Cushing’s Testing at NIH

Rank Status Study
1 Recruiting Study to Evaluate CORT125134 in Patients With Cushing’s Syndrome

Condition: Cushing’s Syndrome
Intervention: Drug: CORT125134
2 Recruiting Cushing’s Disease Complications

Condition: Cushing’s Disease
Intervention: Other: Exams and questionnaires
3 Recruiting The Accuracy of Late Night Urinary Free Cortisol/Creatinine and Hair Cortisol in Cushing’s Syndrome Diagnosis

Condition: Cushing Syndrome
Intervention:
4 Recruiting Treatment for Endogenous Cushing’s Syndrome

Condition: Endogenous Cushing’s Syndrome
Intervention: Drug: COR-003
5 Recruiting Saliva Cortisol Measurement as a Screening Test for Suspicious Cushings Syndrome in Children.

Condition: Cushings Syndrome
Intervention: Other: Children refered to the obesity clinic
6 Recruiting Safety and Efficacy of LCI699 for the Treatment of Patients With Cushing’s Disease

Condition: Cushing’s Disease
Intervention: Drug: LCI699
7 Recruiting Treatment of Cushing’s Disease With R-roscovitine

Condition: Cushings Disease
Intervention: Drug: R-roscovitine
8 Recruiting A Study of ATR-101 for the Treatment of Endogenous Cushing’s Syndrome

Condition: Cushing Syndrome
Interventions: Drug: ATR-101;   Drug: Placebos
9 Recruiting Evaluation of 68Ga-DOTATATE PET/CT, Octreotide and F-DOPA PET Imaging in Patients With Ectopic Cushing Syndrome

Condition: Cushing Syndrome
Interventions: Drug: F-DOPA PET Scan;   Drug: Mifepristone;   Drug: Ga-DOTATATE;   Drug: Octreoscan;   Other: CT, MRI
10 Not yet recruiting Endocrine Cardiomyopathy in Cushing Syndrome: Response to Cyclic GMP PDE5 inhibitOrs

Condition: Cushing’s Syndrome Cardiomyopathy
Intervention: Drug: Tadalafil
11 Recruiting Long-term Beneficial Metabolic Effects of Adrenalectomy in Subclinical Cushing’s Syndrome of Adrenal Incidentaloma

Condition: Cushing Syndrome
Intervention: Procedure: surgery
12 Recruiting Long Term Safety and Efficacy of Pasireotide s.c. in Patients With Cushing’s Disease

Condition: Cushings Disease
Intervention: Drug: SOM230
13 Recruiting New Imaging Techniques in the Evaluation of Patients With Ectopic Cushing Syndrome

Condition: Cushing Syndrome
Interventions: Drug: Pentetreotide;   Drug: 18-F-fluorodeoxyglucose;   Drug: (18F)-L-3,4-dihydroxyophenylalanine (18F-DOPA)
14 Not yet recruiting Targeting Iatrogenic Cushing’s Syndrome With 11β-hydroxysteroid Dehydrogenase Type 1 Inhibition

Condition: Iatrogenic Cushing’s Disease
Interventions: Drug: AZD4017 and prednisolone;   Drug: Placebo Oral Tablet and prednisolone
15 Not yet recruiting Assessment of Persistent Cognitive Impairment After Cure of Cushing’s Disease

Condition: Cushing’s Disease
Intervention: Device: Virtual radial task in 3D
16 Recruiting Biomarker Expression in Patients With ACTH-Dependent Cushing’s Syndrome Before and After Surgery

Condition: Cushing’s Syndrome
Intervention:
17 Recruiting Efficacy and Safety Evaluation of Osilodrostat in Cushing’s Disease

Condition: Cushing’s Disease
Interventions: Drug: osilodrostat;   Drug: osilodrostat Placebo
18 Recruiting Effects of Metyrapone in Patients With Endogenous Cushing’s Syndrome

Condition: Cushing’s Syndrome
Intervention: Drug: metyrapone
19 Recruiting Adrenal Venous Sampling in Patients With Overt or Subclinical Cushings Syndrome, and Bilateral Adrenal Tumors

Condition: Cushing Syndrome
Intervention: Radiation: Adrenal venous sampling
20 Recruiting Glycemic Fluctuations in Newly Diagnosed Growth Hormone-Secreting Pituitary Adenoma and Cushing Syndrome Subjects

Condition: Pituitary Adenoma
Intervention: Device: continuous glucose monitoring
Rank Status Study
21 Recruiting Targeted Therapy With Gefitinib in Patients With USP8-mutated Cushing’s Disease

Conditions: Cushing’s Disease;   Corticotrophin Adenoma
Intervention: Drug: Gefitinib
22 Recruiting Cardiac Steatosis in Cushing’s Syndrome

Conditions: Endocrine System Disease;   Cardiovascular Imaging
Intervention: Other: 1H magnetic resonance spectroscopy and CMRI
23 Recruiting Study of Management of Pasireotide-induced Hyperglycemia in Adult Patients With Cushing’s Disease or Acromegaly

Conditions: Cushing’s Disease;   Acromegaly
Interventions: Drug: Pasireotide s.c.;   Drug: Sitagliptin;   Drug: Liraglutide;   Drug: Insulin;   Drug: Pasireotide LAR;   Drug: Metformin
24 Recruiting Study of Efficacy and Safety of Osilodrostat in Cushing’s Syndrome

Conditions: Cushing’s Syndrome;   Ectopic Corticotropin Syndrome;   Adrenal Adenoma;   Adrenal Carcinoma;   AIMAH;   PPNAD
Intervention: Drug: Osilodrostat
25 Recruiting Effects of Hormone Stimulation on Brain Scans for Cushing s Disease

Condition: Pituitary Neoplasm
Intervention: Drug: Acthrel
26 Recruiting Does Serum-DXM Increase Diagnostic Accuracy of the Overnight DXM Suppression Test in the Work-up of Cushing’s Syndrome?

Conditions: Cushing’s Syndrome;   Adrenal Incidentalomas;   Alcoholism;   Obesity
Intervention:
27 Recruiting Adrenalectomy Versus Follow-up in Patients With Subclinical Cushings Syndrome

Condition: Adrenal Tumour With Mild Hypercortisolism
Intervention: Procedure: Adrenalectomy
28 Recruiting Study of Adrenalectomy Versus Observation for Subclinical Hypercortisolism

Conditions: Hypercortisolism;   Cushing Syndrome
Interventions: Procedure: Adrenalectomy;   Other: Observation
29 Not yet recruiting Dynamic Hormone Diagnostics in Endocrine Disease

Conditions: Adrenal Insufficiency;   Congenital Adrenal Hyperplasia;   Cushing Syndrome;   Growth Hormone Deficiency;   Acromegaly;   Primary Hyperaldosteronism
Intervention: Other: 27 hour subcutaneous fluid sampling
30 Recruiting An Investigation of Pituitary Tumors and Related Hypothalmic Disorders

Conditions: Abnormalities;   Craniopharyngioma;   Cushing’s Syndrome;   Endocrine Disease;   Pituitary Neoplasm
Intervention:
31 Recruiting Ga-68-DOTATOC -PET in the Management of Pituitary Tumours

Condition: Pituitary Tumours
Intervention: Procedure: Gallium-68 DOTATOC PET
32 Recruiting Efficacy of Mifepristone in Males With Type 2 Diabetes Mellitus

Conditions: Type 2 Diabetes Mellitus;   Insulin Resistance
Interventions: Drug: Mifepristone 600 mg daily;   Drug: Placebo
33 Recruiting Targeted Therapy With Lapatinib in Patients With Recurrent Pituitary Tumors Resistant to Standard Therapy

Conditions: Pituitary Adenomas;   Prolactinomas
Intervention: Drug: Lapatinib
34 Recruiting Mutations of Glucocorticoid Receptor in Bilateral Adrenal Hyperplasia

Condition: General Glucocorticoid Resistance
Intervention: Genetic: blood collection for mutation characterization
35 Recruiting Defining the Genetic Basis for the Development of Primary Pigmented Nodular Adrenocortical Disease (PPNAD) and the Carney Complex

Conditions: Cushing’s Syndrome;   Hereditary Neoplastic Syndrome;   Lentigo;   Neoplasm;   Testicular Neoplasm
Intervention:
36 Not yet recruiting Reduction by Pasireotide of the Effluent Volume in High-output Enterostomy in Patients Refractory to Usual Medical Treatment

Condition: Enterostomy
Interventions: Drug: Pasireotide;   Drug: Placebo
37 Recruiting Mifepristone for Breast Cancer Patients With Higher Levels of Progesterone Receptor Isoform A Than Isoform B.

Condition: Breast Cancer
Intervention: Drug: Mifepristone
38 Recruiting SOM230 Ectopic ACTH-producing Tumors

Condition: Ectopic ACTH Syndrome
Intervention: Drug: Pasireotide
39 Recruiting Decreasing Rates of Intraurethral Catheterization Postoperatively in Spine Surgery

Condition: Post-operative Urinary Retention
Interventions: Drug: Tamsulosin;   Drug: Placebo
40 Recruiting Adrenal Tumors – Pathogenesis and Therapy

Conditions: Adrenal Tumors;   Adrenocortical Carcinoma;   Cushing Syndrome;   Conn Syndrome;   Pheochromocytoma
Intervention:

Cushing’s appears to begin its cardiovascular effects during childhood

– Cushing’s disease may begin to exert its harmful cardiovascular effects quite early, a small pediatric study has found.

Children as young as 6 years old with the disorder already may show signs of cardiovascular remodeling, with stiffer aortas and higher aortic pulse-wave velocity than do age-matched controls, Hailey Blain and Maya Lodish, MD, said at the annual meeting of the Endocrine Society.

“The study, which included 10 patients, is small, but we continue to add new patients,” said Dr. Lodish, director of the pediatric endocrinology fellowship program at the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Ten more children are being added to the cohort now, and she and Ms. Blain, a former research fellow at NIH, intend to grow the group and follow patients longitudinally.

Cushing’s disease has long been linked with increased cardiovascular risk in adults, but the study by Dr. Lodish and Ms. Blain is one of the first to examine the link in children. Their findings suggest that early cardiovascular risk factor management should be a routine part of these patients’ care, Dr. Lodish said in an interview.

“It’s very important to make sure that there is recognition of the cardiovascular risk factors that go along with this disease. Elevated levels of cholesterol, hypertension, and other risk factors that are in these individuals should be ameliorated as soon as possible from an early age and, most importantly, physicians should be diagnosing and treating children early, once they are identified as having Cushing’s disease. And, given that we are not sure whether these changes are reversible, we need to make sure these children are followed very closely.”

Indeed, Dr. Lodish has reason to believe that the changes may be long lasting or even permanent.

“We are looking at these children longitudinally and have 3-year data on some patients already. We want to see if they return to normal pulse wave velocity after surgical cure, or whether this is permanent remodeling. There is an implication already that it may be in a subset of individuals,” she said, citing her own 2009 study on hypertension in pediatric Cushing’s patients. “We looked at blood pressure at presentation, after surgical cure, and 1 year later. A significant portion of the kids still had hypertension at 1 year. This leads us to wonder if they will continue to be at risk for cardiovascular morbidity as adults.”

Ms. Blaine, an undergraduate at Bowdoin College, Brunswick, Maine, worked on the study during a summer internship with Dr. Lodish and presented its results in a poster forum during meeting. She examined two indicators of cardiovascular remodeling – aortic pulse wave velocity and aortic distensibility – in 10 patients who were a mean of 13 years old. All of the children came to NIH for diagnosis and treatment of Cushing’s; as part of that, all underwent a cardiac MRI.

The patients had a mean 2.5-year history of Cushing’s disease Their mean midnight cortisol level was 18.8 mcg/dL and mean plasma adrenocorticotropic hormone level, 77.3 pg/mL. Five patients were taking antihypertensive medications. Low- and high-density lipoprotein levels were acceptable in all patients.

The cardiovascular measures were compared to an age-matched historical control group. In this comparison, patients had significantly higher pulse wave velocity compared with controls (mean 4 vs. 3.4 m/s). Pulse wave velocity positively correlated with both midnight plasma cortisol and 24-hour urinary free cortisol collections. In the three patients with long-term follow-up after surgical cure of Cushing’s, the pulse wave velocity did not improve, either at 6 months or 1 year after surgery. This finding echoes those of Dr. Lodish’s 2009 paper, suggesting that once cardiovascular remodeling sets in, the changes may be long lasting.

“The link between Cushing’s and cardiovascular remodeling is related to the other things that go along with the disease,” Dr. Lodish said. “The hypertension, the adiposity, and the high cholesterol all may contribute to arterial rigidity. It’s also thought to be due to an increase in connective tissue. The bioelastic function of the aorta may be affected by having Cushing’s.”

That connection also suggests that certain antihypertensives may be more beneficial to patients with Cushing’s disease, she added. “It might have an implication in what blood pressure drug you use. Angiotensin-converting enzyme inhibitors increase vascular distensibility and inhibit collagen formation and fibrosis. It is a pilot study and needs longitudinal follow up and additional patient accrual, however, finding signs of cardiovascular remodeling in young children with Cushing’s is intriguing and deserves further study.”

Neither Ms. Blain nor Dr. Lodish had any financial disclosures.

Comparison of MRI techniques for detecting microadenomas in Cushing’s disease

1Department of Neurological Surgery and 2Department of Radiology, University of Virginia Health Science Center, University of Virginia, Charlottesville, Virginia
ABBREVIATIONS ACTH = adrenocorticotropic hormone; CMRI = conventional MRI; DMRI = dynamic contrast-enhanced MRI; FSH = follicle-stimulating hormone; IPSS = inferior petrosal sinus sampling; SE = spin echo; SGE = spoiled-gradient echo 3D T1 sequence; SPGR = spoiled gradient–recalled acquisition; VIBE = volumetric interpolated breath-hold examination.

INCLUDE WHEN CITING Published online April 28, 2017; DOI: 10.3171/2017.3.JNS163122.

Correspondence Edward H. Oldfield, Department of Neurological Surgery, University of Virginia, Box 800212, Charlottesville, VA 22908. email: .
OBJECTIVE

Many centers use conventional and dynamic contrast-enhanced MRI (DMRI) sequences in patients with Cushing’s disease. The authors assessed the utility of the 3D volumetric interpolated breath-hold examination, a spoiled-gradient echo 3D T1 sequence (SGE) characterized by superior soft tissue contrast and improved resolution, compared with DMRI and conventional MRI (CMRI) for detecting microadenomas in patients with Cushing’s disease.

METHODS

This study was a blinded assessment of pituitary MRI in patients with proven Cushing’s disease. Fifty-seven patients who had undergone surgery for Cushing’s disease (10 male, 47 female; age range 13–69 years), whose surgical findings were considered to represent a microadenoma, and who had been examined with all 3 imaging techniques were included. Thus, selection emphasized patients with prior negative or equivocal MRI on referral. The MRI annotations were anonymized and 4 separate imaging sets were independently read by 3 blinded, experienced clinicians: a neuroradiologist and 2 pituitary surgeons.

RESULTS

Forty-eight surgical specimens contained an adenoma (46 ACTH-staining adenomas, 1 prolactinoma, and 1 nonfunctioning microadenoma). DMRI detected 5 adenomas that were not evident on CMRI, SGE detected 8 adenomas not evident on CMRI, including 3 that were not evident on DMRI. One adenoma was detected on DMRI that was not detected on SGE. McNemar’s test for efficacy between the different MRI sets for tumor detection showed that the addition of SGE to CMRI increased the number of tumors detected from 18 to 26 (p = 0.02) based on agreement of at least 2 of 3 readers.

CONCLUSIONS

SGE shows higher sensitivity than DMRI for detecting and localizing pituitary microadenomas, although rarely an adenoma is detected exclusively by DMRI. SGE should be part of the standard MRI protocol for patients with Cushing’s disease.

Full text at http://thejns.org/doi/full/10.3171/2017.3.JNS163122

Adrenocortical carcinoma masquerading as Cushing’s disease

BMJ Case Reports 2017; doi:10.1136/bcr-2016-217519

Summary

Cushing’s syndrome (CS) can be classified as adrenocorticotropic hormone (ACTH)-dependent or ACTH-independent depending on the ACTH levels.

However, 30% of the patients with CS have ACTH levels in the ‘grey zone’ (5–20 pg/mL), thereby posing a challenge in establishing the aetiological diagnosis. In a patient with full-blown features of Cushing’s syndrome with equivocal ACTH levels, and a pituitary microadenoma on contrast-enhanced MRI sella, can falsely lead to a diagnosis of Cushing’s disease. Pituitary microadenoma, if <6 mm in size, may be an incidental finding (incidentaloma) in this scenario and can be present in ∼3–27% of the healthy population. Therefore, in a patient with CS with equivocal ACTH levels and a pituitary microadenoma, multiple samplings for ACTH and adrenal imaging should be performed to exclude ACTH-independent CS and if required, bilateral inferior petrosal sinus sampling to determine the source of ACTH excess.

Find the entire article here: http://casereports.bmj.com/content/2017/bcr-2016-217519.full

Postsurgical treatment often necessary in persistent, recurrent Cushing’s disease

Nearly half of adults with Cushing’s disease that persists or recurs after surgical treatment require second and sometimes third therapeutic interventions, including pituitary surgical reintervention, radiotherapy, pharmacotherapy or bilateral adrenalectomy, study data from Mexico show.

Moisés Mercado, MD, FRCPC, of the ABC Hospital Neurological and Cancer Centers in Mexico City, and colleagues evaluated 84 adults (median age, 34 years; 77 women) with Cushing’s disease to determine the long-term efficacy of secondary interventions for persistent and recurrent Cushing’s disease. Median follow-up was 6.3 years.

Overall, 81 participants were primarily treated with transsphenoidal surgery. More than half experienced long-lasting remission (61.7%); disease remained active in 16%, who were diagnosed with persistent Cushing’s disease; and 22% experienced relapse after remission and were diagnosed with recurrent Cushing’s disease.

After the initial procedure, 18 participants required pituitary surgical reintervention, including 10 with recurrent and eight with persistent disease. Radiation therapy was administered to 14 participants, including two as primary therapy and 12 after failed pituitary surgery. Pharmacologic treatment with ketoconazole was prescribed for 15 participants at one point during the course of disease. Bilateral adrenalectomy was performed in 12 participants.

Pituitary surgical reintervention was the most commonly used secondary treatment (22.2%), followed by pharmacologic therapy with ketoconazole (16%), radiotherapy (14.8%) and bilateral adrenalectomy (14.8%). More than half of participants experienced early remissions after a second operation (66.6%) and radiotherapy (58.3%), whereas long-lasting remission was reached in only 33.3% of participants who underwent a second surgery and 41.6% of participants who underwent radiotherapy. Half of participants who underwent bilateral adrenalectomy were diagnosed with Nelson’s syndrome.

Overall, 88% of participants achieved remission, and disease was biochemically controlled with pharmacologic treatment in 9.5% of participants after their initial, secondary and third-line treatments.

“The efficacy of treatment alternatives for recurrent or persistent [Cushing’s disease] vary among patients, and often, more than one of these interventions is required in order to achieve a long-lasting remission,” the researchers wrote. – by Amber Cox

Disclosure: The researchers report no relevant financial disclosures.

From http://www.healio.com/endocrinology/adrenal/news/in-the-journals/%7B5519b312-5912-4c65-b2ed-2ece3f68e83f%7D/postsurgical-treatment-often-necessary-in-persistent-recurrent-cushings-disease

%d bloggers like this: