Pituitary Tumors Affect Patients’ Ability to Work, Reduce Quality of Life

Pituitary tumor conditions, such as Cushing’s disease, have a substantial effect on patients’ work capabilities and health-related quality of life, researchers from The Netherlands reported.

The study, “Work disability and its determinants in patients with pituitary tumor-related disease,” was published in the journal Pituitary.

Pituitary tumors, like those that cause Cushing’s disease, have significant effects on a patient’s physical, mental, and social health, all of which influence their work status and health-related quality of life. However, the effects of the disease on work status is relatively under-investigated, investigators report.

Here, researchers evaluated the work disability among patients who were treated for pituitary tumors in an attempt to understand the impact of disease diagnosis and treatment on their social participation and ability to maintain a paying job.

In their study, researchers examined 241 patients (61% women) with a median age of 53 years. The majority (27%) had non-functioning pituitary tumors, which do not produce excess hormones, but patients with acromegaly, Cushing’s disease, prolactinomas, and Rathke’s cleft cyst also were included.

Participants were asked to complete questionnaires to evaluate their health-related quality of life and disease-specific impact on their work capabilities. Each participant completed a set of five questionnaires.

Participants also reported their hormonal status and demographic data, including gender, age, education, and marital status. Specific information, such as disease diagnosis, treatment, and tumor type was obtained from their medical records.

Work status and productivity were assessed using two surveys, the Short-Form-Health and Labour Questionnaire (SF-HLQ) and the work role functioning questionnaire 2.0 (WRFQ).

SF-HLQ was used to obtain information on the participants’ employment and their work attendance. Employment was either paid or unpaid. (Participation in household chores was considered not having a paid job.)

WRFQ is a 27-question survey that determines work disability regarding being able to meet the productivity, physical, emotional, social, and flexible demands. A higher score indicates low self-perceived work disability.

Disease-specific mood problems, social and sexual functioning issues, negative perceptions due to illness, physical and cognitive difficulties, were assessed using a 26-item survey called Leiden Bother and Needs for Support Questionnaire for pituitary patients(LBNQ-Pituitary).

Overall, 28% of patients did not have a paid job, but the rates increased to 47% among those with Cushing’s disease. Low education, hormonal deficits, and being single were identified as the most common determinants of not having a paid job among this population.

Further analysis revealed that more patients with Cushing’s disease and acromegaly had undergone radiotherapy. They also had more hormonal deficits than others with different tumor types.

Overall, patients with a paid job reported working a median of 36 hours in one week and 41% of those patients missed work an average of 27 days during the previous year. Health-related problems during work also were reported by 39% with a paid job.

Finally, health-related quality of life was determined using two questionnaires: SF-36 and EQ-5D. The physical, mental, and emotional well being was measured with SF-36, while ED-5D measured the health outcome based on the impact of pain, mobility, self-care, usual activities, discomfort, and anxiety or depression. In both SF-36 and EQ-5D, a higher score indicates a better health status.

Statistical analysis revealed that the quality of life was significantly higher in patients with a job. Overall, patients with a paid job reported better health status and higher quality of life than those without a paid job.

Although 40% of the patients reported being bothered by health-related problems in the past year, only 12% sought the help of an occupational physician, the researchers reported.

“Work disability among patients with a pituitary tumor is substantial,” investigators said.

“The determinants and difficulties at work found in this study could potentially be used for further research, and we advise healthcare professionals to take these results into consideration in the clinical guidance of patients,” they concluded.

From https://cushingsdiseasenews.com/

FDA Approves High-resolution MRI, Better at Spotting Pituitary Tumors in Cushing’s Patients

The U.S. Food and Drug Administration has approved the clinical use of a magnetic resonance imaging (MRI) scanner — the ultra-high-field 7T Terra MRI — with unprecedented resolution that allows for more reliable images of the brain.

The approach recently allowed the precise localization of a small tumor in the pituitary gland, which standard MRI had failed to spot, in a patient with Cushing’s disease.

So far, only one scanner of this kind exists in the U.S.. It was installed in February 2017 at the Mark and Mary Stevens Neuroimaging and Informatics Institute (INI) of the Keck School of Medicine, University of Southern California (USC).

The new scanner has an increased magnetic field strength of 7 Tesla, which is more than four times that of conventional MRI. This property greatly improves the instrument’s signal-to-noise ratio, dramatically increasing the spatial resolution and contrast of its images so that scientists can visualize the human living brain in high-definition and with unprecedented detail.

The 7T Terra is ideal for high-resolution neuroimaging, exploration of neurodegenerative diseases such as Alzheimer’s and Parkinson’s, and diagnosis and treatment of other brain diseases, a USC news story by Zara Greenbaum states.

Earlier this year, a report described the case of women with Cushing’s disease with a pituitary adenoma (slow-growing, benign tumor in the pituitary gland) that was possible to localize only with the new 7T MRI.

Based on laboratory analysis that revealed high levels of adrenocorticotropic hormone(ACTH) and cortisol, the doctors suspected a pituitary adenoma and recommended the patient for surgery. However, they ignored the precise location of the tumor, which failed to be detected by standard MRI scanners (1T and 3T).

    Two hours before surgery, the woman underwent a 7T MRI scan which finally identified with high precision the location of the adenoma, a very small tumor of 8 mm on the right side of the pituitary gland.

    “The 7T may save patients an invasive procedure. It also makes it easier for neurosurgeons to selectively remove a tumor without damaging surrounding areas,” said Gabriel Zada, MD, associate professor of neurological surgery at the Keck School.

    Since its arrival, the device has supported exploratory research into both healthy and diseased brains.

    Now the scanner’s advanced imaging technology can be used to help with diagnosis, treatment and monitoring of patients with neurological diseases, including Cushing’s disease.

    “This device, which has already made its mark as a powerful tool to advance research in the neurosciences, is now accessible to clinical populations in addition to researchers,” said Arthur W. Toga, PhD, provost professor and chair at the Keck School and director of the USC Stevens INI.

    “Clinicians across the university and beyond can now leverage all the benefits of increased spatial resolution to serve patients in need,” he said.

    Adapted from https://cushingsdiseasenews.com/2018/11/06/fda-oks-high-resolution-mri-better-spotting-pituitary-tumor-cushings/

    Rare Case of Cushing’s Disease Diagnosed in 7-year-old Boy

    A recent case report describes a 7-year-old boy with Cushing’s disease who had an unusual clinical presentation, which significantly delayed his diagnosis.

    The study, “A variable course of Cushing’s disease in a 7 year old: diagnostic dilemma,” was published in the Journal of Pediatric Endocrinology and Metabolism.

    Rare in children and adolescents, Cushing’s disease refers to overproduction of cortisol caused by excessive adrenocorticotropic hormone (ACTH) secretion from a pituitary tumor. In pediatrics, early symptoms of excess cortisol include weight gain and delayed growth.

    Despite being extremely unlikely in children younger than 7, some cases of Cushing’s disease in infancy have been reported.

    “If undiagnosed or untreated it can lead to considerable morbidity and mortality, and the inability to detect a microadenoma [tumors smaller than 10 mm in diameter] on magnetic resonance imaging (MRI) can lead to a diagnostic dilemma leading to unnecessary delays in treatment initiation,” the researchers wrote.

    Researchers from the Indraprastha Apollo Hospital in New Delhi, India, described a 7-year-old boy who complained of excessive appetite and weight gain in the previous five months. The child weighed 46.8 kg, was 127 cm tall, and had a body mass index (BMI) of 29, indicating he was overweight.

    The child’s excess fat was mainly in his abdomen plus he had a round, red, puffy face, which are both common features of Cushing’s disease. He had no history of acute or chronic steroid intake, mood swings, sleep disorders, or issues with eyesight.

    Given his clinical presentation, the investigators suspected the boy had Cushing’s disease or pseudo-Cushing’s disease, which refers to situations where the overproduction of cortisol is caused by something unrelated to the disease, such as stress or uncontrolled diabetes mellitus.

    Biochemical testing showed the patient had high levels of cortisol, which remained unchanged after a dexamethasone suppression test. In addition, his levels of “bad” cholesterol, referring to low-density lipoprotein, were extremely elevated at 194 mg/dL, where a normal range is defined as less than 110 mg/dL.

    Imaging revealed no lesions in the pituitary gland.

    The boy was sent home with dietary recommendations. Eight weeks later, he had lost 4 kg, while his height remained the same; he also complained of headaches and various episodes of double vision.

    This confused the clinical team as hallmarks of Cushing’s disease include short stature and weight loss triggered by pharmacological therapy. Despite having lost weight, he did not take any medications to help him with it, plus the boy’s height was normal for his age.

    Nonetheless, the patient was complaining of neurological symptoms, suggesting progression of Cushing’s disease.

    An ophthalmologist did not observe anything abnormal with the child’s eyes that could explain his double vision episodes.

    A new series of tests revealed slightly elevated 24-hour urinary cortisol levels, decreased concentration of ACTH, and mildly increased cortisol levels after a two-day dexamethasone suppression test.

    Magnetic resonance imaging (MRI) showed a small microadenoma in the right lobe of the pituitary gland.

    Using Gamma Knife radiation therapy, a kind of high-precision radiation therapy, and surgery, doctors successfully removed the boy’s microadenoma. Six weeks post-procedure, his cortisol and ACTH concentrations returned to normal.

    “MRI findings of the pituitary may be inconclusive in the beginning of the disease process and should be borne in mind during further follow-up. In cases where a clear-cut diagnosis may be difficult, a diligent follow-up is required to ascertain the course of the disease and to make timely diagnosis,” the investigators concluded.

    From https://cushingsdiseasenews.com/2018/10/25/rare-case-cushings-disease-diagnosed-7-year-old-boy-case-study/

    Most Subclinical Cushing’s Patients Don’t Require Glucocorticoids After Adrenalectomy

    Patients with subclinical hypercortisolism, i.e., without symptoms of cortisol overproduction, and adrenal incidentalomas recover their hypothalamic-pituitary-adrenal (HPA) axis function after surgery faster than those with Cushing’s syndrome (CS), according to a study.

    Moreover, the researchers found that an HPA function analysis conducted immediately after the surgical removal of adrenal incidentalomas — adrenal tumors discovered by chance in imaging tests — could identify patients in need of glucocorticoid replacement before discharge.

    Using this approach, they found that most subclinical patients did not require treatment with hydrocortisone, a glucocorticoid taken to compensate for low levels of cortisol in the body, after surgery.

    The study, “Alterations in hypothalamic-pituitary-adrenal function immediately after resection of adrenal adenomas in patients with Cushing’s syndrome and others with incidentalomas and subclinical hypercortisolism,” was published in Endocrine.

    The HPA axis is the body’s central stress response system. The hypothalamus releases corticotropin-releasing hormone (CRH) that acts on the pituitary gland to release adrenocorticotropic hormone (ACTH), leading the adrenal gland to produce cortisol.

    As the body’s defense mechanism to avoid excessive cortisol secretion, high cortisol levels alert the hypothalamus to stop producing CRH and the pituitary gland to stop making ACTH.

    Therefore, in diseases associated with chronically elevated cortisol levels, such as Cushing’s syndrome and adrenal incidentalomas, there’s suppression of the HPA axis.

    After an adrenalectomy, which is the surgical removal of one or both adrenal glands, patients often have low cortisol levels (hypocortisolism) and require glucocorticoid replacement therapy.

    “Most studies addressing the peri-operative management of patients with adrenal hypercortisolism have reported that irrespective of how mild the hypercortisolism was, such patients were given glucocorticoids before, during and after adrenalectomy,” the researchers wrote.

    Evidence also shows that, after surgery, glucocorticoid therapy is administered for months before attempting to test for recovery of HPA function.

    For the past 30 years, researchers at the University Hospitals Cleveland Medical Center have withheld glucocorticoid therapy in the postoperative management of patients with ACTH-secreting pituitary adenomas until there’s proof of hypocortisolism.

    “The approach offered us the opportunity to examine peri-operative hormonal alterations and demonstrate their importance in predicting need for replacement therapy, as well as future recurrences,” they said.

    In this prospective observational study, the investigators extended their approach to patients with subclinical hypercortisolism.

    “The primary goal of the study was to examine rapid alteration in HPA function in patients with presumably suppressed axis and appreciate the modulating impact of surgical stress in that setting,” they wrote. Collected data was used to decide whether to start glucocorticoid therapy.

    The analysis included 14 patients with Cushing’s syndrome and 19 individuals with subclinical hypercortisolism and an adrenal incidentaloma. All participants had undergone surgical removal of a cortisol-secreting adrenal tumor.

    “None of the patients received exogenous glucocorticoids during the year preceding their evaluation nor were they taking medications or had other illnesses that could influence HPA function or serum cortisol measurements,” the researchers noted.

    Glucocorticoid therapy was not administered before or during surgery.

    To evaluate HPA function, the clinical team took blood samples before and at one, two, four, six, and eight hours after the adrenalectomy to determine levels of plasma ACTH, serum cortisol, and dehydroepiandrosterone sulfate (DHEA-S) — a hormone produced by the adrenal glands.

    Pre-surgery assessment of both groups showed that patients with an incidentaloma plus subclinical hypercortisolism had larger adrenal masses, higher ACTH, and DHEA-S levels, but less serum cortisol after adrenal function suppression testing with dexamethasone.

    Dexamethasone is a man-made version of cortisol that, in a normal setting, makes the body produce less cortisol. But in patients with a suppressed HPA axis, cortisol levels remain high.

    After the adrenalectomy, the ACTH concentrations in both groups of patients increased. This was found to be negatively correlated with pre-operative dexamethasone-suppressed cortisol levels.

    Investigators reported that “serum DHEA-S levels in patients with Cushing’s syndrome declined further after adrenalectomy and were undetectable by the 8th postoperative hour,” while incidentaloma patients’ DHEA-S concentrations remained unchanged for the eight-hour postoperative period.

    Eight hours after surgery, all Cushing’s syndrome patients had serum cortisol levels of less than 2 ug/dL, indicating suppressed HPA function. As a result, all of these patients required glucocorticoid therapy for several months to make up for HPA axis suppression.

    “The decline in serum cortisol levels was slower and less steep [in the incidentaloma group] when compared to that observed in patients with Cushing’s syndrome. At the 6th–8th postoperative hours only 5/19 patients [26%] with subclinical hypercortisolism had serum cortisol levels at ≤3ug/dL and these 5 were started on hydrocortisone therapy,” the researchers wrote.

    Replacement therapy in the subclinical hypercortisolism group was continued for up to four weeks.

    Results suggest that patients with an incidentaloma plus subclinical hypercortisolism did not have an entirely suppressed HPA axis, as they were able to recover its function much faster than the CS group after surgical stress.

    From https://cushingsdiseasenews.com/2018/10/11/most-subclinical-cushings-patients-dont-need-glucocorticoids-post-surgery-study/?utm_source=Cushing%27s+Disease+News&utm_campaign=a881a1593b-RSS_WEEKLY_EMAIL_CAMPAIGN&utm_medium=email&utm_term=0_ad0d802c5b-a881a1593b-72451321

    Finding Ways to Deal with Post-surgery Anxieties

    Post-traumatic stress disorder (PTSD) following Cushing’s disease is a real issue many of us face. However, we don’t have to let it control our lives — there are ways to cope.

    Cushing’s changes us both mentally and physically. We become forgetful. We lose strength. We become someone we don’t recognize in the mirror. We lose hair on our heads and gain it everywhere else. We’re always in pain, and we’re always sick, with no end in sight (or at least it feels that way).

    Some days will be trying and seem as if nothing seems to work, no matter what you do. I promise that you’re not alone, and you will make it through those days.

    Following are a list of ways to deal with post-surgery scares:

    • Therapy/counseling: If you can afford it, talk with a professional about your health worries and how your anxiety affects you. It takes the burden off your caregivers who don’t like to see you suffer because they care so much.
    • Journaling: Journaling is a therapeutic and inexpensive way to let out your worries. Documenting your anxieties can help you keep track of how your thought processes are changing. Writing out your stresses is cathartic. Give it a try — if you haven’t already.
    • Yoga or any light exercise: If you’re in the early stages of recovery, you shouldn’t go straight back to the gym — working out is a stressor on the body. Light yoga, such as restorative yoga, in which you practice stretching, deep breathing, and relaxation, will help your mind and body to recover. Light walks are amazing for the brain and body post-surgery.
    • Delve into things you enjoy: Read, cook, go for walks, sit outside, etc. Do whatever feeds your soul and keeps your mind free from negative thoughts. Feeding your soul is one sure way to keep your mind and body happy and healthy.
    • Other ideas from the CushieWiki
    • Please share your ideas in the comments on this post or on the message boards

    Adapted from https://cushingsdiseasenews.com/2018/10/19/cushings-post-surgery-anxieties-ptsd-post-traumatic-stress-disorder-journaling-yoga-therapy/

    %d bloggers like this: