Patients Undergoing Adrenalectomy Should Receive Steroid Substitutive Therapy

All patients who undergo removal of one adrenal gland due to Cushing’s syndrome (CS) or adrenal incidentaloma (AI, adrenal tumors discovered incidentally) should receive a steroid substitutive therapy, a new study shows.

The study, “Predictability of hypoadrenalism occurrence and duration after adrenalectomy for ACTH‐independent hypercortisolism,” was published in the Journal of Endocrinological Investigation.

CS is a rare disease, but subclinical hypercortisolism, an asymptomatic condition characterized by mild cortisol excess, has a much higher prevalence. In fact, subclinical hypercortisolism, is present in up to 20 percent of patients with AI.

The hypothalamic-pituitary-adrenal axis (HPA axis) is composed of the hypothalamus, which releases corticotropin-releasing hormone (CRH) that acts on the pituitary to release adrenocorticotropic hormone (ACTH), that in turn acts on the adrenal gland to release cortisol.

To avoid excess cortisol production, high cortisol levels tell the hypothalamus and the pituitary to stop producing CRH and ACTH, respectively. Therefore, as CS and AI are characterized by high levels of cortisol, there is suppression of the HPA axis.

As the adrenal gland is responsible for the production of cortisol, patients might need steroid substitutive therapy after surgical removal of AI. Indeed, because of HPA axis suppression, some patients have low cortisol levels after such surgeries – clinically known as post-surgical hypocortisolism (PSH), which can be damaging to the patient.

While some researchers suggest that steroid replacement therapy should be given only to some patients, others recommend it should be given to all who undergo adrenalectomy (surgical removal of the adrenal gland).

Some studies have shown that the severity of hypercortisolism, as well as the degree of HPA axis suppression and treatment with ketoconazole pre-surgery in CS patients, are associated with a longer duration of PSH.

Until now, however, there have been only a few studies to guide in predicting the occurrence and duration of PSH. Therefore, researchers conducted a study to determine whether HPA axis activity, determined by levels of ACTH and cortisol, could predict the occurrence and duration of PSH in patients who undergo an adrenalectomy.

Researchers studied 80 patients who underwent adrenalectomy for either CS or AI. Prior to the surgery, researchers measured levels of ACTH, urinary free cortisol (UFC), and serum cortisol after 1 mg dexamethasone suppression test (1 mg-DST).

After the surgery, all patients were placed on steroid replacement therapy and PSH was determined after two months. For those with PSH, levels of cortisol were determined every six months for at least four years.

Results showed that PSH occurred in 82.4 percent of CS patients and 46 percent of AI patients. PSH lasted for longer than 18 months in 50 percent of CS and 30 percent of AI patients. Furthermore, it lasted longer than 36 months for 35.7 percent of CS patients.

In all patients, PSH was predicted by pre-surgery cortisol levels after the 1 mg-DST, but with less than 70 percent accuracy.

In AI patients, a shorter-than-12-month duration of PSH was not predicted by any HPA parameter, but was significantly predicted by an absence of pre-surgery diagnosis of subclinical hypercortisolism.

So, this study did not find any parameters that could significantly predict with high sensitivity and specificity the development or duration of PSH in all patients undergoing adrenalectomy.

Consequently, the authors concluded that “the PSH occurrence and its duration are hardly predictable before surgery. All patients undergoing unilateral adrenalectomy should receive a steroid substitutive therapy.”

From https://cushingsdiseasenews.com/2017/12/08/therapy-cushings-patients-adrenalectomy/

High Cortisol Levels, as Seen in Cushing’s, Can Lead to Greater Risk of Heart Disease, Study Finds

People with high cortisol levels have lower muscle mass and higher visceral fat deposits, putting them at a greater risk for cardiovascular disease, new research shows.

High levels of cortisol can result from a variety of reasons, including Cushing’s disease and adrenal tumors. Most adrenal tumors are found to be non-functioning, meaning they do not produce excess hormones. However, up to 47 percent of patients have mild autonomous cortisol excess (MACE).

The study, “Impact of hypercortisolism on skeletal muscle mass and adipose tissue mass in patients with adrenal adenomas,” was published in the journal Clinical Endocrinology.

Long-term studies have shown that as a group, patients with MACE tend to have increased cardiovascular risk factors, such as hypertension, type 2 diabetes mellitus (DM2), obesity, and high lipid levels, which are associated with higher cardiovascular death rates.

Abdominal adiposity, which refers to fat deposits around the abdomen and stomach, and central sarcopenia, referring to loss of skeletal muscle mass, are both known to be linked to higher cardiovascular risk and increased mortality.

Overt hypercortisolism is known to lead to increased visceral adiposity (body fat stored within the abdominal cavity) and muscle loss. However, little is known about the body composition of patients with adrenal adenomas and MACE.

Therefore, researchers set out to determine whether central sarcopenia and adiposity are present in patients with MACE, and whether they can be markers of disease severity in patients with adrenal adenomas. To determine this, researchers used body composition measurements of 25 patients with Cushing’s disease, 48 patients with MACE, and 32 patients with non-functioning adrenal tumors (NFAT) using abdominal CTs.

Specifically, researchers looked at visceral fat, subcutaneous fat, and total abdominal muscle mass. Visceral fat refers to fat around organs, and it is “deeper” than subcutaneous fat, which is closer to the skin.

Results showed that, compared to patients with non-functional tumors, those with Cushing’s disease had a higher visceral to total (V/T) fat ratio but a lower visceral to subcutaneous (V/S) fat ratio. In MACE patients, however, both ratios were decreased compared to patients with non-functional tumors.

Cushing’s disease patients also had 10 cm2  less total muscle mass, compared to patients with non-functional tumors.

An overnight dexamethasone suppression test was conducted in these patients to determine levels of cortisol in the blood. The next morning, cortisol levels were checked. High levels of cortisol indicate the presence of a disease, such as MACE or Cushing’s disease.

After administering the test, researchers determined that for an increase in cortisol in the morning, there was a correlating increase in the V/T ratio and the V/S fat ratio, and a decrease in the mean total muscle mass.

Therefore, the higher the degree of hypercortisolism, the lower the muscle mass and the higher the visceral adiposity.

These results could prove to be clinically useful as both visceral adiposity and low muscle mass are risk factors of a number of diseases, including cardiovascular disease.

“Body composition measurement may provide an additive value in making a diagnosis of clinically important MACE and aid in individualizing management of patients with ACAs and MACE,” the researchers concluded.

From https://cushingsdiseasenews.com/2017/11/30/cushings-disease-high-cortisol-levels-leads-to-greater-risk-heart-disease/

The Challenge of Obesity in Diagnosing Cushing’s Syndrome and Strategies to Improve Methods

The effects of obesity on the diagnosis of Cushing’s syndrome and strategies to alter the traditional approaches have been addressed in a new review study.

The study, “Diagnosis and Differential Diagnosis of Cushing’s Syndrome,” appeared in The New England Journal of Medicine. The author was Dr. Lynn D. Loriaux, MD and PhD, and a professor of medicine at the Division of Endocrinology, Diabetes and Clinical Nutrition at the School of Medicine, Oregon Health & Science University (OHSU), in Portland, Oregon.

Traditionally, exams of patients with glucocorticoid excess focused on the presence of changes in anabolism (the chemical synthesis of molecules). Given the increase in obesity in the general population, changes in anabolism can no longer distinguish Cushing’s syndrome from metabolic syndrome.

However, analyses of anti-anabolic changes of cortisol – including osteopenia (lower bone density), thin skin, and ecchymoses (injury that causes subcutaneous bleeding) – are an effective way to make this distinction.

The worldwide prevalence of metabolic syndrome in obese people is estimated at about 10%. Conversely, the incidence of undiagnosed Cushing’s syndrome is about 75 cases per 1 million people.

Cushing’s and metabolic syndrome share significant clinical similarities, including obesity, hypertension, and type 2 diabetes. Therefore, “making the diagnosis is the least certain aspect in the care of patients with [Cushing’s],” Loriaux wrote.

Regarding a physical examination, patients with osteoporosis, reduced skin thickness in the middle finger, and three or more ecchymoses larger than 1 cm in diameter and not associated with trauma are more likely to have Cushing’s. Researchers estimate the probability of people with all three of these symptoms having Cushing’s syndrome is 95%.

Measuring 24-hour urinary-free cortisol levels allows the assessment of excess glucocorticoid effects, typical of Cushing’s syndrome. The test, which should be done with the most stringent techniques available, averages the augmented secretion of cortisol in the morning and the diminished secretion in the afternoon and at night.

Dexamethasone suppression is one of the currently used screening tests for Cushing’s syndrome. Patients with obesity and depression should not show decreased plasma cortisol levels when dexamethasone is suppressed. However, given its low estimated predictive value (the proportion of positive results that are “true positives”), “this test should not influence what the physician does next and should no longer be used” to screen for Cushing’s, the author wrote.

Some patients may show evidence of Cushing’s syndrome at a physical examination, but low urinary free cortisol excretion. This may be due to glucocorticoids being administered to the patient. In this case, the glucocorticoid must be identified and discontinued. Periodic Cushing’s assessments that measure urinary free cortisol should be performed.

The opposite can also occur: no clinical symptoms of Cushing’s, but elevated urinary free cortisol excretion and detectable plasma levels of the hormone corticotropin. In these patients, the source of corticotropin secretion, which can be a tumor or the syndrome of generalized glucocorticoid resistance, must be determined.

The disease process can be corticotropin-dependent or independent, depending on whether the hormone is detectable. Corticotropin in Cushing’s syndrome can come from the pituitary gland (eutopic) or elsewhere in the body (ectopic).

Loriaux recommends that the source of corticotropin secretion be determined before considering surgery. Up to 40% of patients with pituitary adenomas have nonfunctioning tumors (the tumor does not produce any hormones) and the corticotropin source is elsewhere. If misdiagnosed, patients will likely undergo an unnecessary surgery, with a mortality rate of 1%.

Patients with an ectopic source of corticotropin should undergo imaging studies in the chest, followed by abdominal and pelvic organs. If these tests fail to detect the source, patients should undergo either the blockade of cortisol synthesis or an adrenalectomy (removal of adrenal glands).

However, corticotropin-independent Cushing’s is usually caused by a benign adrenal tumor that uniquely secretes cortisol.

“Such tumors can be treated successfully with laparoscopic adrenalectomy,” Loriaux wrote. If the tumor secretes more than one hormone, it is likely malignant. Surgical to remove the tumor and any detectable metastases should be conducted.

Overall, “the treatment for all causes of [Cushing’s syndrome], other than exogenous glucocorticoids, is surgical, and neurosurgeons, endocrine surgeons, and cancer surgeons are needed,” Loriaux wrote in the study.

“This level of multidisciplinary medical expertise is usually found only at academic medical centers. Thus, most, if not all, patients with [Cushing’s syndrome] should be referred to such a center for treatment.”

From https://cushingsdiseasenews.com/2017/10/24/diagnosing-cushings-syndrome-amid-challenge-of-obesity-and-strategies-to-improve-methods/

Diagnosis and Differential Diagnosis of Cushing’s Syndrome

D. Lynn Loriaux, M.D., Ph.D.

N Engl J Med 2017; 376:1451-1459April 13, 2017DOI: 10.1056/NEJMra1505550

More than a century ago, Harvey Cushing introduced the term “pluriglandular syndrome” to describe a disorder characterized by rapid development of central obesity, arterial hypertension, proximal muscle weakness, diabetes mellitus, oligomenorrhea, hirsutism, thin skin, and ecchymoses.1 Cushing knew that this syndrome was associated with adrenal cancer,2 and he suspected that some cases might have a pituitary component.

On September 6, 1911, he performed a craniotomy on one of his patients (referred to as Case XLV) but found no pituitary tumor.3 In his description of the case, he goes on to say that “we may perchance be on the way toward the recognition of the consequences of hyperadrenalism.”2 With time, it became clear that the disorder could be caused by small basophilic adenomas of the pituitary gland,4 and the pluriglandular syndrome became known as Cushing’s syndrome.

Fuller Albright provided the next conceptual advance in an extraordinary report, published in the first volume of the Laurentian Hormone Conference, “The Effects of Hormones on Osteogenesis in Man”5:

It has been our concept that protoplasm in general, like the protoplasmic matrix of bone, is constantly being anabolized and catabolized at one and the same time; a factor which increases catabolism would lead to very much the same net result as a factor which inhibits anabolism, but there would be some differences; it is my belief that the “S” hormone [cortisol] is anti-anabolic rather than catabolic. . . . The anti-anabolism . . . is contrasted with the increased anabolism due to an excess of the “N” hormone [testosterone] in the adreno-genital syndrome. This anti-anabolism of protoplasm in Cushing’s syndrome accounts for not only the osteoporosis, but the muscular weakness, the thin skin, probably the easy bruisability, and possibly the atrophy of the lymphoid tissues and thymus.

Nonetheless, in the intervening years, the physical examination of patients suspected to have glucocorticoid excess focused on the anabolic changes, essentially to the exclusion of the antianabolic changes. With the rapid increase in the rate of obesity in the general population, Cushing’s syndrome can no longer be reliably separated from the metabolic syndrome of simple obesity on the basis of anabolic signs alone. However, the antianabolic changes in Cushing’s syndrome are very effective in making this distinction. This review focuses on the problems introduced into the diagnosis and differential diagnosis of Cushing’s syndrome by the obesity epidemic and on ways to alter the traditional approach, using the antianabolic changes of excess cortisol to separate patients with Cushing’s syndrome from obese patients with the insulin-resistant metabolic syndrome.

PHYSICAL EXAMINATION

Andreas Vesalius (1514–1564) published his transformational work on human anatomy, De Humani Corporis Fabrica Libri Septem, in 1543. It is the book that corrected many of Galen’s anatomical errors. The book was met with considerable hostility. As an example, Jacobus Sylvius (Jacques Dubois, 1478–1555), the world’s leading anatomist at the time and Vesalius’s former mentor, on being asked his opinion of the work, replied, “Galen is not wrong. It is man that has changed, and not for the better.”6 This was not true then, but it is true now.

Approximately one third of the U.S. population is obese. The worldwide prevalence of the metabolic syndrome among obese persons is conservatively estimated at 10%; that is, approximately 12 million people have the obesity-related metabolic syndrome.7,8 The clinical picture of this syndrome is almost the same as that of Cushing’s syndrome.9,10 The prevalence of undiagnosed Cushing’s syndrome is about 75 cases per 1 million population, or 24,000 affected persons. On the basis of these prevalence estimates, the chance that a person with obesity, hypertension, hirsutism, type 2 diabetes, and dyslipidemia has Cushing’s syndrome is about 1 in 500. In Harvey Cushing’s era, when obesity was rare, making the diagnosis of Cushing’s syndrome was the most certain aspect of the management of this disorder. Today, making the diagnosis is the least certain aspect in the care of patients with Cushing’s syndrome.

The metabolic syndrome caused by glucocorticoid hypersecretion can be differentiated from the obesity-associated metabolic syndrome with the use of a careful assessment of Albright’s antianabolic effects of cortisol. These effects — osteopenia, thin skin, and ecchymoses — are present in patients with Cushing’s syndrome but not in patients with simple obesity.

Patients in whom osteoporosis is diagnosed radiographically are more likely to have Cushing’s syndrome than those who do not have osteoporosis, with a positive likelihood ratio of 11.11-13 Today, a z score of −2 at the lumbar spine supports this criterion. Skinfold thickness is conveniently measured with an electrocardiographic caliper that has the points dulled with a sharpening stone and the screws tightened so that the gap is maintained when the caliper is removed from the skinfold. The skin over the proximal phalanx of the middle finger of the nondominant hand is commonly used for this measurement

 

(Figure 1 FIGURE 1Measurement of Skinfold Thickness.). A thickness of less than 2 mm is considered to be thin skin. Patients who have thin skin are more likely to have Cushing’s syndrome, with a positive likelihood ratio of 116

 

(Figure 2 FIGURE 2 Comparison of Skinfold Thickness in Patients with Cushing’s Syndrome and Those with Other Conditions Related to Insulin Resistance.).13-15 Finally, patients who have three or more ecchymoses that are larger than 1 cm in diameter and not associated with trauma such as venipuncture are more likely to have Cushing’s syndrome than are patients without such findings, with a positive likelihood ratio of 4.13,16

If we know the prevalence of undiagnosed Cushing’s syndrome in the population of persons with the obesity-related metabolic syndrome, we can begin to calculate the probability that a person has Cushing’s syndrome, using the likelihood ratios for the antianabolic features observed on physical examination. Likelihood ratios can be converted into probabilities with the use of Bayes’ theorem. This conversion is markedly facilitated by the Fagan nomogram for this purpose.17

The prevalence of undiagnosed Cushing’s syndrome is not known, but it can be estimated. Two persons per 1 million population die from adrenal cancer every year.18 The current life span for patients with adrenocortical carcinoma, after diagnosis, is between 2 and 4 years.19,20 Allowing 3 years to make the diagnosis, the prevalence of undiagnosed Cushing’s syndrome is 6 cases per million. In most case series of Cushing’s syndrome, an average of 8% of patients have adrenal carcinoma.21 If 6 per million is 8% of the group, the total Cushing’s syndrome group is 75 persons per million, or 24,000 persons. If all 24,000 patients are included in the metabolic syndrome group, comprising 12 million people, the prevalence of Cushing’s syndrome is 0.002, or 0.2%. With a probability of 0.2% and a likelihood ratio of 116 for thin skin, 18 for osteopenia, and 4 for ecchymoses, the probability that a patient with these three findings has Cushing’s syndrome is 95%.

URINARY FREE CORTISOL

The diagnosis of all endocrine diseases requires a clinical presentation that is compatible with the disease, as well as identification of the pathophysiological cause. An assessment for excess glucocorticoid effects can be made by measuring the 24-hour urinary free cortisol level.22 There are two kinds of free cortisol: plasma protein-unbound cortisol and cortisol unconjugated to sulfuric or hyaluronic acid. Protein-unbound cortisol is filtered in the glomerulus and then reabsorbed in the collecting system. About 3% of filtered cortisol ends up in the urine. This free cortisol in the urine is unconjugated. Thus, the urinary free cortisol level is a direct reflection of the free, bioactive cortisol level in plasma. The free cortisol level is quantified in a 24-hour urine sample by averaging the increased secretion of cortisol in the morning and the decreased secretion in the afternoon and at night. Urinary creatinine is also measured to determine whether the collection is complete. Creatinine levels of less than 1.5 g per day for men and less than 1 g per day for women indicate incomplete collection, and the test should be repeated in patients with these levels.

Unconjugated cortisol can be extracted directly from urine with a nonpolar lipid solvent. After extraction, the cortisol is purified by means of high-pressure liquid chromatography and then quantified with a binding assay, usually radioimmunoassay. Free cortisol also can be quantitated directly by means of mass spectroscopy. The urinary free cortisol assay of choice uses high-pressure liquid chromatographic separation followed by mass spectrometric quantitation.23 With the use of this assay, the urinary free cortisol level in healthy adults ranges from 8 to 51 μg per 24 hours (mean [±SD], 23±8). Clinical depression increases urinary free cortisol excretion, and most studies show that the level of urinary free cortisol ranges from 10 to 60 μg per day in patients with typical clinical signs and symptoms of depression. If we use 60 μg per day as the cutoff between normal values (<60 μg per day) and elevated values (≥60 μg per day), urinary free cortisol excretion of 62 μg per day or more has a positive likelihood ratio of 11.24 Thus, in a patient presenting with obesity, hypertension, type 2 diabetes, and hirsutism who has thin skin, osteopenia, ecchymoses, and an elevated urinary free cortisol level, the probability of Cushing’s syndrome is 1 (100%). For such patients, the clinician should move directly to a differential diagnostic evaluation.

DEXAMETHASONE-SUPPRESSION TEST

The dexamethasone-suppression test is commonly used in the diagnosis of Cushing’s syndrome. This test was developed by Grant Liddle in the early 1960s as a differential diagnostic test to separate corticotropin-dependent from corticotropin-independent Cushing’s syndrome. This is now done by measuring the plasma corticotropin level. Unfortunately, dexamethasone suppression has continued to be used as a screening test for Cushing’s syndrome.

The control group for this test comprises patients with obesity and depression in whom cortisol secretion is not suppressed in response to an oral dose of 1 mg of dexamethasone at midnight. Of the current U.S. population of 360 million people, approximately one third (120 million people) are obese. Of those who are obese, 10% (12 million people) have depression. In half these patients (6 million people), the plasma cortisol level will not be suppressed in response to a dexamethasone challenge. On the basis of my estimate of the current prevalence of undiagnosed Cushing’s syndrome (24,000 cases) and the estimate of the at-risk population (6 million persons), the positive predictive value of the dexamethasone-suppression test is only 0.4%. Thus, this test should not influence what the physician does next and should no longer be used for this purpose.

OUTLIERS

For patients with convincing evidence of Cushing’s syndrome on physical examination and an elevated 24-hour urinary free cortisol level, the differential diagnostic process outlined below should be initiated. However, a small group of patients will not meet these criteria.

Some patients have a strongly positive physical examination but low or zero urinary free cortisol excretion. Plasma corticotropin levels are suppressed in these patients. These patients are receiving exogenous glucocorticoids. The glucocorticoid must be identified, and a plan must be made for its discontinuation. Sometimes the glucocorticoid is being given by proxy (e.g., by a parent to a child), and no history of glucocorticoid administration can be found. Nevertheless, the glucocorticoid must be identified and discontinued.

Other patients have few or no clinical signs of Cushing’s syndrome but do have elevated urinary free cortisol excretion. Plasma corticotropin is measurable in these patients. They are usually identified during an evaluation for arterial hypertension. All such patients should undergo inferior petrosal sinus sampling to determine the source of corticotropin secretion. Ectopic sources are almost always neoplastic and are usually in the chest.25 Patients with eutopic secretion usually have the syndrome of generalized glucocorticoid resistance.26

Finally, a few patients have convincing findings on physical examination coupled with a normal urinary free cortisol level. In such cases, the clinician should make sure that urinary free cortisol is being measured with high-performance liquid chromatography and mass spectrometry, that renal function is normal, and that the collections are complete. “Periodic” Cushing’s syndrome must be ruled out by measuring urinary free cortisol frequently over the course of a month.27 If these efforts fail, the patient should be followed for a year, with urinary free cortisol measurements performed frequently. No additional tests should be performed until the situation is sorted out. More tests would be likely to lead to an unnecessary surgical procedure.

DIFFERENTIAL DIAGNOSIS

The differential diagnosis of Cushing’s syndrome is shown in Figure 3

FIGURE 3Differential Diagnosis of Cushing’s Syndrome.. If plasma corticotropin is measurable, the disease process is corticotropin-dependent. If corticotropin is not measurable, the process is corticotropin-independent.

Corticotropin-dependent causes of Cushing’s syndrome are divided into those in which the corticotropin comes from the pituitary (eutopic causes) and those in which the corticotropin comes from elsewhere (ectopic causes). This differentiation is made with the measurement of corticotropin in inferior petrosal sinus plasma and the simultaneous measurement of corticotropin in peripheral (antecubital) plasma immediately after corticotropin-releasing hormone stimulation of pituitary corticotropin secretion. In samples obtained 4, 6, and 15 minutes after stimulation with corticotropin-releasing hormone, eutopic corticotropin secretion is associated with a ratio of the central-plasma corticotropin level to the peripheral-plasma corticotropin level of 3 or more. Ectopic corticotropin secretion is associated with a central-to-peripheral corticotropin ratio of less than 3. The positive predictive value of this test is 1 (Figure 4

FIGURE 4Maximal Ratio of Corticotropin in Inferior Petrosal Sinus Plasma to Corticotropin in Peripheral Plasma in Patients with Cushing’s Syndrome, Ectopic Corticotropin Secretion, or Adrenal Disease.).28

Although some authorities suggest that inferior petrosal sinus sampling can safely be bypassed in patients with corticotropin-dependent Cushing’s syndrome and a well-defined pituitary adenoma, I disagree. The incidence of nonfunctioning pituitary microadenomas is between 15% and 40%.29 This means that up to 40% of patients with ectopic secretion of corticotropin have an incidental pituitary abnormality. If it is assumed that the pituitary abnormality is responsible for corticotropin secretion, 15 to 40% of patients with ectopic secretion of corticotropin will be misdiagnosed and submitted to a transsphenoidal exploration of the sella turcica and pituitary gland. The prevalence of ectopic corticotropin secretion in the population of patients with undiagnosed Cushing’s syndrome is about 10%, accounting for 2400 patients. Up to 40% of these patients, or 960, have an incidental pituitary tumor. The mortality associated with transsphenoidal microadenomectomy is 1%.30 If all 360 to 960 patients undergo this procedure, there will be up to 10 deaths from an operation that can have no benefit. For this reason alone, all patients with corticotropin-dependent Cushing’s syndrome should undergo inferior petrosal sinus sampling to confirm the source of corticotropin secretion before any surgical intervention is contemplated.

Patients with eutopic corticotropin secretion are almost certain to have a corticotropin-secreting pituitary microadenoma. An occasional patient will have alcohol-induced pseudo–Cushing’s syndrome. The slightest suggestion of alcoholism should lead to a 3-week abstinence period before any surgery is considered.31

Patients with ectopic corticotropin secretion are first evaluated with computed tomography (CT) or magnetic resonance imaging (MRI) of the chest. In two thirds of these patients, a tumor will be found.25 If nothing is found in the chest, MRI of the abdominal and pelvic organs is performed. If these additional imaging studies are also negative, there are two options: bilateral adrenalectomy or blockade of cortisol synthesis. If blockade is chosen, the patient should undergo repeat scanning at 6-month intervals.32 If no source is found by the end of the second year, it is unlikely that the source will ever be found, and bilateral adrenalectomy should be performed for definitive treatment (Doppman JL: personal communication).

Corticotropin-independent Cushing’s syndrome is usually caused by an adrenal neoplasm. Benign tumors tend to be small (<5 cm in diameter) and secrete a single hormone, cortisol. The contralateral adrenal gland is suppressed by the cortisol secreted from the tumorous gland. If the value for Hounsfield units is less than 10 and the washout of contrast material is greater than 60% at 15 minutes, the tumor is almost certainly benign.33 Such tumors can be treated successfully with laparoscopic adrenalectomy.

The syndromes of micronodular and macronodular adrenal dysplasia usually affect both adrenal glands. The nodules secrete cortisol. Corticotropin is suppressed, as is the internodular tissue of the adrenal glands. Percutaneous bilateral adrenalectomy, followed by glucocorticoid and mineralocorticoid treatment, is curative.

Adrenal tumors secreting more than one hormone (i.e., cortisol and androgen or estrogen) are almost always malignant. Surgical removal of all detectable disease is indicated, as is a careful search for metastases. If metastases are found, they should be removed. This usually requires an open adrenalectomy. It goes without saying that adrenal tumors, nodules, and metastases should be treated by the most experienced endocrine cancer surgeon available.

If the plasma cortisol level on the morning after a transsphenoidal microadenomectomy is 0, the operation was a success. The patient should be treated with oral hydrocortisone, at a dose of 12 mg per square meter of body-surface area once a day in the morning, and a tetracosactide (Cortrosyn) stimulation test should be performed at 3-month intervals. When the tetracosactide-stimulated plasma cortisol level is higher than 20 μg per deciliter (551 μmol per liter), cortisol administration can be stopped. The same rule applies in the case of a unilateral adrenalectomy. If the adrenalectomy is bilateral, cortisol, at a dose of 12 to 15 mg per square meter per day, and fludrocortisone (Florinef), at a dose of 100 μg per day, should be prescribed as lifelong therapy.

SUMMARY

The obesity epidemic has led to necessary changes in the evaluation and treatment of patients with Cushing’s syndrome. The most dramatic change is the emphasis on the antianabolic alterations in Cushing’s syndrome, which can provide a strong basis for separating patients with Cushing’s syndrome from the more numerous patients with obesity and the metabolic syndrome. More can be done along these lines. Likelihood ratios are known for proximal muscle weakness and can be known for brain atrophy and growth failure in children.

The dexamethasone-suppression test, although still very popular, no longer has a role in the evaluation and treatment of patients with Cushing’s syndrome. Only three biochemical tests are needed: urinary free cortisol, plasma corticotropin, and plasma cortisol measurements. Urinary free cortisol excretion is the test that confirms the clinical diagnosis of Cushing’s syndrome. To be trustworthy, it must be performed in the most stringent way, with the use of high-pressure liquid chromatography followed by mass spectrometric quantitation of cortisol. Measurement of plasma corticotropin is used to separate corticotropin-dependent from corticotropin-independent causes of Cushing’s syndrome and to separate eutopic from ectopic secretion of corticotropin. Inferior petrosal sinus sampling should be performed in all patients with corticotropin-dependent Cushing’s syndrome because of the high prevalence of nonfunctioning incidental pituitary adenomas among such patients. Measurement of plasma cortisol has only one use: determining the success or failure of transsphenoidal microadenomectomy or adrenalectomy. If the plasma cortisol level is not measurable on the morning after the operation (<5 μg per deciliter [138 μmol per liter]), the procedure was a success; if it is measurable, the operation failed. The surgeon must not administer intraoperative or postoperative synthetic glucocorticoids until the plasma cortisol level has been measured.

Successful evaluation of a patient who is suspected of having Cushing’s syndrome requires an endocrinologist who is skilled in physical diagnosis. Also required is a laboratory that measures urinary free cortisol using high-performance liquid chromatography and mass spectrometry and that can measure plasma cortisol and plasma corticotropin by means of radioimmunoassay.

Inferior petrosal sinus sampling is performed by an interventional radiologist. The treatment for all causes of Cushing’s syndrome, other than exogenous glucocorticoids, is surgical, and neurosurgeons, endocrine surgeons, and cancer surgeons are needed. This level of multidisciplinary medical expertise is usually found only at academic medical centers. Thus, most, if not all, patients with Cushing’s syndrome should be referred to such a center for treatment.

Disclosure forms provided by the author are available with the full text of this article at NEJM.org.

No potential conflict of interest relevant to this article was reported.

SOURCE INFORMATION

From the Division of Endocrinology, Diabetes, and Clinical Nutrition, Oregon Health and Science University, Portland.

Address reprint requests to Dr. Loriaux at the Division of Endocrinology, Diabetes, and Clinical Nutrition, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., L607, Portland, OR 97239-3098, or at .

From http://www.nejm.org/doi/full/10.1056/NEJMra1505550

“How can you leave her like this?”

A mother has revealed the anguish her family suffered after her daughter (16), who is in need of brain surgery, was turned away from Beaumont Hospital.

The National Centre for Neurosurgery had no beds or theatre access for nine patients with malignant brain tumours last Friday.
One of the people who was turned away was 16-year-old Chloe Holian from Donegal.

Her mother Caitriona explained to the Anton Savage Show on TodayFM that the road to treatment has been fraught with setbacks.

“I can’t stress how happy I am with the neurosurgeon and his team are there but it seems our consultant’s hands are tied, what am I supposed to do?” she said.

Chloe was diagnosed in July with a recurrence of Cushing’s syndrome, a metabolic disorder which is caused by abnormally high levels of the hormone cortisol in the blood stream.

After being promised treatment in July and then August, the Letterkenny girl was finally admitted on Thursday and was fasting for a procedure on Friday morning when she was told it was cancelled.

“When we got down they told us that they decided to put off the surgery for a couple of days,” said Caitriona.

She was told that the doctors wanted to perform a dexamethasone suppression test first to confirm that Chloe was, in fact, suffering from Cushing’s – despite previous diagnosis revealing that she was.

However, she soon found out that the test couldn’t be performed.

“At 11am someone in scrubs came around to say it wasn’t fair but he had to tell us she won’t be doing the surgery… and she wouldn’t be getting the major test either,” said Caitriona.

She said he was very empathetic of their situation.

“I felt sorry for him having to tell us that news… I asked him ‘how can you leave her like this?’

“He promised that he was going to organise this test himself. It was quite difficult as you need four people in the surgery to do this test, you need the radiographer, neurosurgeon, endocrinologist and anesthetist.”

Unfortunately, an anesthetist was not available for the test.

Caitriona said that Chloe was quite upset at the news. One of the side-effects of her condition is excessive weight gain and the student has gained six stone since last September.

“She had psyched herself up for the surgery,” explained her mother.

“Everybody was around her encouraging her, they threw a party for her before she went because it was a big thing. Chloe has no confidence because she’s put on an extra six stone. She was looking forward to getting her old self back, she just wanted to go and do this operation and get it over and done with.

“For anybody to have a little bit of a weight gain they can be conscious of it but if you’re 16-years-old and you’ve gained six stone and you can’t explain it…”

Caitriona said the family were forced to pack their bags and return to Donegal but, as of today, they have still not received a rescheduled appointment.

The mother-of-three is struggling to juggle home life with trips to Dublin but she said the family’s life is on hold until the tumour is removed.

This is the second time that Chloe has developed Cushing’s, in 2009 she was sent to London for surgery as treatment was not yet available in Ireland.

Patients lives are being threatened by delays, according to the head of the country’s national brain surgery centre. Clinical Director Mohsen Javadpour says people are at risk of dying while they’re waiting for treatment.

From http://www.independent.ie/life/how-can-you-leave-her-like-this-mothers-anguish-as-daughter-16-in-need-of-brain-surgery-is-turned-away-from-beaumont-35029557.html

%d bloggers like this: