Glowing cancer tool illuminates benign, but dangerous, brain tumors during pituitary surgery

University of Pennsylvania School of Medicine

PHILADELPHIA – An experimental imaging tool that uses a targeted fluorescent dye successfully lit up the benign brain tumors of patients during removal surgery, allowing surgeons to identify tumor tissue, a new study from researchers at the Perelman School of Medicine at the University of Pennsylvania shows. The tumors, known as pituitary adenomas, are the third most common brain tumor, and very rarely turn cancerous, but can cause blindness, hormonal disorders, and in some cases, gigantism.

Findings from the pilot study of 15 patients, published this week in the Journal of Neurosurgery, build upon previous clinical studies showing intraoperative molecular imaging developed by researchers at Penn’s Center for Precision Surgery can improve tumor surgeries. According to first author John Y.K. Lee, MD, MSCE, an associate professor of Neurosurgery in the Perelman School of Medicine at the University of Pennsylvania and co-director of the Center for Precision Surgery, this study describes the first targeted, near infrared dye to be employed in brain tumor surgery. Other dyes are limited either by their fluorescent range being in the busy visible spectrum or by lack of specificity.

“This study heralds a new era in personalized tumor surgery. Surgeons are now able to see molecular characteristics of patient’s tumors; not just light absorption or reflectance,” Lee said. “In real time in the operating room, we are seeing the unique cell surface properties of the tumor and not just color. This is the start of a revolution.”

Non-specific dyes have been used to visualize and precisely cut out brain tumors during resection surgery, but this dye is believed to be the first targeted, near infrared dye to be used in neurosurgery. The fluorescent dye, known as OTL38, consists of two parts: vitamin B9 (a necessary ingredient for cell growth), and a near infrared glowing dye. As tumors try to grow and proliferate, they overexpress folate receptors. Pituitary tumors can overexpress folate receptors more than 20 times above the level of the normal pituitary gland in some cases. This dye binds to these receptors and thus allows us to identify tumors.

“Pituitary adenomas are rarely cancerous, but they can cause other serious problems for patients by pushing up against parts of their brain, which can lead to Cushing’s disease, gigantism, blindness and death,” Lee explained. “The study shows that this novel, targeted, near infrared fluorescent dye technique is safe, and we believe this technique will improve surgery.”

Lee says larger studies are warranted to further demonstrate its clinical effectiveness, especially in nonfunctioning pituitary adenomas.

A big challenge with this type of brain surgery is ensuring the entire tumor is removed. Parts of the tumor issue are often missed by conventional endoscopy approaches during removal, leading to a recurrence in 20 percent of patients. The researchers showed that the technique was safe and effective at illuminating the molecular features of the tumors in the subset of patients with nonfunctioning pituitary adenomas.

The technique uses near-infrared, or NIR, imaging and OTL38 fluoresces brightly when excited by NIR light. The VisionSense IridiumTM 4mm endoscope is a unique camera system which can be employed in the narrow confines of the nasal cavity to illuminate the pituitary adenoma. Both the dye and the camera system are needed in order to perform the surgery successfully.

The rate of gross-total resection (GTR) for the 15 patients, based on postoperative MRI, was 73 percent. The GTR with conventional approaches ranges from 50 to 70 percent. Residual tumor was identified on MRI only in patients with more severe tumors, including cavernous sinus invasion or a significant extrasellar tumor.

In addition, for the three patients with the highest overexpression of folate, the technique predicted post-operative MRI results with perfect concordance.

Some centers have resorted to implementing MRI in the operating room to maximize the extent of resection. However, bringing a massive MRI into the operating room theater remains expensive and has been shown to produce a high number of false-positives in pituitary adenoma surgery. The fluorescent dye imaging tool, Lee said, may serve as a replacement for MRIs in the operating room.

Co-authors on the study include M. Sean Grady, MD, chair of Neurosurgery at Penn, and Sunil Singhal, MD, an associate professor of Surgery, and co-director the Center for Precision Surgery.

Over the past four years, Singhal, Lee, and their colleagues have performed more than 400 surgeries using both nonspecific and targeted near infrared dyes. The breadth of tumor types include lung, brain, bladder and breast.

Most recently, in July, Penn researchers reported results from a lung cancer trial using the OTL38 dye. Surgeons were able to identify and remove a greater number of cancerous nodules from lung cancer patients with the dye using preoperative positron emission tomography, or PET, scans. Penn’s imaging tool identified 60 of the 66 previously known lung nodules, or 91 percent. In addition, doctors used the tool to identify nine additional nodules that were undetected by the PET scan or by traditional intraoperative monitoring.

Researchers at Penn are also exploring the effectiveness of additional contrast agents, some of which they expect to be available in the clinic within a few months.

“This is the beginning of a whole wave of new dyes coming out that may improve surgeries using the fluorescent dye technique,” Lee said. “And we’re leading the charge here at Penn.”

###

This study was supported in part by the National Institutes of Health (R01 CA193556), the Institute for Translational Medicine and Therapeutics of the Perelman School of Medicine at the University of Pennsylvania, and the National Center for Advancing Translational Sciences of the National Institutes of Health (UL1TR000003).

Editor’s Note: Dr. Singhal holds patent rights over the technologies presented in this article.

Penn Medicine is one of the world’s leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation’s first medical school) and the University of Pennsylvania Health System, which together form a $6.7 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 20 years, according to U.S. News & World Report’s survey of research-oriented medical schools. The School is consistently among the nation’s top recipients of funding from the National Institutes of Health, with $392 million awarded in the 2016 fiscal year.

The University of Pennsylvania Health System’s patient care facilities include: The Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center — which are recognized as one of the nation’s top “Honor Roll” hospitals by U.S. News & World Report — Chester County Hospital; Lancaster General Health; Penn Wissahickon Hospice; and Pennsylvania Hospital — the nation’s first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2016, Penn Medicine provided $393 million to benefit our community.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

From https://eurekalert.org/pub_releases/2017-09/uops-gct090517.php

Cushing’s Syndrome, Cortisol, and Cognitive Competency: A Case Report

Abstract

Glucocorticoids are associated with immunosuppression and neuropsychiatric complications. We describe the case of a carcinoid patient with Cushing’s syndrome (CS) and neurocognitive impairment due to ectopic ACTH production who developed sepsis and died because of his family’s decision to withdraw antibiotic treatment. This report is presented to illustrate the importance of advanced-care planning in patients with CS.

Key Words: Cushing’s syndrome, Carcinoid patient, Glucocorticoids, ACTH, Immunosuppression, Neurocognitive impairment, Advanced directives

Introduction

Cushing’s syndrome (CS) is a general term for a cluster of endocrine abnormalities characterized by chronic cortisol overproduction. Characteristic clinical comorbidities include metabolic complications (e.g., visceral obesity, diabetes mellitus, and dyslipidemia), cardiovascular complications (e.g., systemic arterial hypertension, atherosclerosis, and thromboembolism), bone complications (e.g., osteoporosis and osteoarthritis) infective complications, and neuropsychiatric disorders (e.g., major depression, mania, anxiety, and cognitive impairment) [1]. CS may be exogenous and iatrogenic due to corticosteroid administration or endogenous due to excessive ACTH secretion, most commonly from a pituitary adenoma, referred to, somewhat confusingly, as Cushing’s disease, or less commonly from a nonpituitary tumor (ectopic CS) and primary adrenal neoplasms [2]. Several studies link untreated CS to fatal infectious complications [3]. This report describes the case of a 60-year-old carcinoid patient with cognitive impairment due to hypercortisolism from CS who developed bacteremia; his condition deteriorated, and he died after a decision was made to withdraw care.

Case Presentation

A 60-year-old male with metastatic bronchopulmonary neuroendocrine tumor treated on a clinical trial for over 5 months was admitted to the hospital with complaints of fever, agitation, and weakness. His medical history was significant for newly diagnosed CS secondary to ACTH secretion; he had been hospitalized 2 weeks earlier for CS-induced hyperglycemic crisis. On admission, the patient presented with classic cushingoid habitus of facial plethora, moon facies, muscle atrophy, abdominal striae, and truncal obesity. His physical examination was significant for bilateral crackles and agitation consistent with corticosteroid psychosis. The arterial blood gas analysis on room air was pH 7.497, PaCO2 29 mm Hg, PaO2 71 mm Hg, and oxygen saturation 95%.

Laboratory data were significant for hyperglycemia, hypokalemia, and leukocytosis with bandemia. The chest CT scan showed no definite evidence of pulmonary thromboembolism.

As respiratory failure was imminent, he was transferred to the intensive care unit and mechanically ventilated. The highest positive end-expiratory pressure and FiO2 required to maintain oxygenation were 5 cm H2O and 50%, respectively. Cultures were taken from bronchial secretions directly after endotracheal intubation and from urine and blood. The patient was diagnosed with Staphylococcus aureus bacteremia, and based on susceptibility testing, he was started on vancomycin and Zosyn. In addition to antibiotics, the patient received lisinopril for CS-induced hypertension and insulin sliding scale to control hyperglycemia.

Since high circulating levels of glucocorticoids due to ectopic ACTH secretion predispose to infection and impair immune function and clearance of bacteria, the immediate plan was to start him on mifepristone (600 mg daily) as a glucocorticoid receptor antagonist to counteract the immunosuppressive and cognitive effects of the endogenous hypercortisolism. As soon as the patient’s condition improved (which would have been expected given the known reversibility of hypercortisolism), cytoreductive chemotherapy would have been restarted to reduce the paraneoplastic stimulus. However, the patient’s family with medical power of attorney refused consent and withdrew him from the ventilator. The patient died shortly thereafter.

Discussion

Advance directives are written to guarantee autonomy in the event that individual decision-making capacity is lost due to disease severity or treatment [4]. However, as a blanket statement that may contain overly broad (or overly specific) prewritten blocks of text, especially for cancer patients, the content of advance directives may or may not necessarily apply to and/or the patient’s wishes may or may not be correctly interpreted during acute, temporary and potentially reversible conditions that occur during cancer treatment such as infection due to ectopic CS.

Given the potential for cognitive impairment and other acute sequelae such as difficult-to-treat infections from the development of ectopic CS, this case illustrates the importance of revisiting the advance directive when a medical diagnosis associated with temporary cognitive impairment such as CS is made.

Statement of Ethics

The authors have no ethical conflicts to disclose.

Disclosure Statement

The authors have no conflicts of interest to declare.

References

1. Pivonello R, Simeoli C, De Martino MC, Cozzolino A, De Leo M, Iacuaniello D, Pivonello C, et al. Neuropsychiatric disorders in Cushing’s syndrome. Front Neurosci. 2015;9:129. [PMC free article][PubMed]
2. Tsigos C, Chrousos GP. Differential diagnosis and management of Cushing’s syndrome. Annu Rev Med. 1996;47:443–461. [PubMed]
3. Bakker RC, Gallas PR, Romijn JA, Wiersinga WM. Cushing’s syndrome complicated by multiple opportunistic infections. J Endocrinol Invest. 1998;21:329–333. [PubMed]
4. Halpern NA, Pastores SM, Chou JF, Chawla S, Thaler HT. Advance directives in an oncologic intensive care unit: a contemporary analysis of their frequency, type, and impact. J Palliat Med. 2011;14:483–489.[PMC free article] [PubMed]

Articles from Case Reports in Oncology are provided here courtesy of Karger Publishers

(For the General Public) Are there any advantages to human growth hormone?

Harvard Men’s Health Watch

Ask the doctor

Q. I’ve heard about the benefits of human growth hormone (HGH) for older individuals. Is this something I should try?

A. The benefits of HGH supplementation for older adults are unproven, and perhaps most telling is that these products have a negligible effect on HGH levels. In addition, there are concerns about potential side effects.

HGH comes in two forms: injections and pills. Since HGH injections are difficult to administer, pills are often preferred. Yet, these supplements do not actually contain HGH like injections do, because the hormone would quickly break down in the digestive tract. Instead, they contain amino acids that are absorbed by the body, which raises HGH levels. (They are also more expensive and can cost $100-plus for a month’s supply.)

HGH levels naturally decline as people age, which makes sense since our bodies stop growing during the late teenage years. So why would you need higher HGH levels later in life? The hype around HGH comes from a few studies that showed HGH injections can increase lean body mass and shrink body fat, which led to claims of HGH as an “anti-aging” hormone. However, the effects on strength and body weight are quite minimal. In addition, HGH can increase the amount of soft tissues in the body, which can lead to swelling, joint pain, carpal tunnel syndrome, and breast tenderness in men.

There is also a concern that HGH might promote cancer growth. (MaryO’Note:  I always mentioned this to doctors when I was diagnosed with kidney cancer.  Even though I couldn’t take HGH for the first 5 years after diagnosis, none of my doctors would confirm a connection between HGH and my cancer)

If you want to improve your strength, forget about HGH and increase your exercise. Some studies suggest this alone may be more effective than HGH supplementation for raising growth hormone levels in the body.

—William Kormos, MD
Editor in Chief, Harvard Men’s Health Watch

Originally published: July 2016

Adapted from http://www.health.harvard.edu/mens-health/are-there-any-advantages-to-human-growth-hormone

Ectopic adrenocorticotropic hormone syndrome caused by neuroendocrine tumors of the thymus

Background and purpose: Thymic neuroendocrine carcinomas (TNECs) are extremely uncommon. Certain cases of TNECs can produce the adrenocorticotropic hormone (ACTH) and cause ectopic ACTH syndrome (EAS). The current literature on this topic consists mainly of case reports, and therapeutic guidelines are lacking. The aim of this study was to discuss the diagnosis, surgical management, and prognosis of EAS caused by TNECs to improve clinical experience with this rare disease.

Methods: From June 1984 to June 2014, at the Peking Union Medical College Hospital, the surgical interventions and follow-up outcomes of 16 consecutive patients (eight men and eight women) with EAS caused by TNECs were retrospectively analyzed.

Results: The median age was 32.5 years (range: 13–47 years), and the median disease duration was 8.5 months (range: 1–150 months). All patients presented with clinical and biochemical evidence indicating a diagnosis of Cushing’s syndrome.

Contrast-enhanced thoracic computed tomography scans were critical to locating the ACTH-producing tumor and evaluating the feasibility of resection. All patients underwent surgery. One patient died of septicemia in the intensive care unit 2 weeks after surgery. No other morbidity or mortality occurred during the perioperative period. The median overall survival (OS) was 41 months (95% CI: 30.3–51.7 months), and the progression-free survival was 28 months (95% CI: 21.6–34.3 months). Both overall survival (P=0.002) and progression-free survival (P=0.030) improved significantly after complete resection.

Conclusion: TNEC is an extremely aggressive disease that should be considered when treating patients with Cushing’s syndrome due to ectopic ACTH secretion. In particular, all suspected patients should undergo contrast-enhanced thoracic computed tomography scans to facilitate early diagnosis. The current first-line treatment is surgical resection, and complete resection is a favorable prognostic factor. However, additional patients and a longer follow-up will be needed to determine the variables that are predictive of survival and to improve patient prognosis.

Download this article at https://www.dovepress.com/ectopic-adrenocorticotropic-hormone-syndrome-caused-by-neuroendocrine–peer-reviewed-article-OTT

Day 27, Cushing’s Awareness Challenge 2016

I first saw a similar image to this one with the saying Life. Be in it at a recreation center when my son was little.  At the time, it was “Duh, of course I’m in it”.

The original image was one a couple males, a couple females and a dog walking/running.  No folks in wheelchairs, no older folks and certainly no zebras.

It would be nice to have everyone out there walking or running but that’s not real life, at least in the Cushie world.  It’s been a long time since I’ve really been In My Life – maybe it’s time to get back.

A dear friend who has not one, but two forms of cancer was traveling throughout Europe for the first time after her husband’s death wrote:

Some final words before I turn in for the night. If there is a spark of desire within you to do something which is not contrary to God’s Holy Law, find a way to make it happen. All things are possible and blessings abound for those who love Him. Life is such an adventure. Don’t be a spectator – live every single moment for Him and with Him.

Somedays, it’s hard even getting up in the morning but I’m trying.  I’ve tried Water Aerobics for People with Arthritis and I actually went to class twice a week, I got a “part-time” job four years ago, my son and I will play at Steinway Hall in NYC again in June, we have plans for another trip to Scotland to see/hear the Edinburgh Tattoo again.  This year, we plan to go to Lockerbie, as well!

This is the one and only life I’ll ever have and I want to make the most of it!

 

%d bloggers like this: