ACTH Levels After Surgery Help Predict Remission, Recurrence in Cushing’s

Levels of adrenocorticotropic hormone (ACTH) in circulation after pituitary surgery may help predict which Cushing’s disease patients will achieve early remission and which will eventually see the disease return, a study shows.

Also, the earlier that patients reached their lowest peak of ACTH levels, the better their long-term outcomes.

The study, “Prognostic usefulness of ACTH in the postoperative period of Cushing’s disease,” was published in the journal Endocrine Connections.

Removing the pituitary tumor through a minimally invasive surgery called transsphenoidal surgery is still the treatment of choice for Cushing’s disease patients. But not all patients enter remission, and even among those who do, a small proportion will experience disease recurrence.

While cortisol levels have been suggested as a main predictor of remission and recurrence, there is no consensus as to which cutoff point should be used after surgery, or the best time for measuring this hormone.

Because Cushing’s disease is caused by an ACTH-producing tumor in the pituitary gland, and ACTH has a short half-life (approximately 10 minutes), it is expected that ACTH levels drop markedly within a few hours after surgery.

Thus, a group of researchers in Spain aimed to determine whether blood levels of ACTH could be useful for predicting remission of Cushing’s disease both immediately after surgery (defined as less than 72 hours) and in the long term.

Researchers analyzed 65 patients with Cushing’s disease who had undergone transsphenoidal surgery (seven required a second intervention) between 2005 and 2016. Remission within three months was seen in 56 of 65 cases; late disease recurrence was seen in 18 of 58 cases.

Investigators measured the ACTH nadir concentration (defined as the lowest concentration) and the time taken to reach nadir levels after surgery, as well as the plasma ACTH concentration before hospital discharge.

While ACTH levels had no predictive value, the team found that people who went into remission had significantly lower ACTH nadir levels and ACTH levels at discharge. On the other hand, levels of ACHT nadir and at discharge were significantly higher for people who experienced a relapse, compared to those who remained in remission.

Using artificial intelligence algorithms, the researchers further found that ACTH nadir, ACTH at discharge, and cortisol nadir values were all of great relevance to predict remission within three months.

Analysis indicated that using a cutoff point of 3.3 pmol/L of ACTH after surgery and before discharge gave the best sensitivity and specificity for predicting a patient’s prognosis.

Researchers further found that the time patients took to reach their ACTH nadir, regardless of nadir levels, also influenced their outcomes. In fact, patients reaching this nadir in less than than 46 hours more likely achieved early remission.

And taking longer than 39 hours to reach the ACTH nadir was significantly more frequent in patients who experienced recurrence. This indicates that the time to ACTH nadir is an important measure for prognosis.

“In the immediate postoperative period of patients with [Cushing’s disease], the ACTH concentration is of prognostic utility in relation to late disease remission,” the researchers said.

Overall, “we propose an ACTH value <3.3 pmol/L as a good long-term prognostic marker in the postoperative period of CD. Reaching the ACTH nadir in less time is associated to a lesser recurrence rate,” the study concluded.

Patricia holds her Ph.D. in Cell Biology from University Nova de Lisboa, and has served as an author on several research projects and fellowships, as well as major grant applications for European Agencies. She also served as a PhD student research assistant in the Laboratory of Doctor David A. Fidock, Department of Microbiology & Immunology, Columbia University, New York.

Recovery of HPA Axis Can Occur Late After Transsphenoidal Adenomectomy

Recovery of the hypothalamus-pituitary-adrenal (HPA) axis can occur as late as 12 months after transsphenoidal adenomectomy (TSA), according to study results published in The Journal of Clinical Endocrinology & Metabolism. These findings emphasize the need to periodically assess these patients to avoid unnecessary hydrocortisone replacement.

The primary treatment for most pituitary lesions is TSA. After pituitary surgery, the recovery of pituitary hormone deficits may be delayed; limited data are available regarding the postsurgical recovery of hormonal axes or predictors of recovery. The goal of this study was to assess HPA axis dysfunction and predictive markers of recovery following TSA, as well as time to recovery, to identify subgroups of patients who may be more likely to recover.

This single-center observational retrospective study enrolled 109 patients in the United Kingdom (71 men; mean age, 56 years; range, 17 to 82 years) who underwent TSA between February 2015 and September 2018 and had ≥1 reevaluation of the HPA axis with the short Synacthen (cosyntropin) test. The primary outcome was recovery of HPA axis function 6 weeks, 3 months, 6 months, and 9 to 12 months after TSA.

In 23 patients (21.1%), there was no evidence of pituitary hormone deficit before TSA. In 44 patients (40.4%), there was 1 hormone deficiency and in 25 patients (22.9%), preoperative evaluation showed >1 hormone deficiency.

Of the 23 patients with abnormal HPA function before surgery, 8 patients (34.8%) had recovered 6 weeks after the surgery. Patients who recovered were younger (mean age, 50±14 vs 70±9 years; P =.008) compared with patients who did not respond. Of the 15 remaining patients, 2 (13.3%) recovered at 3 months and 3 (20%) recovered at 9 to 12 months.

With regard to HPA function in the entire cohort 6 weeks after surgery, 32 patients (29.4%) did not pass the short Synacthen test. Of this group, 5 patients (15.6%) recovered at 3 months, 4 (12.5%) at 6 months, and 2 (6.2%) recovered 9 to 12 months after the surgery.

Predictors of future adrenal recovery at 6 weeks included having preoperative 30-minute cortisol >430 nmol/L (P <.001) and a day 8 postoperative cortisol >160 nmol/L (P =.001). With these cutoffs, 80% of patients with preoperative 30-minute cortisol >430 nmol/L (odds ratio [OR], 7.556; 95% CI, 2.847-20.055) and 80% of patients with day 8 postoperative cortisol >160 nmol/L (OR, 9.00; 95% CI, 2.455-32.989) passed the short Synacthen test at 6 weeks postsurgery. In addition, a 6-week baseline short Synacthen test cortisol level above or below 180 nmol/L (P <.001) predicted adrenal recovery at that time point.

None of the patients with all 3 variables below the aforementioned cutoffs recovered HPA axis within 1 year. On the other hand, 91.8% of patients with all 3 variables above those cutoffs had normal adrenal function at 6 weeks (OR, 12.200; 95% CI, 5.268-28.255).

In addition to the retrospective design, the study had other limitations, including the potential for selection bias, a heterogeneous patient cohort, and no data beyond 12 months after the surgery.

“[T]hese data offer the opportunity for patients who may have been given life-long replacement, to safely come off therapy and therefore avoid unnecessary glucocorticoid exposure,” wrote the researchers.

Reference

Pofi R, Gunatilake S, Macgregor V, et al. Recovery of the hypothalamo-pituitary-adrenal axis following transsphenoidal adenomectomy for non-ACTH secreting macroadenomas [published online June 21, 2019]. J Clin Endocrinol Metab. doi:10.1210/jc.2019-00406

From https://www.endocrinologyadvisor.com/home/topics/adrenal/recovery-of-hpa-axis-can-occur-late-after-transsphenoidal-adenomectomy/

Why It’s Safer Than Ever To Remove Pituitary Tumors

Removing a pituitary tumor by surgery can be tricky. The gland is surrounded by carotid arteries, optic nerves, and lots of important brain matter. Nor is it easy to access or visualize. But with the help of revolutionary technology and modern expertise, surgeons are now able to remove pituitary tumors in a safe and minimally invasive way. / Image courtesy of Mayfield Brain & Spine

There are three basic things you should know about your pituitary gland: it’s buried away at the base of your brain; it’s very important; and, alas, it has a habit of growing tumors.

Did your pulse quicken a tiny bit at mention of “tumors?” If so, it’s because your thyroid told it to, on instructions from your pituitary gland. But now it’s normal again, right? For that you can thank cortisol, which your pituitary gland told your adrenal glands to make in response to stress.

That’s just the tip of the iceberg, according to Yair Gozal, MD, neurosurgeon at Mayfield Brain & Spine.

“The pituitary gland is also known as the master gland,” he explains. “It regulates the release of hormones from other glands, controlling blood pressure, urine output, body temperature, growth, metabolism, lactation, ovulation, testosterone, stress response, and more.”

That of course means when something is wrong with your pituitary gland—say, a tumor—the symptoms can vary. Perhaps the tumor grows from the part of the pituitary gland that produces prolactin, which regulates sexual function. In that case, a prolactinoma will result in halted menstruation or erectile disfunction (among other things.) Alternatively, suppose the tumor grows from the part of the pituitary gland that produces growth hormone. These tumors cause gigantism in children and acromegaly in adults (again, among other things.)

So it follows, the part of the pituitary gland where the tumor grows will determine its symptoms. But these only account for “functioning” tumors—that is, tumors that secrete too much or too little of a particular hormone. Other tumors, termed “non-functioning,” do not secrete hormones at all. These buggers just take up space until they begin pressing on adjacent parts of the brain that would rather not be pressed on. Symptoms include headache, vision loss, nausea, vomiting, or fatigue. Non-functioning tumors can also pinch the pituitary gland itself, resulting in a broad-based loss of pituitary function.

Pituitary tumors are unusually common. Fifteen percent of adults have one. Most do not cause symptoms or require treatment. If you have one that does, your treatment may involve medication, radiation, and surgery.

Removing a pituitary tumor by surgery can be tricky. The gland is surrounded by carotid arteries, optic nerves, and lots of important brain matter. Nor is it easy to access or visualize. But with the help of revolutionary technology and modern expertise, surgeons are now able to remove pituitary tumors in a safe and minimally invasive way.

For the vast majority of cases, surgeons opt for a transsphenoidal approach. Here, the surgeon inserts an endoscope through the nostril to reach the pituitary gland. The endoscope’s camera relays video to a monitor, which allows the surgeon to visualize the tumor and be precise while removing it. Nowadays the surgeon is further aided by computer image guidance. The computer system gives the surgeon a real-time, three-dimensional model of his or her instruments in the operating space, adding extra degrees of precision—and safety—to the procedure.

“Technology has really moved ahead in this field,” says Gozal. “You get such good visualization. It’s made the operation relatively straightforward.”

Straightforward, that is, for a multidisciplinary team of neurosurgeons, ENT surgeons, and endocrinologists equipped with all that technology and all their training.

“I wouldn’t go anywhere that didn’t have a team for this,” says Gozal. “It’s all about developing expertise. That’s the key. It’s the expertise that has made this safer to do.”

– –

Internationally recognized as a leader in neurological surgery, Mayfield has forged a rich and lasting heritage through technical innovation, research, and a commitment to patient care. Mayfield physicians are continuously recognized among the Best Doctors in America and Top Doctors in Greater Cincinnati.

Mayfield Brain & Spine has four convenient locations in Greater Cincinnati: Rookwood Exchange (3825 Edwards Road, Suite 300, Cincinnati, 45209); Green Township (6130 Harrison Ave., 45247); West Chester (9075 Centre Point Drive, 45069); and Northern Kentucky (350 Thomas More Parkway, Suite 160, Crestview Hills, 41017).

 

From https://local12.com/sponsored/why-its-safer-than-ever-to-remove-pituitary-tumors

Surgical Removal of Pituitary Adenomas Through the Nose Remains an Effective Treatment for Pediatric Patients

Removal of pituitary adenomas by inserting surgical instruments through the nose (transsphenoidal resection) remains the best treatment option for pediatric patients, despite its inherent technical difficulties, a new study shows.

The study, “Transsphenoidal surgery for pituitary adenomas in pediatric patients: a multicentric retrospective study,” was published in the journal Child’s Nervous System.

Pituitary adenomas are rare, benign tumors that slowly grow in the pituitary gland. The incidence of such tumors in the pediatric population is reported to be between 1% and 10% of all childhood brain tumors and between 3% and 6% of all surgically treated adenomas.

Characteristics of patients that develop these pituitary adenomas vary significantly in different studies with regards to their age, gender, size of adenoma, hormonal activity, and recurrence rates.

As the pituitary gland is responsible for hormonal balance, alterations in hormone function due to a pituitary adenoma can significantly affect the quality of life of a child. In most cases, pituitary adenomas can be removed surgically. A common removal method is with a transsphenoidal resection, the goal of which is to completely remove the growing mass and cause the least harm to the surrounding structures.

In this study, the researchers report the surgical treatment of pediatric pituitary adenomas at three institutions. They collected data from 27 children who were operated for pituitary adenoma using one of two types of transsphenoidal surgeries — endoscopic endonasal transsphenoidal surgery (EETS) and transsphenoidal microsurgery (TMS) — at the University Cerrahpasa Medical Faculty in Istanbul, Turkey, at San Matteo Hospital in Pavia, and at the University of Insubria-Varese in Varese, Italy.

The study included 11 males (40.7%) and 16 females (59.3%), with a mean age of 15.3 (ranging between 4 and 18). Medical records indicated that 32 surgical procedures were performed in the 27 patients, as six children required a second operation. Among the patients, 13 had Cushing’s disease, while the rest had growth-hormone-secreting adenomas, prolactinomas, or non-functional adenomas.

The researchers found that most patients underwent remission following their surgery. Among the 27 patients, 22 patients (81.4%) underwent remission while five patients (18.5%) did not. Four patients underwent remission after a second operation.

Based on these findings, the team believes that the transsphenoidal surgical approach adequately removes pituitary tumors and restores normal hormonal balance in the majority of pediatric patients with pituitary adenomas.

“Satisfactory results are reported with both EETS and TMS in the literature,” they wrote. “Despite the technical difficulties in pediatric age, transsphenoidal resection of adenoma is still the mainstay treatment that provides cure in pediatric patients.”

From https://cushingsdiseasenews.com/2019/05/30/transsphenoidal-surgery-effective-remove-pituitaty-adenomas-children-study/

Transsphenoidal Surgery Recommended for Cushing Disease With Inconclusive or Normal MRI

In patients with a diagnosis of Cushing disease in whom magnetic resonance imaging (MRI) shows either no abnormalities or nonspecific abnormalities, surgery is preferable to medical treatment, according to study results published in The Journal of Clinical Endocrinology & Metabolism.

There is a consensus that the first line of treatment for Cushing disease is transsphenoidal surgery to remove the pituitary adenoma causing the disease, with an 80% remission rate following the intervention. However, in the absence of clear evidence of a pituitary adenoma on imaging, there is some controversy regarding the best treatment.

The goal of this retrospective single-center study was to assess the outcomes of surgery in patients with Cushing disease with clear evidence of a pituitary adenoma on MRI compared with outcomes in patients with inconclusive or normal MRI.

The cohort included 195 patients treated with transsphenoidal surgery between 1992 and 2018 (156 women; mean age at surgery, 41 years) classified into 4 MRI groups: 89 patients were found to have microadenoma, 18 had macroadenoma, 44 had nonspecific/inconclusive abnormalities on MRI results, and 44 had normal imaging results.

The researchers reported that MRI performance in their neuroradiology department improved with time; the proportion of inconclusive or normal MRI results decreased from 60% in 1992 to 1996 to 27% in 2012 to 2018 (P =.037).

In analyzing the influence of MRI findings on remission rates, the researchers found no significant difference among the 4 groups: remission rate was 85% for microadenomas, 94% for macroadenomas, 73% for inconclusive MRI, and 75% for negative MRI (P =.11). This finding indicates the overall percentage of patients in remission after transsphenoidal surgery is only slightly lower in those with normal or inconclusive MRI results compared with patients with clear evidence of microadenoma or macroadenoma.

There was no difference in remission rate after a microscopic vs endoscopic surgical approach (P =.16). The researchers found that endoscopic-assisted surgery allowed a higher visualization rate than microscopic-assisted surgery. Although the neurosurgeon had a better visualization rate than MRI (100% vs 72%, respectively), there were some false-positive findings; thus, positive predictive value was similar (84% vs 78%, respectively).

The study had several limitations including the retrospective design. In addition, in light of the long study duration, the researchers noted that changes in MRI technology and surgical procedures occurred over time.

The researchers proposed that after exclusion of nonneoplastic hypercortisolism, patients with Cushing disease, an inconclusive or normal MRI, and a pituitary adrenocorticotropic hormone gradient at bilateral inferior petrosal sampling be directed to an expert neurosurgeon for transsphenoidal surgery rather than treated medically.

 

Reference

Cristante J, Lefournier V, Sturm N, et al. Why we should still treat by neurosurgery patients with Cushing’s disease and a normal or inconclusive pituitary MRI [published online May 14, 2019]. J Clin Endocrinol Metab. doi:10.1210/jc.2019-00333

From https://www.endocrinologyadvisor.com/home/topics/adrenal/transsphenoidal-surgery-recommended-for-cushing-disease-with-inconclusive-or-normal-mri/

%d bloggers like this: