Sparsely Granulated Corticotroph Pituitary Macroadenoma Presenting with Pituitary Apoplexy Resulting in Remission of Hypercortisolism

https://doi.org/10.1016/j.aace.2022.04.003Get rights and content
Under a Creative Commons license
Open access

Highlights

• We describe a rare case of a patient with a sparsely granulated corticotroph pituitary macroadenoma with pituitary apoplexy who underwent transsphenoidal resection resulting in remission of hypercortisolism.
• Corticotroph adenomas are divided into densely granulated, sparsely granulated and Crooke’s cell tumors.
• macroadenomas account for 7-23% of patients with pituitary corticotroph adenomas
• Sparsely granulated corticotroph tumors are associated with longer duration of Cushing disease prior to diagnosis, larger tumor size at diagnosis, decreased immediate remission rate, increased proliferative marker Ki-67 and increased recovery time of hypothalamic-pituitary-adrenal axis after surgery.
• Granulation pattern is an important clinicopathological distinction impacting the behavior and treatment outcomes of pituitary corticotroph adenomas

Abstract

Background

/Objective: Pituitary corticotroph macroadenomas, which account for 7% to 23% of corticotroph adenomas, rarely present with apoplexy. The objective of this report is to describe a patient with a sparsely granulated corticotroph tumor (SGCT) presenting with apoplexy and remission of hypercortisolism.

Case Report

A 33-year-old male presented via ambulance with sudden onset of severe headache and nausea/vomiting. Physical exam revealed bitemporal hemianopsia, diplopia from right-sided third cranial nerve palsy, abdominal striae, facial plethora, dorsal and supraclavicular fat pad. Magnetic resonance imaging (MRI) demonstrated a 3.2 cm mass arising from the sella turcica with hemorrhage compressing the optic chiasm, extension into the sphenoid sinus and cavernous sinus. Initial investigations revealed plasma cortisol of 64.08 mcg/dL (Reference Range (RR), 2.36 – 17.05). He underwent emergent transsphenoidal surgery. Pathology was diagnostic of SGCT. Post-operatively, cortisol was <1.8ug/dL (RR, 2.4 – 17), adrenocorticotropic hormone (ACTH) 36 pg/mL (RR, 0 – 81), thyroid stimulating hormone (TSH) 0.07 uIU/mL (RR, 0.36 – 3.74), free thyroxine 1 ng/dL (RR, 0.8 – 1.5), luteinizing hormone (LH) <1 mIU/mL (RR, 1 – 12), follicle stimulating hormone (FSH) 1 mIU/mL (RR, 1 – 12) and testosterone 28.8 ng/dL (RR, 219.2 – 905.6) with ongoing requirement for hydrocortisone, levothyroxine, testosterone replacement and continued follow-up.

Discussion

Corticotroph adenomas are divided into densely granulated, sparsely granulated and Crooke’s cell tumors. Sparsely granulated pattern is associated with larger tumor size and decreased remission rate after surgery.

Conclusion

This report illustrates a rare case of hypercortisolism remission due to apoplexy of a SGCT with subsequent central adrenal insufficiency, hypothyroidism and hypogonadism.

Keywords

pituitary apoplexy
pituitary macroadenoma
pituitary tumor
sparsely granulated corticotroph tumor
Cushing disease

Introduction

The incidence of Cushing Disease (CD) is estimated to be between 0.12 to 0.24 cases per 100,00 persons per year1,2. Of these, 7-23% are macroadenomas (>1 cm)345. Pituitary apoplexy is a potentially life-threatening endocrine and neurosurgical emergency which occurs due to infarction or hemorrhage in the pituitary gland. Apoplexy occurs most commonly in non-functioning macroadenomas with an estimated prevalence of 6.2 cases per 100,000 persons and incidence of 0.17 cases per 100,00 persons per year6. Corticotroph macroadenoma presenting with apoplexy is uncommon with only a handful of reports in the literature7. We present a case of a sparsely granulated corticotroph (SGCT) which presented with apoplexy leading to remission of hypercortisolism and subsequent central adrenal insufficiency.

Case Presentation

A 33-year-old male who was otherwise healthy and not on any medications presented to a community hospital with sudden and severe headache accompanied by hypotension, nausea, vomiting, bitemporal hemianopsia and diplopia. Computed Tomography (CT) scan of the brain demonstrated a hyperattenuating 2.0 cm x 2.8 cm x 1.5 cm mass at the sella turcica with extension into the right cavernous sinus and encasement of the right internal carotid arteries (Figure 1A). He was transferred to a tertiary care center for neurosurgical management with endocrinology consultation post-operatively.

  1. Download : Download high-res image (404KB)
  2. Download : Download full-size image

Figure 1. hyperattenuating 2.0 cm x 2.8 cm x 1.5 cm mass at the sella turcica on unenhanced CT (A); MRI demonstrated a 1.9 cm x 3.2 cm x 2.4 cm heterogeneous mass on T1 (B) and T2-weighted imaging (C) showing small hyperintense areas in solid part of the sella mass with flattening of the optic chiasm, remodeling/dehiscence of the floor of the sella and extending into the right cavernous sinus with at least partial encasement of the ICA

In retrospect, he reported a 3-year history of ongoing symptoms of hypercortisolism including increased central obesity, dorsal and supraclavicular fat pad, facial plethora, abdominal purple striae, easy bruising, fatigue, decreased libido and erectile dysfunction. Notably, at the time of presentation he did not have a history of diabetes, hypertension, osteoporosis, fragility fractures or proximal muscle weakness. He fathered 2 children previously. His physical examination was significant for Cushingoid facies, facial plethora, dorsal and supraclavicular fat pads and central obesity with significant axillary and abdominal wide purple striae (Figure 2). Neurological examination revealed bitemporal hemianopsia, right third cranial nerve palsy with ptosis and impaired extraocular movement. The fourth and sixth cranial nerves were intact as was the rest of his neurological exam. These findings were corroborated by Ophthalmology.

  1. Download : Download high-res image (477KB)
  2. Download : Download full-size image

Figure 2. Representative images illustrating facial plethora (A); abdominal striae (B, C); supraclavicular fat pad (D); dorsal fat pad (E)

Initial laboratory data at time of presentation to the hospital included elevated plasma cortisol of 64.08ug/dL (RR, 2.36 – 17.05), ACTH was not drawn at the time of presentation, normal TSH 0.89 mIU/L (RR, 0.36 – 3.74), free thyroxine 0.91ng/dL (RR, 0.76 – 1.46), evidence of central hypogonadism with low total testosterone 28.8 ng/dL (RR, 219.2 – 905.6) and inappropriately normal luteinizing hormone (LH) 1mIU/mL (RR, 1 – 12) and follicle stimulating hormone (FSH) 3mIU/mL (RR, 1 – 12), low prolactin <1 ng/mL (RR, 3 – 20), and normal insulin growth factor – 1 (IGF–1) 179ng/mL (RR, 82 – 242).

A pituitary gland dedicated MRI was performed to further characterize the mass, which re-demonstrated a 1.9 cm x 3.2 cm x 2.4 cm heterogenous mass at the sella turcica extending superiorly and flattening the optic chiasm, remodeling of the floor of the sella and bulging into the sphenoid sinus and extending laterally into the cavernous sinus with encasement of the right internal carotid artery (ICA). As per the radiologist’s diagnostic impression, this appearance was most in keeping with a pituitary macroadenoma with apoplexy (Figure 1B – C).

The patient underwent urgent TSS and decompression with no acute complications. Pathological examination of the pituitary adenoma showed features characteristic of sparsely granulated corticotroph pituitary neuroendocrine tumor (adenoma)8, with regional hemorrhage and tumor necrosis (apoplexy). The viable tumor exhibited a solid growth pattern (Figure 3A), t-box transcription factor (T-pit) nuclear immunolabeling (Figure 3B), diffuse cytoplasmic CAM5.2 (low molecular weight cytokeratin) immunolabeling (Figure 3C), and regional weak to moderate intense granular cytoplasmic ACTH immuno-staining (Figure 3D). The tumor was immuno-negative for: pituitary-specific positive transcription factor 1 (Pit-1) and steroidogenic factor 1 (SF-1) transcription factors, growth hormone, prolactin, TSH, FSH, LH, estrogen receptor-alpha, and alpha-subunit. Crooke hyalinization was not identified in an adjacent compressed fragment of non-adenomatous anterior pituitary tissue. Ki-67 immunolabeling showed a 1.5% proliferative index (11 of 726 nuclei).

  1. Download : Download high-res image (2MB)
  2. Download : Download full-size image

Figure 3. Hematoxylin phloxine saffron staining showing adenoma with solid growth pattern (A); immunohistochemical staining showing T-pit reactivity of tumor nuclei (B); diffuse cytoplasmic staining for cytokeratin CAM5.2 (C); and regional moderately intense granular cytoplasmic staining for ACTH (D). Scale bar = 20 μm

Post-operatively, he developed transient central diabetes insipidus requiring desmopressin but resolved on discharge. His postoperative cortisol was undetectable, ACTH 36 pg/mL (RR, 0 – 81), TSH 0.07 mIU/mL (RR, 0.36 – 3.74), free thyroxine 1 ng/dL (RR, 0.8 – 1.5), LH <1mIU/mL (RR, 1 – 12), FSH 1 mIU/mL (RR, 1 – 12) and testosterone 28.8 ng/dL (RR, 219.2 – 905.6) (Table 1 and Figure 4). One month later, he reported 15 pounds of weight loss and a 5-inch decrease in waist circumference. He also noted a reduction in the dorsal and supraclavicular fat pads, facial plethora, and Cushingoid facies as well as fading of the abdominal stretch marks. His visual field defects and right third cranial nerve palsy resolved on follow up with ophthalmology post-operatively. Repeat MRI six months post-operatively showed minor residual soft tissue along the floor of the sella. He is being followed by Neurosurgery, Ophthalmology, and Endocrinology for monitoring of disease recurrence, visual defects, and management of hypopituitarism.

Table 1. Pre- and post-operative hormonal panel

POD -1 POD 0 POD1 POD2 POD3 POD16 6 -9 months Comments
Cortisol(2.4 – 17 ug/dL) 64↓ 32↓ 11↓ <1.8↓ <1.8↓ 1.8↓ HC started POD3 post bloodwork
ACTH(0 – 81 pg/mL) 41↓ 36↓ 28↓ 13↓
TSH(0.36 – 3.74 uIU/mL) 0.89 0.43 0.12↓ 0.07↓ 0.05↓ 0.73
Thyroxine, free(0.8 – 1.5 ng/dL) 0.9 0.9 1.1 1 2.1↑ 1 Levothyroxine started POD4
LH(1 – 12 miU/mL) 1↓ <1↓ 1↓ 3
FSH(1 – 12 mIU/mL) 3↓ 1↓ 1↓ 3
Testosterone(219.2 – 905.6 ng/dL) 28.8↓ <20↓ 175.9↓ Testosterone replacement started as outpatient
Testosterone, free(160 – 699 pmol/L) <5.8↓ 137↓
IGF-1(82 – 242 ng/mL) 179 79
GH(fasting < 6 mIU/L) 4.5 <0.3
Prolactin(3 – 20 ng/mL) <1↓ <1↓

POD, postoperative day; HC, hydrocortisone; ACTH, adrenocorticotropic hormone; TSH, thyroid stimulating hormone; LH, luteinizing Hormone; FSH, follicle stimulating hormone; IGF-1, insulin like growth factor – 1; GH, growth hormone

  1. Download : Download high-res image (259KB)
  2. Download : Download full-size image

Figure 4. Trend of select pituitary hormonal panel with key clinical events denoted by black arrows.

Discussion

Microadenomas account for the majority of corticotroph tumors, but 7% – 23% of patients are diagnosed with a macroadenoma345. It is even rarer for a corticotroph macroadenoma to present with apoplexy with only a handful of case reports or series in the literature7. Due to its rarity, appropriate biochemical workup on presentation, such as including an ACTH with the blood work, may be omitted especially if the patient is going for emergent surgery. In this case, the undetectable prolactin can reflect loss of anterior pituitary function and also suggest a functioning corticotroph adenoma due to the inhibitory effect of long term serum glucocorticoids on prolactin secretion9. After undergoing TSS, the patient developed central adrenal insufficiency, hypothyroidism and hypogonadism requiring hormone replacement. Presumably, the development of adrenal insufficiency demonstrated the remission of hypercortisolism as a result of apoplexy and/or TSS. The ACTH remains detectable likely representing residual tumor that was not obliterated by apoplexy nor excised by TSS given it location near the carotid artery and cavernous sinus. The presence of adrenal insufficiency in the setting of detectable ACTH is not contradictory as the physiological hypothalamic-pituitary-adrenal axis has been suppressed by the long-term pathological production of ACTH. IGF-1 and prolactin also failed to recover post-operatively. In CD where the production of IGF-1 and prolactin are attenuated by elevated cortisol, it would then be expected that IGF-1 and prolactin recover after hypercortisolism remission. However, the absence of this observation in our case is likely a sequalae of the apoplexy and extensive surgery leading to pituitary hypofunction.

We also want to highlight features of the pre-operative radiographical findings which can provide valuable insight into the subsequent histology. Previous literature has shown that, on T2-weight MRI, silent corticotroph adenomas are strongly correlated with characteristic a multimicrocystic appearance while nonfunctional gonadotroph macroadenomas are not correlated with this MRI finding10. The multimicrocystic appearance is described as small hyperintense areas with hyperintense striae in the solid part of the tumor (Figure 1C)10. This is an useful predictive tool for silent corticotroph adenomas with a sensitivity of 76%, specificity of 95% and a likelihood ratio of 15.310.

The ability to distinguish between silent corticotroph macroadenoma and other macroadenomas is important for assessing rate of remission and recurrence risk. In 2017, the WHO published updated classification for pituitary tumors. In this new classification, corticotroph adenomas are further divided into densely granulated, sparsely granulated and Crooke’s cell tumors11. DGCT are intensely Periodic Acid Schiff (PAS) stain positive and exhibit strong diffuse pattern of ACTH immunoreactivity, whereas SGCT exhibit faintly positive PAS alongside weak focal ACTH immunoreactivity4,12. Crooke’s cell tumors are characterized by Crooke’s hyaline changes in more than 50% of the tumor cells4. In the literature, SGCT account for an estimated 19-29% of corticotroph adenomas131415. The clinicopathological relevance of granulation pattern in corticotroph tumors was unclear until recently.

In multiple studies examining granulation pattern and tumor size, SGCT were statistically larger13,15,16. Hence, we suspect that many of the previously labelled silent corticotroph macroadenomas in the literature were SGCT. The traditional teaching of CD has been “small tumor, big Cushing and big tumor, small Cushing” which reflects the inverse relationship between tumor size and symptomatology17. This observation appears to hold true as Doğanşen et al. found a trend towards longer duration of CD in SGCT of 34 months compared to 26 months in DGCT based on patient history13,17. It has been postulated that the underlying mechanism of the inverse relationship between tumor size and symptomatology is impaired processing of proopiomelanocortin resulting in less effective secretion of ACTH in corticotroph macroadenomas3. Doğanşen et al. also found that the recurrence rate was doubled for SGCT, while Witek et al. showed that SGCT were less likely to achieve remission postoperatively13,16.

Similar to other cases of SGCT, the diagnosis was only arrived retrospective after pathological confirmation10. Interestingly, the characteristic Crooke’s hyaline change of surrounding non-adenomatous pituitary tissue was not observed as one would expect in a state of prolonged glucocorticoid excess in this case. Although classically described, the absence of this finding does not rule out CD. As evident in a recent retrospective study where 10 out of 144 patients with CD did not have Crooke’s hyaline change18. In patients without Crooke’s hyaline change, the authors found a lower remission rate of 44.4% compared to 73.5% in patients with Crooke’s hyaline change. Together with the detectable post-operative ACTH, sparsely granulated pattern and absence of Crooke’s hyaline change in surrounding pituitary tissue, the risk of recurrence is increased. These risk factors emphasize the importance of close monitoring to ensure early detection of recurrence.

Declaration of Interests

☒ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Conclusion

We present a case of a sparsely granulated corticotroph macroadenoma presenting with apoplexy leading to remission of hypercortisolism and development of central adrenal insufficiency, hypothyroidism and hypogonadism requiring hormone replacement.

References

Possible Good News! Effects of Tubastatin A on Adrenocorticotropic Hormone Synthesis and Proliferation of Att-20 Corticotroph Tumor Cells

  • Rie HagiwaraDepartment of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
  • Kazunori KageyamaDepartment of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
  • Yasumasa IwasakiSuzuka University of Medical Science, Suzuka 510-0293, Japan
  • Kanako NiiokaDepartment of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
  • Makoto DaimonDepartment of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
Abstract

Cushing’s disease is an endocrine disorder characterized by hypercortisolism, mainly caused by autonomous production of ACTH from pituitary adenomas. Autonomous ACTH secretion results in excess cortisol production from the adrenal glands, and corticotroph adenoma cells disrupt the normal cortisol feedback mechanism. Pan-histone deacetylase (HDAC) inhibitors inhibit cell proliferation and ACTH production in AtT-20 corticotroph tumor cells. A selective HDAC6 inhibitor has been known to exert antitumor effects and reduce adverse effects related to the inhibition of other HDACs. The current study demonstrated that the potent and selective HDAC6 inhibitor tubastatin A has inhibitory effects on proopiomelanocortin (Pomc) and pituitary tumor-transforming gene 1 (Pttg1) mRNA expression, involved in cell proliferation. The phosphorylated Akt/Akt protein levels were increased after treatment with tubastatin A. Therefore, the proliferation of corticotroph cells may be regulated through the Akt-Pttg1 pathway. Dexamethasone treatment also decreased the Pomc mRNA level. Combined tubastatin A and dexamethasone treatment showed additive effects on the Pomc mRNA level. Thus, tubastatin A may have applications in the treatment of Cushing’s disease.

Access the PDF at https://www.jstage.jst.go.jp/article/endocrj/advpub/0/advpub_EJ21-0778/_pdf/-char/en

 

Acute severe Cushing’s disease presenting as a hypercoagulable state

This article was originally published here

Proc (Bayl Univ Med Cent). 2021 Jul 29;34(6):715-717. doi: 10.1080/08998280.2021.1953950. eCollection 2021.

ABSTRACT

Cushing’s disease (CD) is the most common cause of endogenous cortisol excess. We discuss the case of a 60-year-old woman with recurrent venous thromboembolism, refractory hypokalemia, and lumbar vertebrae compression fractures with a rapidly progressive disease course.

Ectopic hypercortisolism was suspected given the patient’s age and rapid onset of disease. Investigations revealed cortisol excess from a pituitary microadenoma.

This case demonstrates that CD can present with severe findings and highlights the increased risk of venous thromboembolism in hypercortisolism, especially in CD.

PMID:34732999 | PMC:PMC8545141 | DOI:10.1080/08998280.2021.1953950

A Case of Cushing’s Disease Presenting with Isolated Suicidal Attempt

Cushing’s disease is an abnormal secretion of ACTH from the pituitary that causes an increase in cortisol production from the adrenal glands. Resultant manifestations from this excess in cortisol include multiple metabolic as well as psychiatric disturbances which can lead to significant morbidity and mortality. In this report, 23-year-old woman presented to mental health facility with history of severe depression and suicidal ideations. During evaluation, she found to have Cushing’s disease, which is unusual presentation. She had significant improvement in her symptoms with reduction of antidepressant medications after achieving eucortisolism. Cushing syndrome can present with wide range of neuropsychiatric manifestations including major depression. Although presentation with suicidal depression is unusual. Early diagnosis and prompt management of hypercortisolsim may aid in preventing or lessening of psychiatric symptoms The psychiatric and neurocognitive disorders improve after disease remission (the normalization of cortisol secretion), but some studies showed that these disorders can partially improve, persist, or exacerbate, even long-term after the resolution of hypercortisolism. The variable response of neuropsychiatric disorders after Cushing syndrome remission necessitate long term follow up.

Endogenous Cushing syndrome is a complex disorder caused by chronic exposure to excess circulating glucocorticoids. It has a wide range of clinical signs and symptoms as a result of the multisystem effects caused by excess cortisol.1

The hypercortisolism results in several complications that include glucose intolerance, diabetes, hypertension, dyslipidemia, thromboembolism, osteoporosis, impaired immunity with increased susceptibility to infection as well as neuropsychiatric disorders.2,3

Cushing syndrome presents with a wide variety of neuro-psychiatric manifestations like anxiety, major depression, mania, impairments of memory, sleep disturbance, and rarely, suicide attempt as seen in this case.2,4

The mechanism of neuropsychiatric symptoms in Cushing’s syndrome is not fully understood, but multiple proposed theories have been reported, one of which is the direct brain damage secondary to excess of glucocorticoids.5

A 23-year-old female presented to Al-Amal complex of mental health in Riyadh, Saudi Arabia with history of suicidal tendencies and 1 episode of suicidal attempt which was aborted because of religious reasons. She reported history of low mood, having disturbed sleep, loss of interest, and persistent feeling of sadness for 4 months. She also reported history of weight gain, facial swelling, hirsutism, and irregular menstrual cycle with amenorrhea for 3 months. She was prescribed fluoxetine 40 mg and quetiapine 100 mg. She was referred to endocrinology clinic at King Fahad Medical City, Riyadh for evaluation and management of possible Cushing syndrome as the cause of her abnormal mental health.

She was seen in the endocrinology clinic where she reported symptoms as mentioned above in addition to headache, acne, and proximal muscle weakness.

On examination her vital signs were normal. She had depressed affect, rounded face with acne and hirsutism, striae in the upper limb, and abdomen with proximal muscle weakness (4/5).

Initial investigations showed that 24 hour urinary free cortisol was more than 633 µg which is more than 3 times upper limit of normal (this result was confirmed on second sample with level more than 633 µg/24 hour), cortisol level of 469 nmol/L after low dose 1 mg-dexamethasone suppression test and ACTH level of 9.8 pmol/L. Levels of other anterior pituitary hormones tested were within normal range. She also had prediabetes with HbA1c of 6.1 and dyslipidemia. Serum electrolytes, renal function and thyroid function tests were normal.

MRI pituitary showed left anterior microadenoma with a size of 6 mm × 5 mm.

MRI pituitary (Figure 1).


                        figure

Figure 1. (A-1) Coronal T2, (B-1) post contrast coronal T1 demonstrate small iso intense T1, heterogeneous mixed high, and low T2 signal intensity lesion in the left side of anterior pituitary gland which showed micro adenoma with a size of 6 mm × 5 mm. (A-2) Post-operative coronal T2 and (B-2) post-operative coronal T1. Demonstrates interval resection of the pituitary micro adenoma with no recurrence or residual lesion and minimal post-operative changes. There is no abnormal signal intensity or abnormal enhancing lesion seen.

No further hormonal work up or inferior petrosal sinus sampling were done as the tumor size is 6 mm and ACTH level consistent with Cushing’s disease (pituitary source). She was referred to neurosurgery and underwent trans-sphenoidal resection of the tumor. Histopathology was consistent with pituitary adenoma and positive for ACTH. Her repeated cortisol level after tumor resection was less than 27 and ACTH 2.2 with indicated excellent response to surgery.

She was started on hydrocortisone until recovery of her hypothalamic pituitary adrenal axis documented by normal morning cortisol 3 months after surgery (Table 1).

Table

Table 1. Labs.

Table 1. Labs.

During follow up with psychiatry her depressive symptoms improved but not resolved and she was able to stop fluoxetine 5 months post-surgery. Currently she is maintained on quetiapine 100 mg with significant improvement in her psychiatric symptoms.

Currently she is in remission from Cushing’s disease based on the normal level of repeated 24 hour urinary free cortisol and with an over-all improvement in her metabolic profile.

Cushing syndrome is a state of chronic hypercortisolism due to either endogenous or exogenous sources. Glucocorticoid overproduction by adrenal gland can be adrenocorticotropic (ACTH) hormone dependent which represent most of the cases and ACTH independent.6 To the best of our knowledge this is the first case documented in Saudi Arabia.

There are multiple theories behind the neuropsychiatric manifestations in Cushing syndrome. These include increased stress response leading to behavioral changes, prolonged cortisol exposure leading to decreased brain volume especially in the hippocampus, reduced dendritic mass, decreased glial development, trans-cellular shift of water and synaptic loss, and excess glucocorticoid levels inhibiting neurogenesis and promoting neuronal tendency to toxic insult.3,7

In this report, the patient presented with severe depression with suicidal attempt. She had significant improvement in her symptoms with reduction of antidepressant medications but her depression persisted despite remission of Cushing disease. A similar case has been reported by Mokta et al,1 about a young male who presented with suicidal depression as initial manifestation of Cushing disease. As opposed to the present case he had complete remission of depression within 1 month of resolution of hypercortisolism.

In general, psychiatric and neurocognitive disorders secondary to Cushing syndrome improves after normalization of cortisol secretion, but some studies showed that these disorders can partially improve, persist, or exacerbate, even long-term after the resolution of hypercortisolism. This may be due to persistence hypercortisolism creating toxic brain effects that occur during active disease.2,8 Similar patients need to be followed up for mental health long after Cushing syndrome has been resolved.

Depression is a primary psychiatric illness, that is, usually not examined for secondary causes. Symptoms of depression and Cushing syndrome overlap, so diagnosis and treatment of Cushing disease can be delayed. Early diagnosis and prompt management of hypercortisolsim may aid in preventing or lessening psychiatric symptoms. The variable neuropsychiatric disorders associated with Cushing syndrome post-remission necessitates long term follow up.

Declaration of Conflicting Interests:
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding:
The author(s) received no financial support for the research, authorship, and/or publication of this article.

Informed Consent
Written informed consent was obtained from the patient for the publication of this case and accompanying images.

ORCID iD
Sultan Dheafallah Al-Harbi  https://orcid.org/0000-0001-9877-9371

1. Mokta, J, Sharma, R, Mokta, K, Ranjan, A, Panda, P, Joshi, I. Cushing’s disease presenting as suicidal depression. J Assoc Physicians India. 2016;64:8283.
Google Scholar | Medline

2. Pivonello, R, Simeoli, C, De Martino, MC, et alNeuropsychiatric disorders in cushing’s syndrome. Front Neurosci. 2015;9:16.
Google Scholar | Crossref | Medline

3. Pereira, AM, Tiemensma, J, Romijn, JA. Neuropsychiatric disorders in Cushing’s syndrome. Neuroendocrinology. 2010;92:6570.
Google Scholar | Crossref | Medline | ISI

4. Tang, A, O’Sullivan, AJ, Diamond, T, Gerard, A, Campbell, P. Psychiatric symptoms as a clinical presentation of Cushing’s syndrome. Ann Gen Psychiatry. 2013;12:1.
Google Scholar | Crossref | Medline

5. Sonino, N, Fava, GA, Raffi, AR, Boscaro, M, Fallo, F. Clinical correlates of major depression in Cushing’s disease. Psychopathology. 1998;31:302306.
Google Scholar | Crossref | Medline

6. Wu, Y, Chen, J, Ma, Y, Chen, Z. Case report of Cushing’s syndrome with an acute psychotic presentation. Shanghai Arch Psychiatry. 2016;28:169172.
Google Scholar | Medline

7. Rasmussen, SA, Rosebush, PI, Smyth, HS, Mazurek, MF. Cushing disease presenting as primary psychiatric illness: a case report and literature review. J Psychiatr Pract. 2015;21:449457.
Google Scholar | Crossref | Medline

8. Sonino, N, Fava, GA. Psychiatric disorders associated with Cushing’s syndrome. Epidemiology, pathophysiology and treatment. CNS Drugs. 2001;15:361373.
Google Scholar | Crossref | Medline

Thyroid cancer: Cushing syndrome is a lesser-known warning sign – what is it?

Thyroid cancer survival rates are 84 percent for 10 years or more if diagnosed early. Early diagnosis is crucial therefore and spotting the unusual signs could be a matter of life and death. A sign your thyroid cancer has advanced includes Cushing syndrome.

What is it?

What is Cushing syndrome?

 

Cushing syndrome occurs when your body is exposed to high levels of the hormone cortisol for a long time, said the Mayo Clinic.

The health site continued: “Cushing syndrome, sometimes called hypercortisolism, may be caused by the use of oral corticosteroid medication.

“The condition can also occur when your body makes too much cortisol on its own.

“Too much cortisol can produce some of the hallmark signs of Cushing syndrome — a fatty hump between your shoulders, a rounded face, and pink or purple stretch marks on your skin.”

In a study published in the US National Library of Medicine National Institutes of Health, thyroid carcinoma and Cushing’s syndrome was further investigated.

The study noted: “Two cases of thyroid carcinoma and Cushing’s syndrome are reported.

“Both of our own cases were medullary carcinomas of the thyroid, and on reviewing the histology of five of the other cases all proved to be medullary carcinoma with identifiable amyloid in the stroma.

“A consideration of the temporal relationships of the development of the carcinoma and of Cushing’s syndrome suggested that in the two cases with papillary carcinoma these conditions could have been unrelated, but that in eight of the nine cases with medullary carcinoma there was evidence that thyroid carcinoma was present at the time of diagnosis of Cushing’s syndrome.

“Medullary carcinoma of the thyroid is also probably related to this group of tumours. It is suggested that the great majority of the tumours associated with Cushing’s syndrome are derived from cells of foregut origin which are endocrine in nature.”

In rare cases, adrenal tumours can cause Cushing syndrome a condition arising when a tumour secretes hormones the thyroid wouldn’t normally create.

Cushing syndrome associated with medullary thyroid cancer is uncommon.

The syndrome is more commonly caused by the pituitary gland overproducing adrenocorticotropic hormone (ACTH), or by taking oral corticosteroid medication.

See a GP if you have symptoms of thyroid cancer, warns the NHS.

The national health body added: “The symptoms may be caused by less serious conditions, such as an enlarged thyroid, so it’s important to get them checked.

“A GP will examine your neck and can organise a blood test to check how well your thyroid is working.

“If they think you could have cancer or they’re not sure what’s causing your symptoms, you’ll be referred to a hospital specialist for more tests.”

 

Adapted from https://www.express.co.uk/life-style/health/1351753/thyroid-cancer-signs-symptoms-cushing-syndrome

%d bloggers like this: