Cushing’s Disease Caused by a Pituitary Microadenoma Coexistent with a Meningioma

Yu Wang, Zhixiang Sun, Zhiquan Jiang

Department of Neurosurgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People’s Republic of China

Correspondence: Zhiquan Jiang
Department of Neurosurgery, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui 233004, People’s Republic of China
Tel +86-13966075971
Email bbjiangzhq@163.com

Abstract: Cushing’s disease (CD), also known as adrenocorticotropic hormone (ACTH)-dependent pituitary Cushing’s syndrome, is a rare and serious chronic endocrine disease that is usually caused by a pituitary adenoma (especially a pituitary microadenoma). Meningioma is the most common type of primary intracranial tumor and is usually benign. The patient in this case report presented with CD coexisting with pituitary microadenoma and meningioma, which is an extremely rare comorbidity. The pathogenesis of CD associated with meningioma remains unclear. Here, we describe the case of bilateral lower extremity edema, lower limb pain, abdominal purplish striae, and abdominal distension for 9 months in a 47-year-old woman. Two years ago, the patient underwent a hysterectomy at a local hospital for hysteromyoma. She had no previous radiotherapeutic treatment or other medical history. Magnetic resonance imaging of her head revealed a sellar lesion (7.8 mm × 6.4 mm) and a spherical mass (3.0 cm × 3.0 cm) in the right frontal convexity. Her level of serum adrenocorticotropic hormone (ACTH) was 169 pg/mL, and her cortisol levels were 933 nmol/mL and 778 nmol/mL at 8 am and 4 pm, respectively. Preoperatively, she was diagnosed with ACTH-secreting pituitary microadenoma and meningioma. Excision of the meningioma was performed through a craniotomy, while an endoscopic endonasal transsphenoidal approach was used to remove the pituitary adenoma. Meningioma and pituitary adenoma were confirmed by postoperative pathology. On the basis of this unusual case, the relevant literature was reviewed to illustrate the diagnosis and treatment of Cushing’s disease and to explore the pathogenesis of pituitary adenoma associated with meningioma.

Keywords: Cushing’s disease, pituitary adenoma, meningioma

Introduction

Cushing’s disease (CD) is a severe condition caused by an adrenocorticotropic hormone (ACTH)-secreting pituitary tumor that accounts for approximately 70% of all cases of endogenous Cushing’s syndrome. It has a total incidence of 1–2 cases per million per year and a prevalence rate of approximately 30 patients per million per year, making it an uncommon disease.1 Meningiomas account for 15–25% of all intracranial tumors, with an annual incidence of 6 cases per 100,000 persons.2 CD combined with meningioma is a rare condition, and even rarer in patients who have no previously known risk factors for either tumor. To the best of our knowledge, its pathogenesis have not been clearly described to date.

Case Presentation

Clinical History and Laboratory Findings

A 47-year-old woman was admitted to the endocrinology department of our hospital with chief complaints of bilateral lower extremity edema, left lower limb pain, abdominal purplish striae, and abdominal distension for 9 months. Two years ago, the patient had a hysterectomy at a local hospital for hysteromyoma. She had no previous radiotherapeutic treatment or other medical history. She weighed 90 kg and was 165 cm tall with a body mass index (BMI) of 33. Physical examination showed typical features of Cushing’s syndrome, including centripetal obesity, moon face, pedal edema, and buffalo hump. Her skin was thin and dry, with acne and hirsutism. On admission, her blood pressure was 146/115 mmHg and routine biochemical blood tests confirmed comorbidity with diabetes mellitus, hyperlipidemia, and hypokalemia.

Endocrine measurements showed that her serum ACTH was 169 pg/mL (reference value: 5–50 pg/mL), cortisol (8 am) was 933 nmol/L (reference value: 138–690 nmol/L), and cortisol (4 pm) was 778 nmol/L (reference value: 69–345 nmol/L), indicating that her ACTH and cortisol levels were dramatically increased. Cortisol secretion was increased and had lost its circadian rhythm. The low-dose dexamethasone suppression test showed that cortisol suppression was < 50%, while a >50% suppression of cortisol was found in the high-dose dexamethasone suppression test. Serum prolactin, follicle-stimulating hormone, luteinizing hormone, testosterone, free thyroid hormone (FT3 and FT4), and thyrotropin values were normal. Endocrinological evaluation suspected that pituitary lesions caused Cushing syndrome.

Imaging Analysis

The patient underwent a magnetic resonance imaging (MRI) scan to image her head. T1-weighted MRI with contrast enhancement showed a spherical enhancing mass (3.0 cm × 3.0 cm) in the right frontal convexity and a dural tail sign (Figure 1A). In the sellar area, the enhancement degree of the lesion (7.8 mm × 6.4 mm) was significantly lower than that of the surrounding pituitary tissue, and the pituitary stalk was displaced to the right (Figure 1A and B). No abnormalities were found on plain or enhanced adrenal computed tomography scans.

Figure 1 Enhanced magnetic resonance imaging (MRI) of the patient’s head: (A) Coronal view of the gadolinium-enhanced T1-weighted image showing a spherical enhancing mass in the right frontal convexity and a dural tail sign. A round low-intensity lesion can be seen on the right side of the pituitary gland, and the pituitary stalk is displaced to the right. (B) Sagittal T1-weighted sequence with contrast showing the degree of enhancement is lower than that of the pituitary in the sellar region.

 

Treatment and Pathological Examination

Physical examination, endocrine examination, and head MRI successfully proved that pituitary microadenoma caused Cushing’s syndrome (specifically CD) comorbid with asymptomatic meningioma.

In order to receive surgical treatment, the patient was referred from the endocrinology department to neurosurgery. She underwent neuroendoscopic transsphenoidal surgery and the pituitary microadenoma was removed. The sellar floor was reconstructed with artificial dura mater, and after this reconstruction, no cerebrospinal fluid leakage was observed. The pathological specimen was examined and was determined to be consistent with a pituitary microadenoma (Figure 2A). One month later, excision of the meningioma was performed through a right frontal trephine craniotomy. Histological examination revealed a WHO grade I meningioma (Figure 2B).

Figure 2 (A) Histopathologic examination revealed a pituitary adenoma (Hematoxylin and eosin staining, 100×). (B) Histopathologic examination revealed a meningioma (Hematoxylin and eosin staining, 100×).

 

Outcome and Follow Up

On the second day after the operation, her cortisol level dropped below the normal range in the morning. Hydrocortisone replacement therapy was started on the same day. In addition, she had developed transient diabetes insipidus, which was treated with desmopressin. Three months postoperatively, after hydrocortisone replacement therapy, the symptoms of Cushing’s disease were alleviated, and the cortisol level returned to normal, which was 249nmol/L (reference value: 138~690nmol/L).

At the 1-year follow-up, no lesions were observed on the MRI scan and the symptoms of Cushing’s syndrome were in remission. The use of hydrocortisone supplements were discontinued and hormone levels remained normal, indicating recovery of the hypothalamic–pituitary–adrenal (HPA) axis. The patient had lost 30 kg and her BMI had dropped to 22, while her blood glucose, triglyceride level, and blood pressure had all returned to normal. Physical changes in the patient pre- and post-treatment are shown in Figure 3A and B.

Figure 3 Abdominal appearance with striae (A) preoperation and (B) 4 months postoperation.

 

Discussion

Cushing’s Disease

CD is a serious clinical condition caused by a pituitary adenoma secreting a high level of ACTH, leading to hypercortisolism. The proportion of ACTH-secreting pituitary adenomas (corresponding to CD) among hormone-secreting pituitary adenomas is 4.8%–10%, which affects women three times more frequently than men, mainly occurs in those 40–60 years old.3,4 Exposure to excessive cortisol can lead to various manifestations of Cushing’s syndrome and increases in morbidity and mortality.5 Therefore, early diagnosis and treatment of CD are very important.

The diagnosis and differential diagnosis of CD is very complicated, and these have always been challenging problems in clinical endocrinology. Once Cushing’s syndrome is diagnosed, its etiology should be determined. A diagnosis of Cushing’s disease is made based on a biochemical examination confirming the pituitary origin of the condition and exclude other sources (namely, ectopic ACTH secretion and adrenocortical tumors).3 High-dose dexamethasone suppression and corticotropin-releasing-hormone stimulation tests may be used to distinguish high-secretion sources of pituitary and ectopic ACTH. More than 90% of the pituitary adenomas that cause CD are microadenomas (≤10 mm in diameter), and 40% of the cases cannot be located by radiological examination.5 Examination with bilateral inferior petrosal sinus sampling (BIPSS) is necessary for CD patients in whom noninvasive biochemical and imaging examinations do not lead to a definitive diagnosis.6

The first-line treatment for CD is transsphenoidal selective tumor resection (TSS) with approximately 78% of the patients in remission after the operation, and 13% of patients relapse within 10 years after surgery. Therefore, there are a considerable number of patients who have experienced long-term surgical failure and require additional second-line treatment, such as radiotherapy, bilateral adrenalectomy, or medication.4

The pathogenesis of CD is unclear, but recent studies have confirmed that there are somatic activation mutations of multiple genes in adrenocorticotropin adenomas, while ubiquitin specific peptidase 8 (USP8) is the most common, accounting for about 50% of the mutations in these adenomas.7

Pituitary Adenoma Associated with Meningioma

Radiotherapy used to treat pituitary tumors is a well-known reason for the development of meningiomas. Gene mutations are a common molecular characteristic of meningiomas, with inactivation of the neurofibromatosis type 2 (NF2) tumor suppressor gene found in 55% of meningiomas, and a further 25% of meningiomas accounted for by recently described mutations in other genes.8

Simultaneous occurrence of pituitary adenoma and meningioma without a history of radiotherapy is a rare condition clinically, having only been described in 49 cases before 2019,9 while ACTH-secreting pituitary adenomas (CD) comorbid with meningioma have been reported even less frequently. In the reported cases, the most common site of meningioma is parasellar, accounting for 44.9%, while meningioma located in the distant part of the adenoma is rare.9,10

A number of clinicians have suggested that the coexistence of meningiomas and pituitary adenomas is incidental, with no relationship between the two diseases.2,11

Genetic imbalances have been found in pituitary adenomas, including in particular the chromosomal deletions of 1p, 2q, 4, 5, 6, 11q, 12q, 13q, and 18q, and the overexpression of 9q, 16p, 17p, 19, and 20q. Functional adenomas have more such imbalances than nonfunctional adenomas, corresponding in particular to deletions of chromosomes 4 and 18q, and the overexpression of chromosomes 17 and 19.12 Meanwhile, estrogen receptor positive de novo meningiomas significantly involve chromosomes 14 and 22.13

The study by Hwang et al14 reported that the expression levels of heterogeneous nuclear ribonucleoprotein (hnRNP) family proteins were significantly higher in pituitary adenomas and meningiomas than that in normal brain tissues. Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) and its downstream signaling pathways play an pivotal role in pituitary tumor, meningioma, and other brain tumors. Zhu et al15 reported that multiple endocrine neoplasia type 1 (MEN1) plays an important role in pituitary adenoma associated with meningioma by upregulating the mammalian target of rapamycin signaling pathway. They found that rapamycin treatment promotes apoptosis in primary cells of the pituitary adenoma and meningioma in cases of pituitary adenoma associated with meningioma. Recurrence of pituitary adenoma, younger age, and larger size of meningioma have been shown to be significantly associated with MEN1 mutation.16

Mathuriya et al17 suggested that hormones may contribute to the occurrence of meningiomas.

de Vries et al9 reported that compared with other types of adenomas, the proportion of growth hormone adenomas is higher, accounting for about one third of cases. Meanwhile, Friend et al18 demonstrated that activation of GH/insulin-like growth factor-1 (IGF-1) axis clearly increased the growth rate of meningiomas. However, in the present case, we observed the coexistence of ACTH-secreting adenoma and meningioma. Further studies are required to understand whether ACTH or cortisol are related to the occurrence and development of meningioma.

In our case, pituitary microadenoma was the cause of Cushing’s syndrome, while the meningioma was an incidental imaging observation. With the popularity and technological progress of high-resolution imaging technology, the reported prevalence of intracranial lesions related to dominant pathology has increased.2 However, when imaging examinations are limited to specific regions, the diagnosis of lesions in other locations is likely to be omitted. For example, in our case, performing MRI of the sellar region alone may have meant that the meningioma was missed.

Conclusion

Cushing’s disease is the most common cause of endogenous Cushing’s syndrome and is caused by ACTH-secreting pituitary adenoma.It is associated with severe complications and reduced quality of life, so early diagnosis and treatment are critical. The coexistence of CD, pituitary adenoma, and meningioma is very rare, and the exact mechanisms underlying such comorbidity are currently unclear and need further study.

Data Sharing Statement

The data that support the findings of this study are available on request from the corresponding author, Zhiquan Jiang.

Ethics and Consent Statement

Based on the regulations of the department of research of the Bengbu Medical College, institutional review board approval is not required for case reports.

Consent for Publication

Written informed consent has been provided by the patient to have the case details and any accompanying images published.

Author Contributions

All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; agreed to submit to the current journal; gave final approval of the version to be published; and agree to be accountable for all aspects of the work.

Funding

The authors declared that this case has received no financial support.

Disclosure

The authors report no conflicts of interest in this work.

References

1. Lacroix A, Feelders RA, Stratakis CA, Nieman LK. Cushing’s syndrome. Lancet. 2015;386(9996):913–927. doi:10.1016/S0140-6736(14)61375-1

2. Curto L, Squadrito S, Almoto B, et al. MRI finding of simultaneous coexistence of growth hormone-secreting pituitary adenoma with intracranial meningioma and carotid artery aneurysms: report of a case. Pituitary. 2007;10(3):299–305. doi:10.1007/s11102-007-0011-4

3. Mehta GU, Lonser RR. Management of hormone-secreting pituitary adenomas. Neuro Oncol. 2017;19(6):762–773. doi:10.1093/neuonc/now130

4. Pivonello R, De Leo M, Cozzolino A, Colao A. The treatment of Cushing’s disease. Endocr Rev. 2015;36(4):385–486. doi:10.1210/er.2013-1048

5. Tritos NA, Biller BMK. Current management of Cushing’s disease. J Intern Med. 2019;286(5):526–541. doi:10.1111/joim.12975

6. Fan C, Zhang C, Shi X, et al. Assessing the value of bilateral inferior petrosal sinus sampling in the diagnosis and treatment of a complex case of Cushing’s disease. Intractable Rare Dis Res. 2013;2(1):24–29. doi:10.5582/irdr.2013.v2.1.24

7. Sbiera S, Kunz M, Weigand I, Deutschbein T, Dandekar T, Fassnacht M. The new genetic landscape of Cushing’s disease: deubiquitinases in the spotlight. Cancers. 2019;11(11):1761. doi:10.3390/cancers11111761

8. Apra C, Peyre M, Kalamarides M. Current treatment options for meningioma. Expert Rev Neurother. 2018;18(3):241–249. doi:10.1080/14737175.2018.1429920

9. de Vries F, Lobatto DJ, Zamanipoor Najafabadi AH, et al. Unexpected concomitant pituitary adenoma and suprasellar meningioma: a case report and review of the literature. Br J Neurosurg. 2019:1–5. doi:10.1080/02688697.2018.1556782.

10. Gosal JS, Shukla K, Praneeth K, et al. Coexistent pituitary adenoma and frontal convexity meningioma with frontal sinus invasion: a rare association. Surg Neurol Int. 2020;11:270. doi:10.25259/SNI_164_2020

11. Cannavo S, Curto L, Fazio R, et al. Coexistence of growth hormone-secreting pituitary adenoma and intracranial meningioma: a case report and review of the literature. J Endocrinol Invest. 1993;16(9):703–708. doi:10.1007/BF03348915

12. Szymas J, Schluens K, Liebert W, Petersen I. Genomic instability in pituitary adenomas. Pituitary. 2002;5(4):211–219. doi:10.1023/a:1025313214951

13. Pravdenkova S, Al-Mefty O, Sawyer J, Husain M. Progesterone and estrogen receptors: opposing prognostic indicators in meningiomas. J Neurosurg. 2006;105(2):163–173. doi:10.3171/jns.2006.105.2.163

14. Hwang M, Han MH, Park HH, et al. LGR5 and downstream intracellular signaling proteins play critical roles in the cell proliferation of neuroblastoma, meningioma and pituitary adenoma. Exp Neurobiol. 2019;28(5):628–641. doi:10.5607/en.2019.28.5.628

15. Zhu H, Miao Y, Shen Y, et al. The clinical characteristics and molecular mechanism of pituitary adenoma associated with meningioma. J Transl Med. 2019;17(1):354. doi:10.1186/s12967-019-2103-0

16. Zhu H, Miao Y, Shen Y, et al. Germline mutations in MEN1 are associated with the tumorigenesis of pituitary adenoma associated with meningioma. Oncol Lett. 2020;20(1):561–568. doi:10.3892/ol.2020.11601

17. Mathuriya SN, Vasishta RK, Dash RJ, Kak VK. Pituitary adenoma and parasagittal meningioma: an unusual association. Neurol India. 2000;48(1):72.

18. Friend KE, Radinsky R, McCutcheon IE. Growth hormone receptor expression and function in meningiomas: effect of a specific receptor antagonist. J Neurosurg. 1999;91(1):93–99. doi:10.3171/jns.1999.91.1.0093

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

From https://www.dovepress.com/cushingrsquos-disease-caused-by-a-pituitary-microadenoma-coexistent-wi-peer-reviewed-fulltext-article-IJGM

Psychotropic drugs in patients with Cushing’s disease before diagnosis and at long-term follow-up

The Journal of Clinical Endocrinology & Metabolism, dgab079, https://doi.org/10.1210/clinem/dgab079

Abstract

Context

Psychiatric symptoms are common in Cushing’s disease (CD) and seem only partly reversible following treatment.

Objective

To investigate drug dispenses associated to psychiatric morbidity in CD patients before treatment and during long-term follow-up.

Design

Nationwide longitudinal register-based study.

Setting

University Hospitals in Sweden.

Subjects

CD patients diagnosed between 1990 and 2018 (N=372) were identified in the Swedish Pituitary Register. Longitudinal data was collected from 5 years before, at diagnosis and during follow-up. Four matched controls per patient were included. Cross-sectional subgroup analysis of 76 patients in sustained remission was also performed.

Main outcome measures

Data from the Swedish Prescribed Drug Register and the Patient Register.

Results

In the 5-year period before, and at diagnosis, use of antidepressants (OR 2.2[95%CI 1.3-3.7] and 2.3[1.6-3.5]), anxiolytics (2.9[1.6-5.3] and 3.9[2.3-6.6]) and sleeping pills (2.1[1.2-3.7] and 3.8[2.4-5.9]) was more common in CD than controls. ORs remained elevated at 5-year follow-up for antidepressants (2.4[1.5-3.9]) and sleeping pills (3.1[1.9-5.3]). Proportions of CD patients using antidepressants (26%) and sleeping pills (22%) were unchanged at diagnosis and 5-year follow-up, whereas drugs for hypertension and diabetes decreased. Patients in sustained remission for median 9.3 years (IQR 8.1-10.4) had higher use of antidepressants (OR 2.0[1.1-3.8]) and sleeping pills (2.4[1.3-4.7]), but not of drugs for hypertension.

Conclusions

Increased use of psychotropic drugs in CD was observed before diagnosis and remained elevated regardless of remission status, suggesting persisting negative effects on mental health. The study highlights the importance of early diagnosis of CD, and the need for long-term monitoring of mental health.

COVID-19 May Be Severe in Cushing’s Patients

A young healthcare worker who contracted COVID-19 shortly after being diagnosed with Cushing’s disease was detailed in a case report from Japan.

While the woman was successfully treated for both conditions, Cushing’s may worsen a COVID-19 infection. Prompt treatment and multidisciplinary care is required for Cushing’s patients who get COVID-19, its researchers said.

The report, “Successful management of a patient with active Cushing’s disease complicated with coronavirus disease 2019 (COVID-19) pneumonia,” was published in Endocrine Journal.

Cushing’s disease is caused by a tumor on the pituitary gland, which results in abnormally high levels of the stress hormone cortisol (hypercortisolism). Since COVID-19 is still a fairly new disease, and Cushing’s is rare, there is scant data on how COVID-19 tends to affect Cushing’s patients.

In the report, researchers described the case of a 27-year-old Japanese female healthcare worker with active Cushing’s disease who contracted COVID-19.

The patient had a six-year-long history of amenorrhea (missed periods) and dyslipidemia (abnormal fat levels in the body). She had also experienced weight gain, a rounding face, and acne.

After transferring to a new workplace, the woman visited a new gynecologist, who checked her hormonal status. Abnormal findings prompted a visit to the endocrinology department.

Clinical examination revealed features indicative of Cushing’s syndrome, such as a round face with acne, central obesity, and buffalo hump. Laboratory testing confirmed hypercortisolism, and MRI revealed a tumor in the patient’s pituitary gland.

She was scheduled for surgery to remove the tumor, and treated with metyrapone, a medication that can decrease cortisol production in the body. Shortly thereafter, she had close contact with a patient she was helping to care for, who was infected with COVID-19 but not yet diagnosed.

A few days later, the woman experienced a fever, nausea, and headache. These persisted for a few days, and then she started having difficulty breathing. Imaging of her lungs revealed a fluid buildup (pneumonia), and a test for SARS-CoV-2 — the virus that causes COVID-19 — came back positive.

A week after symptoms developed, the patient required supplemental oxygen. Her condition worsened 10 days later, and laboratory tests were indicative of increased inflammation.

To control the patient’s Cushing’s disease, she was treated with increasing doses of metyrapone and similar medications to decrease cortisol production; she was also administered cortisol — this “block and replace” approach aims to maintain cortisol levels within the normal range.

The patient experienced metyrapone side effects that included stomach upset, nausea, dizziness, swelling, increased acne, and hypokalemia (low potassium levels).

She was given antiviral therapies (e.g., favipiravir) to help manage the COVID-19. Additional medications to prevent opportunistic fungal infections were also administered.

From the next day onward, her symptoms eased, and the woman was eventually discharged from the hospital. A month after being discharged, she tested negative for SARS-CoV-2.

Surgery for the pituitary tumor was then again possible. Appropriate safeguards were put in place to protect the medical team caring for her from infection, during and after the surgery.

The patient didn’t have any noteworthy complications from the surgery, and her cortisol levels soon dropped to within normal limits. She was considered to be in remission.

Although broad conclusions cannot be reliably drawn from a single case, the researchers suggested that the patient’s underlying Cushing’s disease may have made her more susceptible to severe pneumonia due to COVID-19.

“Since hypercortisolism due to active Cushing’s disease may enhance the severity of COVID-19 infection, it is necessary to provide appropriate, multidisciplinary and prompt treatment,” the researchers wrote.

From https://cushingsdiseasenews.com/2021/01/15/covid-19-may-be-severe-cushings-patients-case-report-suggests/?cn-reloaded=1

Corticotroph hyperplasia and Cushing disease: diagnostic features and surgical management

Affiliations expand

 

Abstract

Objective: This study was done to compare corticotroph hyperplasia and histopathologically proven adenomas in patients with Cushing disease by analyzing diagnostic features, surgical management, and clinical outcomes.

Methods: Patients with suspected pituitary Cushing disease were included in a retrospective cohort study and were excluded if results of pathological analysis of the surgical specimen were nondiagnostic or normal. Cases were reviewed by two experienced neuropathologists. Total lesion removal was used as a dichotomized surgical variable; it was defined as an extracapsular resection (including a rim of normal gland) in patients with an adenoma, and for hyperplasia patients it was defined as removal of the presumed lesion plus a rim of surrounding normal gland. Bivariate and multivariate analyses were performed. Recurrence-free survival was compared between the two groups.

Results: The final cohort consisted of 63 patients (15 with hyperplasia and 48 with adenoma). Normal pituitary acinar architecture was highly variable. Corticotroph hyperplasia was diagnosed based on the presence of expanded acini showing retained reticulin architecture and predominant staining for adrenocorticotropic hormone. Crooke’s hyaline change was seen in 46.7% of specimens, and its frequency was equal in nonlesional tissue of both groups. The two groups differed only by MRI findings (equivocal/diffuse lesion in 46% of hyperplasia and 17% of adenoma; p = 0.03). Diagnostic uncertainty in the hyperplasia group resulted in additional confirmatory testing by 24-hour urinary free cortisol. Total lesion removal was infrequent in patients with hyperplasia compared to those with adenoma (33% vs 65%; p = 0.03). Initial biochemical remission was similar (67% in hyperplasia and 85% in adenoma; p = 0.11). There was no difference in hypothalamic-pituitary-adrenal axis recovery or disease recurrence. The median follow-up was 1.9 years (IQR 0.7-7.6 years) for the hyperplasia group and 1.2 years (IQR 0.4-2.4 years) for the adenoma group. Lack of a discrete lesion and diagnostic uncertainty were the only significant predictors of hyperplasia (sensitivity 53.3%, specificity 97.7%, positive predictive value 88.9%, negative predictive value 85.7%). An adjusted Cox proportional hazards model showed similar recurrence-free survival in the two groups.

Conclusions: This study suggests an association between biochemically proven Cushing disease and histopathologically proven corticotroph hyperplasia. Imaging and operative findings can be ambiguous, and, compared to typical adenomas with a pseudocapsule, the surgical approach is more nuanced. Nevertheless, if treated appropriately, biochemical outcomes may be similar.

Keywords: ACTH = adrenocorticotropic hormone; CRH = corticotropin-releasing hormone; Cushing disease; HPA = hypothalamic-pituitary-adrenal; HR = hazard ratio; IPSS = inferior petrosal sinus sampling; ROC = receiver operating characteristic; UFC = urinary free cortisol; corticotroph adenoma; corticotroph hyperplasia; diagnosis; pathology; pituitary surgery; surgical outcomes.

From https://pubmed.ncbi.nlm.nih.gov/32886921/

RECORDATI: ISTURISA® (Osilodrostat) Phase III LINC-4 Trial Meets Its Primary Endpoint In Cushing’s Disease

Source: RECORDATI

multilang-release

RECORDATI: ISTURISA® (OSILODROSTAT) PHASE III LINC-4 TRIAL MEETS ITS PRIMARY ENDPOINT IN CUSHING’S DISEASE

Isturisa® (osilodrostat) demonstrates significant and sustained benefit over placebo at normalizing mean urinary free cortisol (mUFC) levels in patients with Cushing’s disease

Milan, 17 June 2020 – Recordati today announces positive results from the large Phase III LINC-4 study of Isturisa® (osilodrostat) for the treatment of patients with Cushing’s disease for whom pituitary surgery is not an option or has not been curative. Data from the LINC-4 study demonstrate that a significantly higher proportion of patients receiving Isturisa® achieve normal mUFC, the primary treatment goal for Cushing’s disease, after 12 weeks of treatment versus placebo (77% vs 8%; P<0.0001). Improvements in mUFC levels are sustained over 36 weeks of treatment (81% of patients). Isturisa® is well tolerated and has a manageable safety profile, with the most common adverse events in LINC-4 being arthralgia, decreased appetite, fatigue, and nausea. The findings from LINC-4, the first Phase III study of a medical therapy in Cushing’s disease to contain an upfront placebo-controlled phase, builds on existing clinical evidence and affirms the effectiveness of Isturisa® in this hard-to-treat patient population.1-3

“Cushing’s disease is a chronic and debilitating condition that can be extremely challenging to manage and, if left inadequately treated, can have a significant impact on patients’ quality of life and increase the risk of mortality”, said Richard Feelders, MD, Professor of Endocrinology at the Erasmus University Medical Centre, Rotterdam. “Data from this important Phase III study show that Isturisa® (osilodrostat) is an effective and well-tolerated therapy for Cushing’s disease, which significantly reduces and normalizes mUFC levels in most patients. These data are encouraging given the high unmet medical need for patients with this rare disorder”.

“The compelling topline LINC-4 data confirm the effectiveness of Isturisa® for the treatment of this rare, potentially life-threatening disease”, stated Andrea Recordati, CEO. “We are deeply grateful to the patients, investigators, clinicians and study staff whose ongoing participation in the clinical development of Isturisa® has helped bring this therapy to patients in need.”

Data from the LINC 4 study reinforce the clinical benefits of Isturisa® as an effective and generally well‑tolerated oral treatment option for patients with Cushing’s disease. Isturisa® has recently received marketing authorization in the European Union (January 2020) and United States (March 2020) for the treatment of Cushing’s syndrome and Cushing’s disease, respectively.

About Cushing’s syndrome

Cushing’s syndrome is caused by an inappropriate and chronic exposure to excessive levels of cortisol. The source of this excess of cortisol can be endogenous or exogenous (ie medication). When the excess cortisol production is triggered by a pituitary adenoma (ie a tumor of the pituitary gland located in the brain) secreting excess adrenocorticotropic hormone (ACTH), the condition of the patient is defined as Cushing’s disease and comprises about 70% of Cushing’s syndrome cases.4 It is a rare, serious and difficult-to-treat disease that affects approximately one to two patients per million per year.5 Prolonged exposure to elevated cortisol levels is associated with considerable morbidity, mortality and impaired quality of life as a result of complications and comorbidities.6 Normalization of cortisol levels is therefore a primary objective in the treatment of Cushing’s syndrome.7

About LINC-4

LINC-4 is a large randomized, double-blinded, multicentre, 48-week trial with an initial 12-week placebo-controlled period to evaluate the safety and efficacy of osilodrostat in patients with Cushing’s disease. The primary endpoint in the LINC-4 trial is the proportion of patients randomized to Isturisa® and placebo, separately, with a mUFC ≤ULN at the end of the 12-week placebo-controlled period. The key secondary endpoint is the proportion of patients in both arms combined with a mUFC ≤ULN after 36 weeks. LINC-4 involved 73 patients with persistent or recurrent Cushing’s disease or those with de novo disease who were not candidates for surgery.

About Isturisa®

Isturisa® is a potent oral, reversible inhibitor of 11β-hydroxylase (CYP11B1), the enzyme that catalyses the final step of cortisol biosynthesis in the adrenal gland and is authorized in the EU and US for the treatment of adult patients with Cushing’s syndrome and Cushing’s disease, respectively.8,9 Isturisa® will be available as 1 mg, 5 mg and 10 mg film‐coated tablets. Please see prescribing information for detailed recommendations for the use of this product.8,9

  1. Bertagna X et al. J Clin Endocrinol Metab 2014;99:1375–83
  2. Fleseriu M et al. Pituitary 2016;19:138–48
  3. Biller BMK et al. Abstract OR16-2. Oral presentation at the Endocrine Society Annual Congress 2019
  4. Nieman LK et al. Am J Med 2005;118:1340–6
  5. Signifor® and Signifor® LAR Summary of Product Characteristics, June 2018
  6. Pivonello R et al. Lancet Diabetes Endocrinol 2016;4:611–29
  7. Nieman LK et al. J Clin Endocrinol Metab 2015;100:2807–31
  8. Isturisa® Summary of Product Characteristics. May 2020
  9. Isturisa® Prescribing Information. March 2020

About the Recordati group

Recordati, established in 1926, is an international pharmaceutical group, listed on the Italian Stock Exchange (Reuters RECI.MI, Bloomberg REC IM, ISIN IT 0003828271), with a total staff of more than 4,300, dedicated to the research, development, manufacturing and marketing of pharmaceuticals. Headquartered in Milan, Italy, Recordati has operations throughout the whole of Europe, including Russia, Turkey, North Africa, the United States of America, Canada, Mexico, some South American countries, Japan and Australia. An efficient field force of medical representatives promotes a wide range of innovative pharmaceuticals, both proprietary and under license, in a number of therapeutic areas including a specialized business dedicated to treatments for rare diseases. Recordati is a partner of choice for new product licenses for its territories. Recordati is committed to the research and development of new specialties with a focus on treatments for rare diseases. Consolidated revenue for 2019 was € 1,481.8 million, operating income was € 465.3 million and net income was € 368.9 million.

For further information:

Recordati website:  http://www.recordati.com

Investor Relations                                                                 Media Relations
Marianne Tatschke                                                                Studio Noris Morano
(39)0248787393                                                                    (39)0276004736, (39)0276004745
e-mail: investorelations@recordati.it                                  e-mail: norismorano@studionorismorano.com

Statements contained in this release, other than historical facts, are “forward-looking statements” (as such term is defined in the Private Securities Litigation Reform Act of 1995). These statements are based on currently available information, on current best estimates, and on assumptions believed to be reasonable. This information, these estimates and assumptions may prove to be incomplete or erroneous, and involve numerous risks and uncertainties, beyond the Company’s control. Hence, actual results may differ materially from those expressed or implied by such forward-looking statements. All mentions and descriptions of Recordati products are intended solely as information on the general nature of the company’s activities and are not intended to indicate the advisability of administering any product in any particular instance.

Attachment

From https://www.globenewswire.com/news-release/2020/06/17/2049265/0/en/RECORDATI-ISTURISA-OSILODROSTAT-PHASE-III-LINC-4-TRIAL-MEETS-ITS-PRIMARY-ENDPOINT-IN-CUSHING-S-DISEASE.html

<span>%d</span> bloggers like this: