Cushing’s Testing at NIH

Rank Status Study
1 Recruiting Study to Evaluate CORT125134 in Patients With Cushing’s Syndrome

Condition: Cushing’s Syndrome
Intervention: Drug: CORT125134
2 Recruiting Cushing’s Disease Complications

Condition: Cushing’s Disease
Intervention: Other: Exams and questionnaires
3 Recruiting The Accuracy of Late Night Urinary Free Cortisol/Creatinine and Hair Cortisol in Cushing’s Syndrome Diagnosis

Condition: Cushing Syndrome
Intervention:
4 Recruiting Treatment for Endogenous Cushing’s Syndrome

Condition: Endogenous Cushing’s Syndrome
Intervention: Drug: COR-003
5 Recruiting Saliva Cortisol Measurement as a Screening Test for Suspicious Cushings Syndrome in Children.

Condition: Cushings Syndrome
Intervention: Other: Children refered to the obesity clinic
6 Recruiting Safety and Efficacy of LCI699 for the Treatment of Patients With Cushing’s Disease

Condition: Cushing’s Disease
Intervention: Drug: LCI699
7 Recruiting Treatment of Cushing’s Disease With R-roscovitine

Condition: Cushings Disease
Intervention: Drug: R-roscovitine
8 Recruiting A Study of ATR-101 for the Treatment of Endogenous Cushing’s Syndrome

Condition: Cushing Syndrome
Interventions: Drug: ATR-101;   Drug: Placebos
9 Recruiting Evaluation of 68Ga-DOTATATE PET/CT, Octreotide and F-DOPA PET Imaging in Patients With Ectopic Cushing Syndrome

Condition: Cushing Syndrome
Interventions: Drug: F-DOPA PET Scan;   Drug: Mifepristone;   Drug: Ga-DOTATATE;   Drug: Octreoscan;   Other: CT, MRI
10 Not yet recruiting Endocrine Cardiomyopathy in Cushing Syndrome: Response to Cyclic GMP PDE5 inhibitOrs

Condition: Cushing’s Syndrome Cardiomyopathy
Intervention: Drug: Tadalafil
11 Recruiting Long-term Beneficial Metabolic Effects of Adrenalectomy in Subclinical Cushing’s Syndrome of Adrenal Incidentaloma

Condition: Cushing Syndrome
Intervention: Procedure: surgery
12 Recruiting Long Term Safety and Efficacy of Pasireotide s.c. in Patients With Cushing’s Disease

Condition: Cushings Disease
Intervention: Drug: SOM230
13 Recruiting New Imaging Techniques in the Evaluation of Patients With Ectopic Cushing Syndrome

Condition: Cushing Syndrome
Interventions: Drug: Pentetreotide;   Drug: 18-F-fluorodeoxyglucose;   Drug: (18F)-L-3,4-dihydroxyophenylalanine (18F-DOPA)
14 Not yet recruiting Targeting Iatrogenic Cushing’s Syndrome With 11β-hydroxysteroid Dehydrogenase Type 1 Inhibition

Condition: Iatrogenic Cushing’s Disease
Interventions: Drug: AZD4017 and prednisolone;   Drug: Placebo Oral Tablet and prednisolone
15 Not yet recruiting Assessment of Persistent Cognitive Impairment After Cure of Cushing’s Disease

Condition: Cushing’s Disease
Intervention: Device: Virtual radial task in 3D
16 Recruiting Biomarker Expression in Patients With ACTH-Dependent Cushing’s Syndrome Before and After Surgery

Condition: Cushing’s Syndrome
Intervention:
17 Recruiting Efficacy and Safety Evaluation of Osilodrostat in Cushing’s Disease

Condition: Cushing’s Disease
Interventions: Drug: osilodrostat;   Drug: osilodrostat Placebo
18 Recruiting Effects of Metyrapone in Patients With Endogenous Cushing’s Syndrome

Condition: Cushing’s Syndrome
Intervention: Drug: metyrapone
19 Recruiting Adrenal Venous Sampling in Patients With Overt or Subclinical Cushings Syndrome, and Bilateral Adrenal Tumors

Condition: Cushing Syndrome
Intervention: Radiation: Adrenal venous sampling
20 Recruiting Glycemic Fluctuations in Newly Diagnosed Growth Hormone-Secreting Pituitary Adenoma and Cushing Syndrome Subjects

Condition: Pituitary Adenoma
Intervention: Device: continuous glucose monitoring
Rank Status Study
21 Recruiting Targeted Therapy With Gefitinib in Patients With USP8-mutated Cushing’s Disease

Conditions: Cushing’s Disease;   Corticotrophin Adenoma
Intervention: Drug: Gefitinib
22 Recruiting Cardiac Steatosis in Cushing’s Syndrome

Conditions: Endocrine System Disease;   Cardiovascular Imaging
Intervention: Other: 1H magnetic resonance spectroscopy and CMRI
23 Recruiting Study of Management of Pasireotide-induced Hyperglycemia in Adult Patients With Cushing’s Disease or Acromegaly

Conditions: Cushing’s Disease;   Acromegaly
Interventions: Drug: Pasireotide s.c.;   Drug: Sitagliptin;   Drug: Liraglutide;   Drug: Insulin;   Drug: Pasireotide LAR;   Drug: Metformin
24 Recruiting Study of Efficacy and Safety of Osilodrostat in Cushing’s Syndrome

Conditions: Cushing’s Syndrome;   Ectopic Corticotropin Syndrome;   Adrenal Adenoma;   Adrenal Carcinoma;   AIMAH;   PPNAD
Intervention: Drug: Osilodrostat
25 Recruiting Effects of Hormone Stimulation on Brain Scans for Cushing s Disease

Condition: Pituitary Neoplasm
Intervention: Drug: Acthrel
26 Recruiting Does Serum-DXM Increase Diagnostic Accuracy of the Overnight DXM Suppression Test in the Work-up of Cushing’s Syndrome?

Conditions: Cushing’s Syndrome;   Adrenal Incidentalomas;   Alcoholism;   Obesity
Intervention:
27 Recruiting Adrenalectomy Versus Follow-up in Patients With Subclinical Cushings Syndrome

Condition: Adrenal Tumour With Mild Hypercortisolism
Intervention: Procedure: Adrenalectomy
28 Recruiting Study of Adrenalectomy Versus Observation for Subclinical Hypercortisolism

Conditions: Hypercortisolism;   Cushing Syndrome
Interventions: Procedure: Adrenalectomy;   Other: Observation
29 Not yet recruiting Dynamic Hormone Diagnostics in Endocrine Disease

Conditions: Adrenal Insufficiency;   Congenital Adrenal Hyperplasia;   Cushing Syndrome;   Growth Hormone Deficiency;   Acromegaly;   Primary Hyperaldosteronism
Intervention: Other: 27 hour subcutaneous fluid sampling
30 Recruiting An Investigation of Pituitary Tumors and Related Hypothalmic Disorders

Conditions: Abnormalities;   Craniopharyngioma;   Cushing’s Syndrome;   Endocrine Disease;   Pituitary Neoplasm
Intervention:
31 Recruiting Ga-68-DOTATOC -PET in the Management of Pituitary Tumours

Condition: Pituitary Tumours
Intervention: Procedure: Gallium-68 DOTATOC PET
32 Recruiting Efficacy of Mifepristone in Males With Type 2 Diabetes Mellitus

Conditions: Type 2 Diabetes Mellitus;   Insulin Resistance
Interventions: Drug: Mifepristone 600 mg daily;   Drug: Placebo
33 Recruiting Targeted Therapy With Lapatinib in Patients With Recurrent Pituitary Tumors Resistant to Standard Therapy

Conditions: Pituitary Adenomas;   Prolactinomas
Intervention: Drug: Lapatinib
34 Recruiting Mutations of Glucocorticoid Receptor in Bilateral Adrenal Hyperplasia

Condition: General Glucocorticoid Resistance
Intervention: Genetic: blood collection for mutation characterization
35 Recruiting Defining the Genetic Basis for the Development of Primary Pigmented Nodular Adrenocortical Disease (PPNAD) and the Carney Complex

Conditions: Cushing’s Syndrome;   Hereditary Neoplastic Syndrome;   Lentigo;   Neoplasm;   Testicular Neoplasm
Intervention:
36 Not yet recruiting Reduction by Pasireotide of the Effluent Volume in High-output Enterostomy in Patients Refractory to Usual Medical Treatment

Condition: Enterostomy
Interventions: Drug: Pasireotide;   Drug: Placebo
37 Recruiting Mifepristone for Breast Cancer Patients With Higher Levels of Progesterone Receptor Isoform A Than Isoform B.

Condition: Breast Cancer
Intervention: Drug: Mifepristone
38 Recruiting SOM230 Ectopic ACTH-producing Tumors

Condition: Ectopic ACTH Syndrome
Intervention: Drug: Pasireotide
39 Recruiting Decreasing Rates of Intraurethral Catheterization Postoperatively in Spine Surgery

Condition: Post-operative Urinary Retention
Interventions: Drug: Tamsulosin;   Drug: Placebo
40 Recruiting Adrenal Tumors – Pathogenesis and Therapy

Conditions: Adrenal Tumors;   Adrenocortical Carcinoma;   Cushing Syndrome;   Conn Syndrome;   Pheochromocytoma
Intervention:

Basal Cortisol Elevated in Patients with ACTH-Staining Pituitary Macroadenoma

Preoperative identification of patients with silent adrenocorticotrophic hormone-secreting tumors could potentially change the approach to management. A new study aimed to determine whether a preoperative adrenocorticotrophic hormone stimulation test for evaluation of nonfunctional pituitary macroadenoma could aid in identifying adrenocorticotrophic hormone-staining pathology yielded large variability and did not allow clinical utility.

Thus, researchers concluded that larger, multicenter research is needed to determine whether this test can be useful.

“As ACTH stimulation tests are performed routinely when evaluating macroadenoma when there is no suspicion for a state of endogenous hypercortisolism, we sought to determine if the test could reliably identify these pathologies during the preoperative evaluation. We hypothesized that patients with subclinical Cushing’s disease or silent ACTH-secreting tumors would have a higher delta cortisol on the ACTH stimulation tests vs. other types of macroadenoma pathologies,” Kevin Pantalone, DO, ECNU, FACE, staff endocrinologist and director of clinical research in the department of endocrinology at Cleveland Clinic, told Endocrine Today.

Pantalone and colleagues performed a retrospective chart review of 148 patients with pituitary macroadenoma who underwent preoperative ACTH stimulation tests, with the goal of determining whether the test can aid in the identification of ACTH-staining pathology.

Overall, 9.5% of patients showed diffuse staining, 50.6% showed other-staining (diffuse staining for anterior pituitary hormones other than ACTH) and 39.9% showed no staining (no staining for any anterior pituitary hormones).

The researchers calculated delta total cortisol at 30 and 60 minutes from baseline and reviewed preoperative ACTH stimulation tests. Additionally, Pantalone and colleagues compared the basal and maximal delta cortisol between the ACTH-staining pituitary macroadenoma and the non-ACTH staining (n = 134), other staining (n = 75) and non-staining (n = 59) tumors.

According to data reported at the American Association of Clinical Endocrinologists Annual Scientific and Clinical Congress, the ACTH-staining group had higher mean basal cortisol levels compared with the non-ACTH-staining (P = .012), other staining (P = .018) and the non-staining (P = .012) tumors. The researchers found no significant differences in maximal delta cortisol between the groups.

“While we found basal cortisol levels were higher in patients with ACTH-staining pituitary microadenoma vs. non-ACTH-staining macroadenoma, the large variability in cortisol values did not allow for clinical utility,” Pantalone told Endocrine Today.

“Unfortunately, in the end, our study was limited by the number of cases with ACTH-staining pathology. Thus, we were unable to determine if the ACTH stimulation test could reliably assist clinicians in potentially identifying ACTH-staining pathology in the preoperative setting,” he said. “A multicenter study, affording a large number of ACTH-staining tumors, is needed. This may allow for us to determine if the ACTH-stimulation test can really be clinically useful in preoperatively identifying ACTH-staining pathology.” – by Amber Cox

Topical Steroid Use in Psoriasis Patient Leads to Severe Adrenal Insufficiency

This article is written live from the American Association of Clinical Endocrinologists (AACE) 2017 Annual Meeting in Austin, TX. MPR will be reporting news on the latest findings from leading experts in endocrinology. Check back for more news from AACE 2017.

 

At the AACE 2017 Annual Meeting, lead study author Kaitlyn Steffensmeier, MS III, of the Dayton Veterans Affairs (VA) Medical Center, Dayton, OH, presented a case study describing a patient “who developed secondary adrenal insufficiency secondary to long-term topical steroid use and who with decreased topical steroid use recovered.”

The patient was a 63-year-old white male with a 23-year history of psoriasis. For 18 years, the patient had been applying Clobetasol Propionate 0.05% topically on several areas of his body every day. Upon presentation to the endocrine clinic for evaluation of his low serum cortisol, the patient complained of a 24-pound weight gain over a 2-year period, feeling fatigued, as well as facial puffiness.

Laboratory analysis found that the patient’s random serum cortisol and ACTH levels were low (0.2µg/dL and <1.1pg/mL, respectively). According to the study authors, “the labs were indicative of secondary adrenal insufficiency.” Additionally, a pituitary MRI “showed a 2mm hypoenhancing lesion within the midline of the pituitary gland consistent with Rathke’s cleft cyst versus pituitary microadenoma.”

The patient was initiated on 10mg of hydrocortisone in the morning and 5mg in the evening and was instructed to decrease the use of his topical steroid to one time per month. For the treatment of his psoriasis, the patient was started on apremilast, a phosphodiesterase-4 enzyme (PDE4) inhibitor, and phototherapy.

After 2.5 years, the patient had a subnormal response to the cosyntropin stimulation test. However, after 3 years, a normal response with an increase in serum cortisol to 18.7µg/dL at 60 minutes was obtained; the patient was then discontinued on hydrocortisone. Additionally, a stable pituitary tumor was shown via a repeat pituitary MRI.

The study authors explained that, although secondary adrenal insufficiency is not commonly reported, “one study showed 40% of patients with abnormal cortisol response to exogenous ACTH after two weeks of topical glucocorticoids usage.” Another meta-analysis of 15 studies (n=320) revealed 4.7% of patients developing adrenal insufficiency after using topical steroids. Because of this, “clinicians need to be aware of potential side effects of prolong topical steroid use,” added the study authors.

For continuous endocrine news coverage from the AACE 2017 Annual Meeting, check back to MPR’s AACE page for the latest updates.

From http://www.empr.com/aace-2017/topical-steroid-psoriasis-clobestasol-propionate/article/654335/

Adrenocortical carcinoma masquerading as Cushing’s disease

BMJ Case Reports 2017; doi:10.1136/bcr-2016-217519

Summary

Cushing’s syndrome (CS) can be classified as adrenocorticotropic hormone (ACTH)-dependent or ACTH-independent depending on the ACTH levels.

However, 30% of the patients with CS have ACTH levels in the ‘grey zone’ (5–20 pg/mL), thereby posing a challenge in establishing the aetiological diagnosis. In a patient with full-blown features of Cushing’s syndrome with equivocal ACTH levels, and a pituitary microadenoma on contrast-enhanced MRI sella, can falsely lead to a diagnosis of Cushing’s disease. Pituitary microadenoma, if <6 mm in size, may be an incidental finding (incidentaloma) in this scenario and can be present in ∼3–27% of the healthy population. Therefore, in a patient with CS with equivocal ACTH levels and a pituitary microadenoma, multiple samplings for ACTH and adrenal imaging should be performed to exclude ACTH-independent CS and if required, bilateral inferior petrosal sinus sampling to determine the source of ACTH excess.

Find the entire article here: http://casereports.bmj.com/content/2017/bcr-2016-217519.full

Postoperative ACTH, cortisol levels may predict Cushing’s disease remission rate

Early and midterm nonremission after transsphenoidal surgery in people with Cushing’s disease may be predicted by normalized early postoperative values for adrenocorticotropic hormone and cortisol, study data show.

Prashant Chittiboina, MD, MPH, assistant clinical investigator in the neurosurgery unit for pituitary and inheritable diseases at the National Institute of Neurological Diseases and Stroke at the NIH, and colleagues evaluated 250 patients with Cushing’s disease who received 291 transsphenoidal surgery procedures during the study period to determine remission after the procedure. Patients were treated between December 2003 and July 2016. Early remission was assessed at 10 days and medium-term remission was assessed at 11 months.

Early nonremission was predicted by normalized early postoperative values for cortisol (P = .016) and by normalized early postoperative values for adrenocorticotropic hormone (ACTH; P = .048). Early nonremission was further predicted with 100% sensitivity, 39% specificity, 100% negative predictive value and 18% positive predictive value for a cutoff of –12 µg/mL in normalized early postoperative values for cortisol and with 88% sensitivity, 41% specificity, 96% negative predictive value and 16% positive predictive value for a cutoff of –40 pg/mL in normalized early postoperative values for ACTH.

Medium-term nonremission was also predicted by normalized early postoperative values for cortisol (P = .023) and ACTH (P = .025).

“We evaluated the utility of early postoperative cortisol and ACTH levels for predicting nonremission after transsphenoidal adenomectomy for Cushing’s disease,” the researchers wrote. “Postoperative operative day 1 values at 6 a.m. performed best at predicting early nonremission, albeit with a lower [area under the receiver operating characteristic curve]. Normalizing early cortisol and ACTH values to post-[corticotropin-releasing hormone] values improved their prognostic value. Further prospective studies will explore the utility of normalized very early postoperative day 0 cortisol and ACTH levels in identifying patients at risk for nonremission following [transsphenoidal surgery] in patients with [Cushing’s disease].” – by Amber Cox

Disclosure: The researchers report no relevant financial disclosures.

From http://www.healio.com/endocrinology/adrenal/news/in-the-journals/%7B7de200ed-c667-4b48-ab19-256d90a7bbc5%7D/postoperative-acth-cortisol-levels-may-predict-cushings-disease-remission-rate

%d bloggers like this: