Postoperative ACTH, cortisol levels may predict Cushing’s disease remission rate

Early and midterm nonremission after transsphenoidal surgery in people with Cushing’s disease may be predicted by normalized early postoperative values for adrenocorticotropic hormone and cortisol, study data show.

Prashant Chittiboina, MD, MPH, assistant clinical investigator in the neurosurgery unit for pituitary and inheritable diseases at the National Institute of Neurological Diseases and Stroke at the NIH, and colleagues evaluated 250 patients with Cushing’s disease who received 291 transsphenoidal surgery procedures during the study period to determine remission after the procedure. Patients were treated between December 2003 and July 2016. Early remission was assessed at 10 days and medium-term remission was assessed at 11 months.

Early nonremission was predicted by normalized early postoperative values for cortisol (P = .016) and by normalized early postoperative values for adrenocorticotropic hormone (ACTH; P = .048). Early nonremission was further predicted with 100% sensitivity, 39% specificity, 100% negative predictive value and 18% positive predictive value for a cutoff of –12 µg/mL in normalized early postoperative values for cortisol and with 88% sensitivity, 41% specificity, 96% negative predictive value and 16% positive predictive value for a cutoff of –40 pg/mL in normalized early postoperative values for ACTH.

Medium-term nonremission was also predicted by normalized early postoperative values for cortisol (P = .023) and ACTH (P = .025).

“We evaluated the utility of early postoperative cortisol and ACTH levels for predicting nonremission after transsphenoidal adenomectomy for Cushing’s disease,” the researchers wrote. “Postoperative operative day 1 values at 6 a.m. performed best at predicting early nonremission, albeit with a lower [area under the receiver operating characteristic curve]. Normalizing early cortisol and ACTH values to post-[corticotropin-releasing hormone] values improved their prognostic value. Further prospective studies will explore the utility of normalized very early postoperative day 0 cortisol and ACTH levels in identifying patients at risk for nonremission following [transsphenoidal surgery] in patients with [Cushing’s disease].” – by Amber Cox

Disclosure: The researchers report no relevant financial disclosures.

From http://www.healio.com/endocrinology/adrenal/news/in-the-journals/%7B7de200ed-c667-4b48-ab19-256d90a7bbc5%7D/postoperative-acth-cortisol-levels-may-predict-cushings-disease-remission-rate

The Cables1 Gene in Glucocorticoid Regulation of Pituitary Corticotrope Growth and Cushing Disease

Abstract :
Context: Cushing disease (CD) is due to pituitary corticotrope adenomas that produce unrestrained ACTH secretion and have lost the negative feedback exerted by glucocorticoids (GCs). GCs also restrain corticotrope proliferation, and the mechanisms of this inhibition are poorly understood.
Objective: The aim of the study was to identify cell cycle regulatory genes that are regulated by GCs and the glucocorticoid receptor and to assess regulatory genes that have a rate-limiting action on corticotrope proliferation and may be disregulated in CD.
Design: The mouse corticotrope tumor cells AtT-20 were used to identify GC-regulated genes that contribute to control of cell cycle progression. Surgery sections from patients with CD were used to assess expression of CABLES1 in corticotrope adenomas.
Methods: Gene expression profiling, small interfering RNA knockdowns, cell cycle analyses, and genetic manipulations were performed in AtT-20 cells. Sequencing of chromatin immunoprecipitation for pituitary-restricted transcription factors and RNA polymerase II were used to identify regulatory elements and genes that bind GR and are direct transcriptional targets. A panel of previously well-characterized corticotrope adenomas was used to correlate expression of CABLES1 with that of other markers. Results: GCs altered expression of 3 positive and 3 negative regulators of cell cycle progression. Two Myc genes (L-Myc and N-Myc) and E2F2 are repressed by GCs, whereas genes for the negative regulators of the cell cycle, Gadd45, Gadd45, and Cables1 are activated by GCs. Cables1 small interfering RNA knockdown strongly stimulates AtT-20 cell proliferation and antagonizes the growth inhibition produced by GCs. The Gadd45 and Cables1 genes have the hallmarks of direct GC targets. CABLES1 is expressed in normal human pituitary cells, but expression is lost in 55% of corticotrope adenomas, and this is strongly correlated with the loss of p27 Kip1 expression.
Conclusions: CABLES1 is a critical regulator of corticotrope proliferation that defines a pathway often inactivated in CD and links proliferation to GC resistance. (J Clin Endocrinol Metab

Document type :

Journal articles
Journal of Clinical Endocrinology and Metabolism, Endocrine Society, 2016, 101 (2), pp.513-522. <10.1210/jc.2015-3324>

Cushing’s Disease Treatment Market to Witness an Outstanding Growth by 2017 – 2025

Cushing disease is caused by tumour in the pituitary gland which leads to excessive secretion of a hormone called adrenocorticotrophic (ACTH), which in turn leads to increasing levels of cortisol in the body. Cortisol is a steroid hormone released by the adrenal glands and helps the body to deal with injury or infection. Increasing levels of cortisol increases the blood sugar and can even cause diabetes mellitus. However the disease is also caused due to excess production of hypothalamus corticotropin releasing hormone (CRH) which stimulates the synthesis of cortisol by the adrenal glands.

The condition is named after Harvey Cushing, the doctor who first identified the disease in 1912. Cushing disease results in Cushing syndrome. Cushing syndrome is a group of signs and symptoms developed due to prolonged exposure to cortisol.

Signs and symptoms of Cushing syndrome includes hypertension, abdominal obesity, muscle weakness, headache, fragile skin, acne, thin arms and legs, red stretch marks on stomach, fluid retention or swelling, excess body and facial hair, weight gain, acne, buffalo hump, tiredness, fatigue, brittle bones, low back pain, moon shaped face etc.

Symptoms vary from individual to individual depending upon the disease duration, age and gender of the patient.  Disease diagnosis is done by measuring levels of cortisol in patient’s urine, saliva or blood. For confirming the diagnosis, a blood test for ACTH is performed. The first-line treatment of the disease is through surgical resection of ACTH-secreting pituitary adenoma, however disease management is also done through medications, Cushing disease treatment market comprises of the drugs designed for lowering the level of cortisol in the body. Thus patients suffering from Cushing disease are prescribed medications such as ketoconazole, mitotane, aminoglutethimide metyrapone, mifepristone, etomidate and pasireotide.

Request to View Tables of Content @ http://www.persistencemarketresearch.com/toc/14155

Cushing’s disease treatment market revenue is growing with a stable growth rate, this is attributed to increasing number of pipeline drugs. Also increasing interest of pharmaceutical companies to develop Cushing disease drugs is a major factor contributing to the revenue growth of Cushing disease treatment market over the forecast period. Current and emerging players’ focuses on physician education and awareness regarding availability of different drugs for curing Cushing disease, thus increasing the referral speeds, time to diagnosis and volume of diagnosed Cushing disease individuals. Growing healthcare expenditure and increasing awareness regarding Cushing syndrome aids in the revenue growth of Cushing’s disease treatment market. Increasing number of new product launches also drives the market for Cushing’s disease Treatment devices. However availability of alternative therapies for curing Cushing syndrome is expected to hamper the growth of the Cushing’s disease treatment market over the forecast period.

The Cushing’s disease Treatment market is segment based on the product type, technology type and end user

Cushing’s disease Treatment market is segmented into following types:

By Drug Type

  • Ketoconazole
  • Mitotane
  • Aminoglutethimide
  • Metyrapone
  • Mifepristone
  • Etomidate
  • Pasireotide

By End User

  • Hospital Pharmacies
  • Retail Pharmacies
  • Drug Stores
  • Clinics
  • e-Commerce/Online Pharmacies

Cushing’s disease treatment market revenue is expected to grow at a good growth rate, over the forecast period. The market is anticipated to perform well in the near future due to increasing awareness regarding the condition. Also the market is anticipated to grow with a fastest CAGR over the forecast period, attributed to increasing investment in R&D and increasing number of new product launches which is estimated to drive the revenue growth of Cushing’s disease treatment market over the forecast period.

Depending on geographic region, the Cushing’s disease treatment market is segmented into five key regions: North America, Latin America, Europe, Asia Pacific (APAC) and Middle East & Africa (MEA).

North America is occupying the largest regional market share in the global Cushing’s disease treatment market owing to the presence of more number of market players, high awareness levels regarding Cushing syndrome. Healthcare expenditure and relatively larger number of R&D exercises pertaining to drug manufacturing and marketing activities in the region. Also Europe is expected to perform well in the near future due to increasing prevalence of the condition in the region.

Asia Pacific is expected to grow at the fastest CAGR because of increase in the number of people showing the symptoms of Cushing syndrome, thus boosting the market growth of Cushing’s disease treatment market throughout the forecast period.

Some players of Cushing’s disease Treatment market includes CORCEPT THERAPEUTICS, HRA Pharma, Strongbridge Biopharma plc, Novartis AG, etc. However there are numerous companies producing branded generics for Cushing disease. The companies in Cushing’s disease treatment market are increasingly engaged in strategic partnerships, collaborations and promotional activities to capture a greater pie of market share.

Buy Now: You can now buy a single user license of the report at http://www.persistencemarketresearch.com/checkout/14155

The final report customized as per your specific requirement will be sent to your e-mail id within 7-20 days, depending on the scope of the report.

The research report presents a comprehensive assessment of the market and contains thoughtful insights, facts, historical data, and statistically supported and industry-validated market data. It also contains projections using a suitable set of assumptions and methodologies. The research report provides analysis and information according to categories such as market segments, geographies, types, technology and applications.

For more information, please e-mail us at sales@persistencemarketresearch.com

About Us 

Persistence Market Research (PMR) is a U.S.-based full-service market intelligence firm specializing in syndicated research, custom research, and consulting services. PMR boasts market research expertise across the Healthcare, Chemicals and Materials, Technology and Media, Energy and Mining, Food and Beverages, Semiconductor and Electronics, Consumer Goods, and Shipping and Transportation industries. The company draws from its multi-disciplinary capabilities and high-pedigree team of analysts to share data that precisely corresponds to clients’ business needs.

PMR stands committed to bringing more accuracy and speed to clients’ business decisions. From ready-to-purchase market research reports to customized research solutions, PMR’s engagement models are highly flexible without compromising on its deep-seated research values.

Contact

Persistence Market Research Pvt. Ltd

305 Broadway

7th Floor, New York City,

NY 10007, United States,

USA – Canada Toll Free: 800-961-0353

Email: sales@persistencemarketresearch.com

 media@persistencemarketresearch.com

 Web: http://www.persistencemarketresearch.com

Cushing’s Syndrome Treatments

Medications, Surgery, and Other Treatments for Cushing’s Syndrome

Written by | Reviewed by Daniel J. Toft MD, PhD

Treatment for Cushing’s syndrome depends on what symptoms you’re experiencing as well as the cause of Cushing’s syndrome.

Cushing’s syndrome is caused by an over-exposure to the hormone cortisol. This excessive hormone exposure can come from a tumor that’s over-producing either cortisol or adrenocorticotropic hormone (ACTH—which stimulates the body to make cortisol). It can also come from taking too many corticosteroid medications over a long period of time; corticosteroids mimic the effect of cortisol in the body.

The goal of treatment is to address the over-exposure. This article walks you through the most common treatments for Cushing’s syndrome.

Gradually decreasing corticosteroid medications: If your doctor has identified that the cause of your Cushing’s syndrome is corticosteroid medications, you may be able to manage your Cushing’s syndrome symptoms by reducing the overall amount of corticosteroids you take.

It’s common for some people with certain health conditions—such as arthritis and asthma—to take corticosteroids to help them manage their symptoms. In these cases, your doctor can prescribe non-corticosteroid medications, which will allow you to reduce—or eliminate—your use of corticosteroids.

It’s important to note that you shouldn’t stop taking corticosteroid medications on your own—suddenly stopping these medications could lead to a drop in cortisol levels—and you need a healthy amount of cortisol. When cortisol levels get too low, it can cause a variety of symptoms, such as muscle weakness, fatigue, weight loss, and low blood pressure, which may be life-threatening.

Instead, your doctor will gradually reduce your dose of corticosteroids to allow your body to resume normal production of cortisol.

If for some reason you cannot stop taking corticosteroids, your doctor will monitor your condition very carefully, frequently checking to make sure your blood glucose levels as well as your bone mass levels are normal. Elevated blood glucose levels and low bone density are signs of Cushing’s syndrome.

Surgery to remove a tumor: If it’s a tumor causing Cushing’s syndrome, your doctor may recommend surgery to remove the tumor. The 2 types of tumors that can cause Cushing’s are pituitary tumors (also called pituitary adenomas) and adrenal tumors. However, other tumors in the body (eg, in the lungs or pancreas) can cause Cushing’s syndrome, too.

Pituitary adenomas are benign (non-cancerous), and most adrenal tumors are as well. However, in rare cases, adrenal tumors can be malignant (cancerous). These tumors are called adrenocortical carcinomas, and it’s important to treat them right away.

Surgery for removing a pituitary tumor is a delicate process. It’s typically performed through the nostril, and your surgeon will use tiny specialized tools. The success, or cure, rate of this procedure is more than 80% when performed by a surgeon with extensive experience. If surgery fails or only produces a temporary cure, surgery can be repeated, often with good results.

If you have surgery to remove an adrenal tumor or tumor in your lungs or pancreas, your surgeon will typically remove it through a standard open surgery (through an incision in your stomach or back) or minimally invasive surgery in which small incisions are made and tiny tools are used.

In some cases of adrenal tumors, surgical removal of the adrenal glands may be necessary.

Radiation therapy for tumors: Sometimes your surgeon can’t remove the entire tumor. If that happens, he or she may recommend radiation therapy—a type of treatment that uses high-energy radiation to shrink tumors and/or destroy cancer cells.

Radiation therapy may also be prescribed if you’re not a candidate for surgery due to various reasons, such as location or size of the tumor. Radiation therapy for Cushing’s syndrome is typically given in small doses over a period of 6 weeks or by a technique called stereotactic radiosurgery or gamma-knife radiation.

Stereotactic radiosurgery is a more precise form of radiation. It targets the tumor without damaging healthy tissue.

With gamma-knife radiation, a large dose of radiation is sent to the tumor, and radiation exposure to the healthy surrounding tissues is minimized. Usually one treatment is needed with this type of radiation.

Medications for Cushing’s syndrome: If surgery and/or radiation aren’t effective, medications can be used to regulate cortisol production in the body. However, for people who have severe Cushing’s syndrome symptoms, sometimes medications are used before surgery and radiation treatment. This can help control excessive cortisol production and reduce risks during surgery.

Examples of medications your doctor may prescribe for Cushing’s syndrome are: aminoglutethimide (eg, Cytadren), ketoconazole (eg, Nizoral), metyrapone (eg, Metopirone), and mitotane (eg, Lysodren). Your doctor will let you know what medication—or combination of medications—is right for you.

You may also need to take medication after surgery to remove a pituitary tumor or adrenal tumor. Your doctor will most likely prescribe a cortisol replacement medication. This medication helps provide the proper amount of cortisol in your body. An example of this type of medication is hydrocortisone (a synthetic form of cortisol).

Experiencing the full effects of the medication can take up to a year or longer. But in most cases and under your doctor’s careful supervision, you can slowly reduce your use of cortisol replacement medications because your body will be able to produce normal cortisol levels again on its own. However, in some cases, people who have surgery to remove a tumor that causes Cushing’s syndrome won’t regain normal adrenal function, and they’ll typically need lifelong replacement therapy.2

Treating Cushing’s Syndrome Conclusion
You may need one treatment or a combination of these treatments to effectively treat your Cushing’s syndrome. Your doctor will let you know what treatments for Cushing’s syndrome you’ll need.

From https://www.endocrineweb.com/conditions/cushings-syndrome/cushings-syndrome-treatments

Pituitary Dysfunction as a Result of Traumatic Brain Injury

A victim of brain injury can experience many consequences and complications as a result of brain damage. Unfortunately, the problems caused by a traumatic brain injury can extend even beyond what most people think of as the standard symptoms of a brain injury, like mood change and cognitive impairment. One issue which can occur is pituitary dysfunction. If the pituitary gland is damaged due to injury to the brain, the consequences can be dramatic as the pituitary gland works together with the hypothalamus to control every hormonal aspect of a person’s body.

Pituitary dysfunction as a result of a brain injury can be difficult to diagnose, as you may not immediately connect your symptoms to the head injury you experienced. If you did suffer injury to the pituitary gland, you need to know about it so you can get proper treatment. If someone else caused your brain injury to occur, you also want to know about your pituitary dysfunction so you can receive compensation for costs and losses associated with this serious health problem.

The pituitary is a small area of the center of your brain that is about the size of the uvula. The pituitary is surrounded and guarded by bone, but it does hang down.  When it becomes damaged as a result of a brain injury, the damage normally occurs as a result of the fact the pituitary was affected by reduced by reduced blood flow. It can also be harmed directly from the trauma, and only a tiny amount of damage can cause profound consequences.

Many of the important hormones that your body needs are controlled by the pituitary working with the hypothalamus. If the pituitary is damaged, the result can include a deficiency of Human Growth Hormone (HGH). This deficiency can affect your heart and can impact bone development.  Thyroid Stimulating Hormone (TSH) can also be affected, which could result in hypothyroidism. Sex hormones (gonodotropin); Adrenocorticotopic hormone; and many other hormones could be impacted as well, causing fertility problems; muscle loss; sexual dysfunction; kidney problems; fatigue; or even death.

Unfortunately, problems with the pituitary gland may not always be visible on MRIs or other imaging tests because the pituitary is so small. Endocrinologists who handle hormone therapy frequently are not familiar with brain injuries, and may not make the connection that your brain injury was the cause of the problem.

If you begin to experience hormonal issues following an accident, you should be certain to get an accurate diagnosis to determine if your brain injury played a role. If it did, those responsible for causing the accident could be responsible for compensating you for the harm you have experienced to your pituitary and to the body systems which malfunction as a result of your new hormonal issues.

Nelson Blair Langer Engle, PLLC

From http://www.nblelaw.com/posts/pituitary-dysfunction-result-of-traumatic-brain-injury

%d bloggers like this: