Cushing’s Syndrome, Cortisol, and Cognitive Competency: A Case Report

Abstract

Glucocorticoids are associated with immunosuppression and neuropsychiatric complications. We describe the case of a carcinoid patient with Cushing’s syndrome (CS) and neurocognitive impairment due to ectopic ACTH production who developed sepsis and died because of his family’s decision to withdraw antibiotic treatment. This report is presented to illustrate the importance of advanced-care planning in patients with CS.

Key Words: Cushing’s syndrome, Carcinoid patient, Glucocorticoids, ACTH, Immunosuppression, Neurocognitive impairment, Advanced directives

Introduction

Cushing’s syndrome (CS) is a general term for a cluster of endocrine abnormalities characterized by chronic cortisol overproduction. Characteristic clinical comorbidities include metabolic complications (e.g., visceral obesity, diabetes mellitus, and dyslipidemia), cardiovascular complications (e.g., systemic arterial hypertension, atherosclerosis, and thromboembolism), bone complications (e.g., osteoporosis and osteoarthritis) infective complications, and neuropsychiatric disorders (e.g., major depression, mania, anxiety, and cognitive impairment) [1]. CS may be exogenous and iatrogenic due to corticosteroid administration or endogenous due to excessive ACTH secretion, most commonly from a pituitary adenoma, referred to, somewhat confusingly, as Cushing’s disease, or less commonly from a nonpituitary tumor (ectopic CS) and primary adrenal neoplasms [2]. Several studies link untreated CS to fatal infectious complications [3]. This report describes the case of a 60-year-old carcinoid patient with cognitive impairment due to hypercortisolism from CS who developed bacteremia; his condition deteriorated, and he died after a decision was made to withdraw care.

Case Presentation

A 60-year-old male with metastatic bronchopulmonary neuroendocrine tumor treated on a clinical trial for over 5 months was admitted to the hospital with complaints of fever, agitation, and weakness. His medical history was significant for newly diagnosed CS secondary to ACTH secretion; he had been hospitalized 2 weeks earlier for CS-induced hyperglycemic crisis. On admission, the patient presented with classic cushingoid habitus of facial plethora, moon facies, muscle atrophy, abdominal striae, and truncal obesity. His physical examination was significant for bilateral crackles and agitation consistent with corticosteroid psychosis. The arterial blood gas analysis on room air was pH 7.497, PaCO2 29 mm Hg, PaO2 71 mm Hg, and oxygen saturation 95%.

Laboratory data were significant for hyperglycemia, hypokalemia, and leukocytosis with bandemia. The chest CT scan showed no definite evidence of pulmonary thromboembolism.

As respiratory failure was imminent, he was transferred to the intensive care unit and mechanically ventilated. The highest positive end-expiratory pressure and FiO2 required to maintain oxygenation were 5 cm H2O and 50%, respectively. Cultures were taken from bronchial secretions directly after endotracheal intubation and from urine and blood. The patient was diagnosed with Staphylococcus aureus bacteremia, and based on susceptibility testing, he was started on vancomycin and Zosyn. In addition to antibiotics, the patient received lisinopril for CS-induced hypertension and insulin sliding scale to control hyperglycemia.

Since high circulating levels of glucocorticoids due to ectopic ACTH secretion predispose to infection and impair immune function and clearance of bacteria, the immediate plan was to start him on mifepristone (600 mg daily) as a glucocorticoid receptor antagonist to counteract the immunosuppressive and cognitive effects of the endogenous hypercortisolism. As soon as the patient’s condition improved (which would have been expected given the known reversibility of hypercortisolism), cytoreductive chemotherapy would have been restarted to reduce the paraneoplastic stimulus. However, the patient’s family with medical power of attorney refused consent and withdrew him from the ventilator. The patient died shortly thereafter.

Discussion

Advance directives are written to guarantee autonomy in the event that individual decision-making capacity is lost due to disease severity or treatment [4]. However, as a blanket statement that may contain overly broad (or overly specific) prewritten blocks of text, especially for cancer patients, the content of advance directives may or may not necessarily apply to and/or the patient’s wishes may or may not be correctly interpreted during acute, temporary and potentially reversible conditions that occur during cancer treatment such as infection due to ectopic CS.

Given the potential for cognitive impairment and other acute sequelae such as difficult-to-treat infections from the development of ectopic CS, this case illustrates the importance of revisiting the advance directive when a medical diagnosis associated with temporary cognitive impairment such as CS is made.

Statement of Ethics

The authors have no ethical conflicts to disclose.

Disclosure Statement

The authors have no conflicts of interest to declare.

References

1. Pivonello R, Simeoli C, De Martino MC, Cozzolino A, De Leo M, Iacuaniello D, Pivonello C, et al. Neuropsychiatric disorders in Cushing’s syndrome. Front Neurosci. 2015;9:129. [PMC free article][PubMed]
2. Tsigos C, Chrousos GP. Differential diagnosis and management of Cushing’s syndrome. Annu Rev Med. 1996;47:443–461. [PubMed]
3. Bakker RC, Gallas PR, Romijn JA, Wiersinga WM. Cushing’s syndrome complicated by multiple opportunistic infections. J Endocrinol Invest. 1998;21:329–333. [PubMed]
4. Halpern NA, Pastores SM, Chou JF, Chawla S, Thaler HT. Advance directives in an oncologic intensive care unit: a contemporary analysis of their frequency, type, and impact. J Palliat Med. 2011;14:483–489.[PMC free article] [PubMed]

Articles from Case Reports in Oncology are provided here courtesy of Karger Publishers

Lower health-related quality of life observed in patients with Addison’s disease, Cushing’s syndrome

Patients with hypothalamic-pituitary-adrenal axis dysregulations report health-related quality of life that is far lower than that of the general population, according to findings of a prospective study.

“In most centers, both patients with adrenal deficiency and patients with Cushing’s syndrome are managed by the same team,” Charlotte DeBucy, of the Center for Rare Adrenal Diseases at Cochin Hospital in Paris, and colleagues wrote. “Despite the usual perception that both types of diseases alter quality of life, few studies have similarly investigated the impact of cortisol dysregulations on [health-related quality of life]. Such studies are important, however, to identify meaningful differences that would be important to consider to improve management and outcome.”

De Bucy and colleagues analyzed data from 343 patients with Addison’s disease or Cushing’s syndrome followed in routine practice at a single center in France between September 2007 and April 2014 (78% women; mean age, 48 years; mean length of time since diagnosis, 7.8 years; 61% married). All participants completed the short-form health survey (SF-36), a survey of health-related quality-of-life measures and the 12-item general health questionnaire (GHQ-12), a measure of psychological well-being or distress. Questionnaires were completed at baseline and at 6, 12, 24 and 36 months. Patients with Cushing’s syndrome were also assessed for cortisol status at baseline and at follow-up evaluations.

Within the cohort, 206 had Cushing’s syndrome of pituitary origin, 91 had Cushing’s syndrome of adrenal origin and 46 patients had Addison’s disease; 16% were included in the study before any treatment was initiated.

Researchers found that mean standard deviation scores for psychological and physical dimensions of the SF-36 were “well below” those of the general population, but diagnosis, cortisol status and time since treatment initiation all influenced individual scores. Cushing’s syndrome of pituitary origin was associated with worse health-related quality of life, especially for physical functioning, social functioning and mental health. In Cushing’s syndrome, health-related quality of life was generally worse during periods of hypercortisolism, but scores for these patients were lower than those of patients with Addison’s disease even during periods of hypocortisolism or eucortisolism, according to the researchers.

“The differences were particularly large for physical functioning and role-physical subscales,” the researchers wrote.

They also found that mental health scores for patients with Cushing’s syndrome decreased during periods of hypocortisolism, whereas other adrenal conditions were associated with higher mental health scores.

More than half of patients, regardless of diagnosis and cortisol status, had psychological distress requiring attention, according to the GHQ-12 survey.

“Our findings are important for clinical practice,” the researchers wrote. “The consequences of cortisol dysregulation on [health-related quality of life] should be considered in the management of adrenal insufficiency and even more (in) Cushing’s syndrome patients, and these consequences can be long term, affecting apparently cured patients. Early information on these consequences might be helpful for patients who often perceive a poor quality of life as the result of inadequate disease control or treatment. Even if this possibility exists, knowing that adrenal diseases have long-lasting effects on [health-related quality of life] may be helpful for patients to cope with them.” – by Regina Schaffer

Disclosure: L’association Surrénales supported this study. The researchers report no relevant financial disclosures.

From http://www.healio.com/endocrinology/adrenal/news/in-the-journals/%7B842655ce-e710-4476-a3c2-2909b06434ed%7D/lower-health-related-quality-of-life-observed-in-patients-with-addisons-disease-cushings-syndrome

Exogenous Cushing’s syndrome due to a Chinese herbalist’s prescription of ointment containing dexamethasone

BMJ Case Reports 2017; doi:10.1136/bcr-2016-218721

Summary

Eczema in children is a chronic disabling condition. The impact of this condition on the lives of families is often underestimated by conventional physicians. As a consequence parents may investigate complementary treatment options. Close monitoring by a paediatrician is essential, considering that a variety of adverse effects can occur during the use of complementary treatment.

We present a 5-year-old girl with eczema. She visited a Chinese herbalist who prescribed an ointment. The parents noticed that the eczema resolved fast, itching decreased and she was finally sleeping well. However, her behaviour changed and appetite increased. Undetectable levels of serum cortisol were found, which was indicative of exogenous Cushing’s syndrome. Analysis of the ointment revealed the presence of dexamethasone.

Hydrocortisone substitution and subsequently a reduction schedule were implemented, after which endogenous cortisol production recovered after 4 months. Physicians should be aware that unregistered herbal medicine can contain potent drugs such as glucocorticoids.

Read more at http://casereports.bmj.com/content/2017/bcr-2016-218721.short?rss=1

 

Prednisolone May Raise Cholesterol in Adrenal Insufficiency

Prednisolone treatment of patients with adrenal insufficiency is associated with significantly elevated total-and low-density-lipoprotein (LDL) cholesterol levels compared with use of an alternative glucocorticoid, hydrocortisone, new data suggest.

Real-world data from the European Adrenal Insufficiency Registry (EU-AIR) were presented on April 2 here at ENDO 2017: The Endocrine Society Annual Meeting by Robert D Murray, MBBS, consultant endocrinologist and honorary associate professor at Leeds Teaching Hospitals NHS Trust, United Kingdom.

In an interview, Dr Murray told Medscape Medical News, “In addition to previous data showing that prednisolone can cause lower bone mass, we’ve now shown that it may raise cholesterol to a higher degree than hydrocortisone.”

Asked to comment, session moderator Constantine A Stratakis, MD, chief medical officer of the National Institute of Child Health & Human Development, Bethesda, Maryland, said: “These are significant findings. I think that the difference he’s seeing may be mostly due to the differences in how glucocorticoids are metabolized locally in the liver and fat tissues.”

Regarding clinical implications, Dr Stratakis said, “These data point to the need for using hydrocortisone. Clearly, at these doses anyway, you have increases in LDL and cholesterol with prednisolone.”

Indeed, the new findings support recent recommendations from the Endocrine Society to use hydrocortisone as first-line glucocorticoid replacement therapy for primary adrenal insufficiency.

But the huge cost difference between the two generic medications has led some to suggest otherwise. In 2014, the BMJ published editorials arguing both for and against the preferred use of prednisolone.

During his presentation, Dr Murray reported that in the United Kingdom, an annual supply of 5-mg prednisolone (one tablet a day) costs about £16 and 3 mg (three 1-mg tablets a day) about £48, compared with £1910 for a year’s supply of twice-daily 10-mg hydrocortisone.

(Hydrocortisone is also considerably more expensive than prednisolone in the United States, although the differential isn’t quite as dramatic.)

Dr Murray pointed out that about 75% of the patients in the database were taking 5 mg/day of prednisolone and that although that’s within the recommended range (3–5 mg/day), it might be too much. “I suspect this isn’t related to the steroid use, but that we may actually have gotten the doses wrong, and we may need a smaller dose of prednisolone. I think probably in reality the ideal dose is probably nearer to 3.5 to 4 mg. Therefore, I think we may be slightly overtreating these people and both the bone mass and the cholesterol may be a reflection of that.

“I think for now we have to stay with hydrocortisone as our mainstay of treating adrenal insufficiency, but I think more studies need to be done in patients taking 3.5 to 4.0 mg to then look at the effects on cholesterol, bone mass, and other markers….It would be quite a significant saving if we were able to move patients to prednisolone,” he added.

Dr Stratakis commented, “I have to say the price difference to me is amazing.” Asked about Dr Murray’s dose hypothesis, he responded, “It is possible we may be giving more prednisolone than we should. Also, there might be important differences in the handling of glucocorticoids at the tissue level, in fat and liver, specifically, that we don’t account for.”

Hydrocortisone vs Prednisolone

Beginning his presentation, Dr Murray noted that data on risk factors for cardiovascular disease in patients with adrenal insufficiency treated with prednisolone are scarce, despite this condition being the predominant cause of excess mortality, and so in this analysis he and his colleagues aimed to address this gap in the literature.

EU-AIR is a prospective, observational study, initiated in August 2012 to monitor the long-term safety of glucocorticoids in patients with adrenal insufficiency, and of 946 enrolled — in Germany, the Netherlands, Sweden, and the United Kingdom — 91.8% were using hydrocortisone for glucocorticoid replacement therapy compared to just 6.8% using prednisone, with marked heterogeneity in doses and frequency and timing of dosing (Endocrine Abstracts. 2015: DOI:10.1530/endoabs.37.EP39).

Other previous studies have found lower bone mass at the hip and spine with prednisolone compared with hydrocortisone-treated patients, but no quality-of-life difference between the two treatments, Dr Murray said.

The current study is the first patient-matched analysis of cardiovascular-risk-factor differences for the two glucocorticoid therapies. Patients were excluded if they were receiving more than one glucocorticoid, had congenital adrenal hyperplasia, were receiving modified-release hydrocortisone, or were receiving prednisolone or hydrocortisone doses outside the Endocrine Society’s recommended ranges.

Prior to matching, the 909 hydrocortisone patients were significantly more likely to be female, to have primary adrenal insufficiency, to be older, and to have longer disease duration. After matching three hydrocortisone patients for every one taking prednisolone, the 141 hydrocortisone and 47 prednisolone patients were similar for those factors: 62% were female, 40% had primary adrenal insufficiency, average age was around 59 years, and disease duration 23 years.

Both total cholesterol and LDL levels were significantly higher, at 6.3 and 3.9 mmol/L, respectively, in the prednisolone group compared with 5.4 and 3.2 mmol/L for hydrocortisone (both P < .05). However, there were no significant differences in rates of hypertension, diabetes (of either type), blood pressure, triglycerides, or HDL cholesterol.

In subgroup analysis, both total and LDL cholesterol were elevated among patients with primary adrenal insufficiency taking prednisolone, but among those with only secondary adrenal insufficiency, just total cholesterol was elevated with prednisolone.

Dr Stratakis told Medscape Medical News, “It is peculiar for me to see that the only difference he found from all the parameters he measured were in lipids, and specifically total cholesterol and LDL. I think the difference is tissue-specific.”

Dr Murray said it’s certainly plausible that the current prednisolone dosing is too high for two reasons: First, in the United Kingdom prednisolone comes in 1-mg and 5-mg tablets, so taking 5 mg/day is simpler than taking the lower end of the recommended range.

Second, “hydrocortisone is cortisol, so you know what the body produces and about what your levels should be, but you can’t do that with prednisone because it’s an analog. So, we’re guessing, and I think we’ve guessed too high.”

Dr Murray is a speaker and consultant to Shire. Disclosures for the coauthors are listed in the abstract. Dr Stratakis has no relevant financial relationships.   

For more diabetes and endocrinology news, follow us on Twitter and on Facebook.

ENDO 2017. April 2, 2017; Orlando, Florida. Abstract OR03-5

 

From http://www.medscape.com/viewarticle/878097

Severe Trauma May Damage The Brain as Well as the Psyche

NOTE: This is only a portion of the article.  Read the entire post at http://www.nytimes.com/1995/08/01/science/severe-trauma-may-damage-the-brain-as-well-as-the-psyche.html?pagewanted=all

Cortisol is a major means the body uses, with adrenaline, to arouse itself so quickly; its action, for example, triggers an increase in blood pressure and mobilizes energy from fat tissue and the liver.

“The dark side of this picture is the neurological effects,” said Dr. Sapolsky. “It’s necessary for survival, but it can be disastrous if you secrete cortisol for months or years on end. We’ve known it could lead to stress-exacerbated diseases like hypertension or adult onset diabetes. But now we’re finding the hippocampus is also damaged by these secretions.”

Studies in animals show that when glucocorticoids are secreted at high levels for several hours or days, there is a detectable effect on memory, though no neuronal death. But with sustained release from repeated stress, “it eventually kills neurons in the hippocampus,” said Dr. Sapolsky. “This has been shown solidly in rats, with the cell biology well understood.”

A parallel effect has long been known among patients with Cushing’s disease, a hormonal condition in which tumors in the adrenal or pituitary glands or corticosteroid drugs used for a prolonged time cause the adrenal glands to secrete high levels of a hormone called ACTHm and of cortisol. Such patients are prone to a range of diseases “in any organ with stress sensitivity,” including diabetes, hypertension and suppression of the immune system, said Dr. Sapolsky.

Cushing’s patients also have pronounced memory problems, especially for facts like where a car was parked. “The hippocampus is essential for transferring such facts from short-term to long-term memory,” said Dr. Sapolsky.

In 1993, researchers at the University of Michigan reported that magnetic resonance imaging had shown an atrophy and shrinkage of the hippocampus in patients with Cushing’s disease; the higher their levels of cortisol, the more shrinkage.

In an apparent paradox, low levels of cortisol in post-trauma victims were found in a separate research report, also in the July issue of The American Journal of Psychiatry. Dr. Rachel Yehuda, a psychologist at Mount Sinai Medical School in New York City, found the lower levels of cortisol in Holocaust survivors who had been in concentration camps 50 years ago and who still had post-traumatic symptoms.

“There are mixed findings on cortisol levels in trauma victims, with some researchers finding very high levels and others finding very low levels,” said Dr. Sapolsky. “Biologically speaking, there may be different kinds of post-traumatic stress.”

In a series of studies, Dr. Yehuda has found that those post-trauma patients who have low cortisol levels also seem to have “a hypersensitivity in cell receptors for cortisol,” she said. To protect itself, the body seems to reset its cortisol levels at a lower point.

The low cortisol levels “seem paradoxical, but both too much and too little can be bad,” said Dr. Yehuda. “There are different kinds of cells in various regions of the hippocampus that react to cortisol. Some atrophy or die if there is too little cortisol, some if there is too much.”

Dr. Yehuda added, “In a brain scan, there’s no way to know exactly which cells have died.”

To be sure that the shrinkage found in the hippocampus of trauma victims is indeed because of the events they suffered through, researchers are now turning to prospective studies, where before-and-after brain images can be made of people who have not yet undergone trauma, but are at high risk, or who have undergone it so recently that cell death has not had time to occur.

Dr. Charney, for example, is planning to take M.R.I. scans of the brains of emergency workers like police officers and firefighters and hopes to do the same with young inner-city children, who are at very high risk of being traumatized over the course of childhood and adolescence. Dr. Pitman, with Dr. Yehuda, plans a similar study of trauma victims in Israel as they are being treated in emergency rooms.

Dr. Yehuda held out some hope for people who have suffered through traumatic events. “It’s not necessarily the case that if you’ve been traumatized your hippocampus is smaller,” she said. She cited research with rats by Dr. Bruce McEwen, a neuroscientist at Rockefeller University, showing that atrophied dendritic extensions to other cells in the hippocampus grew back when the rats were given drugs that blocked stress hormones.

Dr. Sapolsky cited similar results in patients with Cushing’s disease whose cortisol levels returned to normal after tumors were removed. “If the loss of hippocampal volume in trauma victims is due to the atrophy of dendrites rather than to cell death, then it is potentially reversible, or may be so one day,” he said.

NOTE: This is only a portion of the article.  Read the entire post at http://www.nytimes.com/1995/08/01/science/severe-trauma-may-damage-the-brain-as-well-as-the-psyche.html?pagewanted=all

%d bloggers like this: