Patients Undergoing Adrenalectomy Should Receive Steroid Substitutive Therapy

All patients who undergo removal of one adrenal gland due to Cushing’s syndrome (CS) or adrenal incidentaloma (AI, adrenal tumors discovered incidentally) should receive a steroid substitutive therapy, a new study shows.

The study, “Predictability of hypoadrenalism occurrence and duration after adrenalectomy for ACTH‐independent hypercortisolism,” was published in the Journal of Endocrinological Investigation.

CS is a rare disease, but subclinical hypercortisolism, an asymptomatic condition characterized by mild cortisol excess, has a much higher prevalence. In fact, subclinical hypercortisolism, is present in up to 20 percent of patients with AI.

The hypothalamic-pituitary-adrenal axis (HPA axis) is composed of the hypothalamus, which releases corticotropin-releasing hormone (CRH) that acts on the pituitary to release adrenocorticotropic hormone (ACTH), that in turn acts on the adrenal gland to release cortisol.

To avoid excess cortisol production, high cortisol levels tell the hypothalamus and the pituitary to stop producing CRH and ACTH, respectively. Therefore, as CS and AI are characterized by high levels of cortisol, there is suppression of the HPA axis.

As the adrenal gland is responsible for the production of cortisol, patients might need steroid substitutive therapy after surgical removal of AI. Indeed, because of HPA axis suppression, some patients have low cortisol levels after such surgeries – clinically known as post-surgical hypocortisolism (PSH), which can be damaging to the patient.

While some researchers suggest that steroid replacement therapy should be given only to some patients, others recommend it should be given to all who undergo adrenalectomy (surgical removal of the adrenal gland).

Some studies have shown that the severity of hypercortisolism, as well as the degree of HPA axis suppression and treatment with ketoconazole pre-surgery in CS patients, are associated with a longer duration of PSH.

Until now, however, there have been only a few studies to guide in predicting the occurrence and duration of PSH. Therefore, researchers conducted a study to determine whether HPA axis activity, determined by levels of ACTH and cortisol, could predict the occurrence and duration of PSH in patients who undergo an adrenalectomy.

Researchers studied 80 patients who underwent adrenalectomy for either CS or AI. Prior to the surgery, researchers measured levels of ACTH, urinary free cortisol (UFC), and serum cortisol after 1 mg dexamethasone suppression test (1 mg-DST).

After the surgery, all patients were placed on steroid replacement therapy and PSH was determined after two months. For those with PSH, levels of cortisol were determined every six months for at least four years.

Results showed that PSH occurred in 82.4 percent of CS patients and 46 percent of AI patients. PSH lasted for longer than 18 months in 50 percent of CS and 30 percent of AI patients. Furthermore, it lasted longer than 36 months for 35.7 percent of CS patients.

In all patients, PSH was predicted by pre-surgery cortisol levels after the 1 mg-DST, but with less than 70 percent accuracy.

In AI patients, a shorter-than-12-month duration of PSH was not predicted by any HPA parameter, but was significantly predicted by an absence of pre-surgery diagnosis of subclinical hypercortisolism.

So, this study did not find any parameters that could significantly predict with high sensitivity and specificity the development or duration of PSH in all patients undergoing adrenalectomy.

Consequently, the authors concluded that “the PSH occurrence and its duration are hardly predictable before surgery. All patients undergoing unilateral adrenalectomy should receive a steroid substitutive therapy.”

From https://cushingsdiseasenews.com/2017/12/08/therapy-cushings-patients-adrenalectomy/

Doctors Use Microwave Therapy on Cushing’s Patient Too Weak to Have Surgery

Microwave therapy improved the Cushing’s syndrome of a woman whose lungs had almost failed, allowing her to have the adrenal surgery needed to control her disease, a case study showed.

Lung infections had led to her near-respiratory failure.

Cushing’s syndrome stems from the pituitary gland producing excessive amounts of adrenocorticotropic hormone. Too much of the hormone leads to the adrenal glands generating excessive amounts of another hormone, cortisol — and that overproduction results in Cushing’s. The disease’s symptoms include increasing obesity, skin problems, muscle weakness, bone loss, fatigue, cognitive difficulties, and an inability to control emotions.

Doctors often remove patients’ adrenal glands to prevent cortisol production. But in this case, the patient was not in good enough condition to have the surgery. So doctors used microwave technology to reduce her cortisol levels to the point where surgeons could operate.

The case study, published in BMJ Case Reports, was titled “Ectopic ACTH syndrome complicated by multiple opportunistic infections treated with percutaneous ablation of the adrenal glands.

Excessive pituitary gland production of adrenocorticotropic hormone is the cause of 80 percent of Cushing’s cases.

In 5 to 10 percent of cases, a tumor in another part of the body also produces the hormone, leading to excessive amounts of it in the body. When a tumor is generating the hormone, the condition is called ectopic ACTH syndrome. The patient in the case study had ACTH syndrome.

The 63-year-old woman had complained to her family doctor about weight gain, headache, weakness, and flushing. When laboratory tests led to her being diagnosed with ectopic ACTH-dependent Cushing’s syndrome, she was admitted to a hospital’s internal medicine department.

Doctors planned surgery to remove her adrenal glands, but two days before the operation was scheduled, respiratory failure sent her to the hospital’s Intensive Care Unit. There, physicians treated her for two infections in her lungs, plus infections in her blood and urinary tract. She experienced serious medical complications while in the Intensive Care Unit.

After a month, she was in good enough condition to leave intensive chair but too frail for surgery. Instead, doctors used microwaves to destroy as much of her adrenal glands as they could.

Within two weeks, her condition was better. She had been unable to leave her hospital bed while in intensive care. After the microwave treatment, she engaged in physiotherapy that led to her being able to use a two-wheeled walker to go short distances. She could also make short excursions outside the hospital with her family.

Six months later she returned to the hospital for surgical removal of her adrenal glands.

There were no complications from the operation, and doctors discharged her two days later. Her cortisol levels have been at acceptable levels since then.

“Our experience demonstrates that percutaneous ablation is a viable alternative in patients with ectopic ACTH syndrome in whom medical therapy has failed and surgical adrenalectomy is not feasible,” the researchers wrote. “Further research comparing the efficacy and complication rates between percutaneous ablation [microwave therapy] and surgical adrenalectomy is needed.” In addition, “research is needed to determine the optimal method of percutaneous intervention,” the team wrote.

From https://cushingsdiseasenews.com/2017/12/01/case-study-shows-microwave-therapy-helped-cushings-patient-who-was-too-frail-for-surgery/

Desmopressin is Promising Alternative in Diagnosing Cushing’s Disease

Bilateral inferior petrosal sinus sampling (IPSS) — a procedure that uses desmopressin to determine levels of ACTH hormone from veins that drain from the pituitary gland, is a sensitive way to diagnose patients with Cushing’s disease and find tumors, a Chinese study shows.

The study, “Tumour Lateralization in Cushing’s disease by Inferior Petrosal Sinus Sampling with desmopressin,” appeared in the journal Clinical Endocrinology.

Cushing’s disease is characterized by excessive production of the adrenocorticotropin hormone (ACTH) caused by a tumor in the pituitary gland. ACTH is the hormone that causes the adrenal glands to produce cortisol.

Currently, pituitary imaging is insufficient to confirm a Cushing’s diagnosis. This is because 70 percent of pituitary adenomas in Cushing’s are microadenomas, which are physically very small. As a result, 40 percent of Cushing’s patients are reported as being healthy.

This means that a Cushing’s diagnosis requires a combination of techniques including clinical symptoms, imaging methods and endocrinological assays that include measures of serum cortisol and ACTH levels.

IPSS determines ACTH levels from veins that drain from the pituitary gland. ACTH levels are then compared to ACTH levels in blood. Higher levels in the pituitary gland indicate a pituitary tumor.

IPSS can also be used to determine tumor lateralization, which refers to which side of the pituitary gland the tumor is located on. The test is 69 percent accurate.

Doctors administer IPSS along with corticotropin-releasing hormone (CRH) stimulation. IPSS with CRH is considered the gold standard for preoperative diagnosis of Cushing’s, with a diagnostic sensitivity (or true positive rate) of 95 percent and specificity (or true negative rate) of 90 to 95 percent. Unfortunately, the high cost and limited availability of CRH make it impractical for many patients.

Desmopressin has been used to replace CRH to stimulate ACTH secretion for IPSS, and prior studies have shown that desmopressin’s sensitivity is comparable to that of CRH.

Researchers at Peking Union Medical College in Beijing conducted a retrospective analysis of their experience using desmopressin-stimulated IPSS to determine its diagnostic value for Cushing’s and its predictive value for tumor lateralization.

Researchers analyzed 91 Cushing’s patients who either had negative findings on the MRI imaging of the pituitary or negative high-dose dexamethasone suppression tests, which is another method of evaluation. All patients underwent IPSS with desmopressin, followed by pituitary surgery to extract the tumor.

Of the 91 patients tested, 90 patients had confirmed Cushing’s. And of these, 89 had positive IPSS findings, which led to a sensitivity of 98.9 percent for this test. One patient out of 91 who did not have Cushing’s also underwent this test, which led to a negative IPSS result and a specificity of 100 percent.

Researchers also determined tumor lateralization in patients who were ultimately diagnosed with Cushing’s and underwent surgery. Results of the IPSS showed a 72.5 percent concordance between the results from the IPSS and the surgery.

Therefore, IPSS with desmopressin is a comparable approach to IPSS with CRH for the diagnosis of Cushing’s. It also demonstrates moderate accuracy in determining the location of tumors.

“Like many medical centers in China, we currently have no supply of CRH, while desmopressin is readily available,” researchers concluded. “Moreover, desmopressin is cheaper than CRH. As our data and other studies indicate, IPSS with desmopressin yielded comparable outcomes to IPSS with CRH. Therefore, desmopressin-stimulated IPSS might serve as a possible alternative to CRH-stimulated IPSS.”

From https://cushingsdiseasenews.com/2017/11/14/ipss-desmopressin-alternative-method-diagnosis-cushings-disease/

Study Highlights Importance of Clinical Follow-Up in Cushing’s Patients After Adenoma Removal

A rare case of Cushing’s syndrome (CS) in a 17-year-old patient with multiple pituitary adenomas highlights the importance of clinical follow-up in order to determine the best treatment options for patients.

The study, “A rare case of multiple pituitary adenomas in an adolescent Cushing disease presenting as a vertebral compression fracture,” was published in the journal Annals of Pediatric Endocrinology and Metabolism

CS is a very rare disease with an incidence of 0.7-2.4 cases per million, per year. It is caused by exposure to very high levels of the hormone cortisol. In children, the most common symptom is weight gain without height gain. In some rare cases, tumors known as multiple pituitary adenomas (MPAs) appear, and patients have elevated levels of adrenocorticotropic hormone (ACTH). Surgical removal through transsphenoidal surgery (TSS) is considered the best treatment, and the first TSS has a success rate of more than 90%.

However, since 15% of patients have a recurrence, ongoing monitoring and follow-up after TSS are important. The importance of this follow-up care is highlighted in a recent case report.

The study described the case of a 17-year-old male adolescent who was 149.5 cm tall (4’9″) and weighed 63.6 kg (140 lbs). The patient was referred to a hospital for the evaluation of a vertebral compression fracture and obesity. Over four years, the patient gained 23 kg (51 lbs) without an increase in height. Despite showing many of the features of CS, this patient had not been previously diagnosed with CS.

He had high levels of ACTH and cortisol, and an MRI suggested the presence of an 8-mm (0.8 cm) micro-adenoma. After TSS, the patient’s morning ACTH and cortisol levels were reduced, and a persistent headache had improved. But there was no reduction in weight.

Three months after the TSS, the patient’s body mass index did not show improvement, and both cortisol and ACTH levels were elevated again. MRI revealed a new 9 mm (0.9 cm) micro-adenoma, which was removed with a second TSS. However, cortisol and ACHT remained elevated after the second surgery, with no evidence of a pituitary tumor in MRI scans.

Researchers recommended additional options, such as total removal of the pituitary gland, radiotherapy, or removal of both adrenal glands, options that the patient and his family declined. He continued to receive treatment for osteoporosis, hypertension, and increased lipid levels.

“In conclusion, we reported the clinical course of Cushing disease with 2 distinct pituitary adenomas. Since there is no consensus as to the best treatment for relapsing or persistent Cushing disease and since only a few cases of MPA among pediatric Cushing disease have been reported, a close followup of tumor status, severity of hypercortisolism, and patients’ perspectives are the major parameters used to determine the best treatment option for each patient. In addition, early recognition and diagnosis of pediatric Cushing disease would lead to earlier recovery, improved growth, and better quality of life,” the researchers wrote.

From https://cushingsdiseasenews.com/2017/10/27/cushings-disease-rare-case-report-highlights-importance-early-diagnosis-follow-up-care/

Increase in Glucose Uptake by Cushing’s Disease-associated Tumors Could Improve Early Detection

An increase in glucose uptake by Cushing’s disease-associated pituitary tumors could improve their detection, new research shows.

The study, “Corticotropin releasing hormone can selectively stimulate glucose uptake in corticotropinoma via glucose transporter 1,” appeared in the journal Molecular and Cellular Endocrinology.

The study’s senior author was Dr. Prashant Chittiboina, MD, from the Department of Neurosurgery, Wexner Medical Center, The Ohio State University, in Columbus, Ohio.

Microadenomas – tumors in the pituitary gland measuring less than 10 mm in diameter – that release corticotropin, or corticotropinomas, can lead to Cushing’s disease. The presurgical detection of these microadenomas could improve surgical outcomes in patients with Cushing’s.

But current tumor visualization methodologies – magnetic resonance imaging (MRI) and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) – failed to detect a significant percentage of pituitary microadenomas.

Stimulation with corticotropin-releasing hormone (CRH), which increases glucose uptake, has been suggested as a method of increasing the detection of adenomas with 18F-FDG PET, by augmenting the uptake of 18F-FDG – a glucose analog.

However, previous studies aiming to validate this idea have failed, leading the research team to hypothesize that it may be due to a delayed elevation in glucose uptake in corticotropinomas.

The scientists used clinical data to determine the effectiveness of CRH in improving the detection of corticotropinomas with 18F-FDG PET in Cushing’s disease.

They found that CRH increased glucose uptake in human and mouse tumor cells, but not in healthy mouse or human pituitary cells that produce the adrenocorticotropic hormone (ACTH). Exposure to CRH increased glucose uptake in mouse tumor cells, with a maximal effect at four hours after stimulation.

Similarly, the glucose transporter GLUT1, which is located at the cell membrane, was increased two hours after stimulation, as was GLUT1-mediated glucose transport.

These findings indicate a potential mechanism linking CRH exposure to augmented glucose uptake through GLUT1. Expectedly, the inhibition of glucose transport with fasentin suppressed glucose uptake.

The researchers consistently observed exaggerated evidence of GLUT1 in human corticotropinomas. In addition, human corticotroph tumor cells showed an increased breakdown of glucose, which indicates that, unlike healthy cells, pituitary adenomas use glucose as their primary source of energy.

Overall, the study shows that corticotropin-releasing hormone (CRH) leads to a specific and delayed increase in glucose uptake in tumor corticotrophs.

“Taken together, these novel findings support the potential use of delayed 18F-FDG PET imaging following CRH stimulation to improve microadenoma detection in [Cushing’s disease],” researchers wrote. The scientists are now conducting a clinical trial to further explore this promising finding.

From https://cushingsdiseasenews.com/2017/10/12/glucose-uptake-in-cushings-disease-could-improve-presurgical-tumor-detection/

%d bloggers like this: