocrinol Metabol. 1999;84(8):2912–23.

    CAS Google Scholar

  24. Bansal P, Lila A, Goroshi M, Jadhav S, Lomte N, Thakkar K, et al. Duration of post-operative hypocortisolism predicts sustained remission after pituitary surgery for Cushing’s disease. Endocrine connections. 2017;6(8):625–36.

    CAS PubMed PubMed Central Article Google Scholar

  25. Jagannathan J, Sheehan JP, Jane JA. Evaluation and management of Cushing syndrome in cases of negative sellar magnetic resonance imaging. Neurosurg Focus. 2007;23(3):1–7.

    Article Google Scholar

  26. Pouratian N, Prevedello DM, Jagannathan J, Lopes MB, Vance ML, Laws ER Jr. Outcomes and management of patients with Cushing’s disease without pathological confirmation of tumor resection after transsphenoidal surgery. J Clin Endocrinol Metab. 2007;92(9):3383–8.

    CAS PubMed Article Google Scholar

  27. Cebula H, Baussart B, Villa C, Assié G, Boulin A, Foubert L, et al. Efficacy of endoscopic endonasal transsphenoidal surgery for Cushing’s disease in 230 patients with positive and negative MRI. Acta Neurochir. 2017;159(7):1227–36.

    PubMed Article Google Scholar

  28. Cristante J, Lefournier V, Sturm N, Passagia JG, Gauchez AS, Tahon F, et al. Why we should still treat by neurosurgery patients with Cushing disease and a normal or inconclusive pituitary MRI. J Clin Endocrinol Metab. 2019;104(9):4101–13.

    Article Google Scholar

  29. Hofmann BM, Hlavac M, Martinez R, Buchfelder M, Müller OA, Fahlbusch R. Long-term results after microsurgery for Cushing disease: experience with 426 primary operations over 35 years. J Neurosurg. 2008;108(1):9–18.

    PubMed Article Google Scholar

  30. Testa R, Albiger N, Occhi G, Sanguin F, Scanarini M, Berlucchi S, et al. The usefulness of combined biochemical tests in the diagnosis of Cushing’s disease with negative pituitary magnetic resonance imaging. Eur J Endocrinol. 2007;156(2):241–8.

    CAS PubMed Article Google Scholar

  31. Starke RM, Reames DL, Chen C-J, Laws ER, Jane JA Jr. Endoscopic transsphenoidal surgery for Cushing disease: techniques, outcomes, and predictors of remission. Neurosurgery. 2013;72(2):240–7.

    PubMed Article Google Scholar

  32. Sun Y, Sun Q, Fan C, Shen J, Zhao W, Guo Y, et al. Diagnosis and therapy for Cushing’s disease with negative dynamic MRI finding: a single-Centre experience. Clin Endocrinol. 2012;76(6):868–76.

    Article Google Scholar

  33. Esposito F, Dusick JR, Cohan P, Moftakhar P, McArthur D, Wang C, et al. Early morning cortisol levels as a predictor of remission after transsphenoidal surgery for Cushing’s disease. J Clin Endocrinol Metab. 2006;91(1):7–13.

    CAS PubMed Article Google Scholar

  34. Ram Z, Nieman LK, Cutler GB, Chrousos GP, Doppman JL, Oldfield EH. Early repeat surgery for persistent Cushing’s disease. J Neurosurg. 1994;80(1):37–45.

    CAS PubMed Article Google Scholar

  35. Rollin GAFS, Ferreira NP, Junges M, Gross JL, Czepielewski MA. Dynamics of serum cortisol levels after transsphenoidal surgery in a cohort of patients with Cushing’s disease. J Clin Endocrinol Metab. 2004;89(3):1131–9.

    CAS PubMed Article Google Scholar

  36. Minami I, Tateno T, Yoshimoto T, Doi M, Izumiyama H, Akashi T, et al. Subclinical Cushings disease with amelioration of metabolic comorbidities after removal of pituitary tumor. Intern Med. 2006;45(21):1231–5.

    PubMed Article Google Scholar

  37. Nakane T, Kuwayama A, Watanabe M, Takahashi T, Kato T, Ichihara K, et al. Long term results of transsphenoidal adenomectomy in patients with Cushing’s disease. Neurosurgery. 1987;21(2):218–22.

    CAS PubMed Article Google Scholar

  38. Buchfelder M, Nistor R, Fahlbusch R, Huk WJ. The accuracy of CT and MR evaluation of the Sella turcica for detection of adrenocorticotropic hormone-secreting adenomas in Cushing disease. Am J Neuroradiol. 1993;14(5):1183–90.

    CAS PubMed PubMed Central Google Scholar

  39. Nieman LK. Medical therapy of Cushing’s disease. Pituitary. 2002;5(2):77–82.

    CAS PubMed Article Google Scholar

  40. Escourolle H, Abecassis J, Bertagna X, Guilhaume B, Pariente D, Derome P, et al. Comparison of computerized tomography and magnetic resonance imaging for the examination of the pituitary gland in patients with Cushing’s disease. Clin Endocrinol. 1993;39(3):307–13.

    CAS Article Google Scholar

  41. Findling JW, Doppman JL. Biochemical and radiologic diagnosis of Cushing’s syndrome. Endocrinol Metab Clin N Am. 1994;23(3):511–37.

    CAS Article Google Scholar

  42. Yamada S, Fukuhara N, Nishioka H, Takeshita A, Inoshita N, Ito J, et al. Surgical management and outcomes in patients with Cushing disease with negative pituitary magnetic resonance imaging. World Neurosurg. 2012;77(3–4):525–32.

    PubMed Article Google Scholar

  43. Portocarrero-Ortiz L, Bonifacio-Delgadillo D, Sotomayor-González A, Garcia-Marquez A, Lopez-Serna R. A modified protocol using half-dose gadolinium in dynamic 3-tesla magnetic resonance imaging for detection of ACTH-secreting pituitary tumors. Pituitary. 2010;13(3):230–5.

    CAS PubMed Article Google Scholar

  44. Patronas N, Bulakbasi N, Stratakis CA, Lafferty A, Oldfield EH, Doppman J, et al. Spoiled gradient recalled acquisition in the steady state technique is superior to conventional postcontrast spin echo technique for magnetic resonance imaging detection of adrenocorticotropin-secreting pituitary tumors. J Clin Endocrinol Metabol. 2003;88(4):1565–9.

    CAS Article Google Scholar

  45. Findling JW, Raff H. Cushing’s syndrome: important issues in diagnosis and management. J Clin Endocrinol Metab. 2006;91(10):3746–53.

    CAS PubMed Article Google Scholar

  46. Arnaldi G, Angeli A, Atkinson A, Bertagna X, Cavagnini F, Chrousos G, et al. Diagnosis and complications of Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab. 2003;88(12):5593–602.

    CAS PubMed Article Google Scholar

  47. McCANCE DR, McILRATH E, McNEILL A, DS GORDON, DR HADDEN, KENNEDY L, et al. Bilateral inferior petrosal sinus sampling as a routine procedure in ACTH-dependent Cushing’s syndrome. Clin Endocrinol. 1989;30(2):157–66.

    CAS Article Google Scholar

  48. JW FINDLING, ME KEHOE, JL SHAKER, RAFF H. Routine inferior petrosal sinus sampling in the differential diagnosis of adrenocorticotropin (ACTH)-dependent Cushing’s syndrome: early recognition of the occult ectopic ACTH syndrome. J Clin Endocrinol Metabol. 1991;73(2):408–13.

    Article Google Scholar

  49. Newell-Price J, Trainer P, Besser M, Grossman A. The diagnosis and differential diagnosis of Cushing’s syndrome and pseudo-Cushing’s states. Endocr Rev. 1998;19(5):647–72.

    CAS PubMed Google Scholar

  50. Machado MC, De Sa SV, Domenice S, Fragoso MCBV, Puglia P Jr, Pereira MAA, et al. The role of desmopressin in bilateral and simultaneous inferior petrosal sinus sampling for differential diagnosis of ACTH-dependent Cushing’s syndrome. Clin Endocrinol. 2007;66(1):136–42.

    CAS Google Scholar

  51. Hernandez I, Espinosa-de-los-Monteros AL, Mendoza V, Cheng S, Molina M, Sosa E, et al. Ectopic ACTH-secreting syndrome: a single center experience report with a high prevalence of occult tumor. Arch Med Res. 2006;37(8):976–80.

    CAS PubMed Article Google Scholar

  52. Invitti C, Giraldi FP, Cavagnini F. Endocrinology SGotHPAAotISo: inferior petrosal sinus sampling in patients with Cushing’s syndrome and contradictory responses to dynamic testing. Clin Endocrinol. 1999;51(2):255–7.

    CAS Article Google Scholar

  53. Obuobie K, Davies J, Ogunko A, Scanlon M. Venous thrombo-embolism following inferior petrosal sinus sampling in Cushing’s disease. J Endocrinol Investig. 2000;s23(8):542–4.

    Article Google Scholar

  54. Barrou Z, Abecassis J, Guilhaume B, Thomopoulos P, Bertagna X, Derome P, et al. Magnetic resonance imaging in Cushing disease. Prediction Surg Results. Presse medicale. 1997;26(1):7.

    CAS Google Scholar

  55. Guaraldi F, Zoli M, Asioli S, Corona G, Gori D, Friso F, et al. Results and predictors of outcome of endoscopic endonasal surgery in Cushing’s disease: 20-year experience of an Italian referral pituitary center. J Endocrinol Investig. 2020;43(10):1463–71.

    CAS Article Google Scholar

  56. Shin S, Gardner P, Ng J, Faraji A, Agarwal N, Chivukula S. Endoscopic endonasal approach for ACTH-secreting pituitary adenomas: outcomes and analysis of remission rates and tumor biochemical activity with respect to tumor invasiveness. World Neurosurg. 2015.

  57. Wagenmakers M, Boogaarts H, Roerink S, Timmers H, Stikkelbroeck N, Smit J, et al. Endoscopic transsphenoidal pituitary surgery: a good and safe primary treatment option for Cushing’s disease, even in case of macroadenomas or invasive adenomas. Eur J Endocrinol. 2013;169(3):329–37.

    CAS PubMed Article Google Scholar

  58. Zhang K, Shen M, Qiao N, Chen Z, He W, Ma Z, et al. Surgical outcomes and multidisciplinary management strategy of Cushing’s disease: a single-center experience in China. Neurosurg Focus. 2020;48(6):E7.

    PubMed Article Google Scholar

  59. Sabahi M, Shahbazi T, Maroufi SF, Vidal K, Recinos P, Kshettry V, et al. MRI-negative Cushing’s disease: a systematic review and Meta-analysis. J Neurological Surg Part B: Skull Base. 2022;83(S 01):A169.

    Google Scholar

  60. Carr SB, Kleinschmidt-DeMasters BK, Kerr JM, Kiseljak-Vassiliades K, Wierman ME, Lillehei KO. Negative surgical exploration in patients with Cushing’s disease: benefit of two-thirds gland resection on remission rate and a review of the literature. J Neurosurg. 2017;129(5):1260–7.

    Article Google Scholar

  61. Bochicchio D, Losa M, Buchfelder M. Factors influencing the immediate and late outcome of Cushing’s disease treated by transsphenoidal surgery: a retrospective study by the European Cushing’s disease survey group. J Clin Endocrinology Metab. 1995;80(11):3114–20.

    CAS Google Scholar

  62. Pivonello R, De Leo M, Cozzolino A, Colao A. The treatment of Cushing’s disease. Endocr Rev. 2015;36(4):385–486.

    CAS PubMed PubMed Central Article Google Scholar

  63. Prevedello DM, Pouratian N, Sherman J, Jane JA, Vance ML, Lopes MB, et al. Management of Cushing’s disease: outcome in patients with microadenoma detected on pituitary magnetic resonance imaging. J Neurosurg. 2008;109(4):751–9.

    PubMed Article Google Scholar

  64. Jagannathan J, Smith R, DeVroom HL, Vortmeyer AO, Stratakis CA, Nieman LK, et al. Outcome of using the histological pseudocapsule as a surgical capsule in Cushing disease. J Neurosurg. 2009;111(3):531–9.

    PubMed PubMed Central Article Google Scholar

  65. Burke C, Adams C, Esiri M, Morris C, Bevan J. Transsphenoidal surgery for Cushing’s disease: does what is removed determine the endocrine outcome? Clin Endocrinol. 1990;33(4):525–37.

    CAS Article Google Scholar

  66. Acebes J, Martino J, Masuet C, Montanya E, Soler J. Early post-operative ACTH and cortisol as predictors of remission in Cushing’s disease. Acta Neurochir. 2007;149(5):471–9.

    CAS PubMed Article Google Scholar

  67. Mampalam TJ, Tyrrell JB, Wilson CB. Transsphenoidal microsurgery for Cushing disease: a report of 216 cases. Ann Intern Med. 1988;109(6):487–93.

    CAS PubMed Article Google Scholar

  68. Tyrrell JB, Brooks RM, Fitzgerald PA, Cofoid PB, Forsham PH, Wilson CB. Cushing’s disease: selective trans-sphenoidal resection of pituitary microadenomas. N Engl J Med. 1978;298(14):753–8.

    CAS PubMed Article Google Scholar

  69. Fomekong E, Maiter D, Grandin C, Raftopoulos C. Outcome of transsphenoidal surgery for Cushing’s disease: a high remission rate in ACTH-secreting macroadenomas. Clin Neurol Neurosurg. 2009;111(5):442–9.

    PubMed Article Google Scholar

  70. Rees D, Hanna F, Davies J, Mills R, Vafidis J, Scanlon M. Long-term follow-up results of transsphenoidal surgery for Cushing’s disease in a single Centre using strict criteria for remission. Clin Endocrinol. 2002;56(4):541–51.

    CAS Article Google Scholar

  71. Trainer P, Lawrie H, Verhelst J, Howlett T, Lowe D, Grossman A, et al. Transsphenoidal resection in Cushing’s disease: undetectable serum cortisol as the definition of successfuI treatment. Clin Endocrinol. 1993;38(1):73–8.

    CAS Article Google Scholar

Download references


We are grateful to all those who have helped us to accomplish and fulfil this project.



Author information

Authors and Affiliations

  1. Department of Neurosurgery, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran

    Guive Sharifi, Amir Arsalan Amin & Seyed Ali Mousavinejad

  2. Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran

    Guive Sharifi, Amir Arsalan Amin, Nader Akbari Dilmaghani & Seyed Ali Mousavinejad

  3. Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran

    Mohammadmahdi Sabahi

  4. Department of Neurosurgery, Rutgers-New Jersey Medical School, Newark, NJ, USA

    Nikolas B. Echeverry

  5. Department of Otolaryngology, Head and Neck Surgery, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran

    Nader Akbari Dilmaghani

  6. Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

    Majid Valizadeh

  7. Department of Endocrinology, Loghman Hakim Hospital, Shahid Beheshti Medical University, Tehran, Iran

    Zahra Davoudi

  8. Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, Florida, USA

    Badih Adada & Hamid Borghei-Razavi

  9. Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Director of Minimally Invasive Cranial and Pituitary Surgery Program, Research Director of Neuroscience Institute, Cleveland Clinic Florida Region, 2950 Cleveland Clinic Blvd. Weston, Cleveland, FL, 33331, USA

    Hamid Borghei-Razavi


Guive Sharifi, Mohammadmahdi Sabahi and Amirarsalan Amin have given substantial contributions to the conception and the design of the manuscript, Mohammadmahdi Sabahi, Nikolas B. Echeverry, Nader Akbari Dilmaghani, Ali Mousavi Nejad, and Zahra Davoudi to the acquisition, analysis, and interpretation of the data. All authors have participated in drafting the manuscript. Mohammadmahdi Sabahi, Majid Valizadeh, and Badih Adada revised it critically. Hamid Borghei-Razavi supervised this project. All authors read and approved the final version of the manuscript. All authors contributed equally to the manuscript and read and approved the final version of the manuscript.

Corresponding author

Correspondence to Hamid Borghei-Razavi.

Ethics declarations

Ethics approval and consent to participate

All procedures performed in this study involving human participants were in accordance with the ethical standards and approved by the Shahid Beheshti Medical University (SBMU) Ethical Committee and the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Also, informed consent to participate in this study was obtained from participants included in the (or their parent or legal guardian in the case of children under 16).

Consent for publication

Not applicable.

Competing interests

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Cite this article

Sharifi, G., Amin, A.A., Sabahi, M. et al. MRI-negative Cushing’s Disease: Management Strategy and Outcomes in 15 Cases Utilizing a Pure Endoscopic Endonasal Approach. BMC Endocr Disord 22, 154 (2022).

Download citation

%d bloggers like this: