Metabolomic Biomarkers in Urine of Cushing’s Syndrome Patients

Int. J. Mol. Sci. 2017, 18(2), 294; doi:10.3390/ijms18020294 (registering DOI)
Department of Food Sciences, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
Department of Endocrinology and Internal Medicine, Medical University of Gdańsk, ul. Dębinki 7, 80-211 Gdańsk, Poland
Department ofEnvironmental Analytics, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
Author to whom correspondence should be addressed.
Academic Editor: Ting-Li (Morgan) Han
Received: 5 December 2016 / Revised: 9 January 2017 / Accepted: 19 January 2017 / Published: 29 January 2017
(This article belongs to the Section Molecular Diagnostics)
Download PDF [1853 KB, uploaded 29 January 2017]

Abstract

Cushing’s syndrome (CS) is a disease which results from excessive levels of cortisol in the human body. The disorder is associated with various signs and symptoms which are also common for the general population not suffering from compound hypersecretion. Thus, more sensitive and selective methods are required for the diagnosis of CS.

This follow-up study was conducted to determine which steroid metabolites could serve as potential indicators of CS and possible subclinical hypercortisolism in patients diagnosed with so called non-functioning adrenal incidentalomas (AIs).

Urine samples from negative controls (n = 37), patients with CS characterized by hypercortisolism and excluding iatrogenic CS (n = 16), and patients with non-functioning AIs with possible subclinical Cushing’s syndrome (n = 25) were analyzed using gas chromatography-mass spectrometry (GC/MS) and gas chromatograph equipped with flame ionization detector (GC/FID). Statistical and multivariate methods were applied to investigate the profile differences between examined individuals. The analyses revealed hormonal differences between patients with CS and the rest of examined individuals.

The concentrations of selected metabolites of cortisol, androgens, and pregnenetriol were elevated whereas the levels of tetrahydrocortisone were decreased for CS when opposed to the rest of the study population. Moreover, after analysis of potential confounding factors, it was also possible to distinguish six steroid hormones which discriminated CS patients from other study subjects.

The obtained discriminant functions enabled classification of CS patients and AI group characterized by mild hypersecretion of cortisol metabolites. It can be concluded that steroid hormones selected by applying urinary profiling may serve the role of potential biomarkers of CS and can aid in its early diagnosis.

 

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

From http://www.mdpi.com/1422-0067/18/2/294

Medical Therapies in Cushing’s Syndrome

Chapter

The Hypothalamic-Pituitary-Adrenal Axis in Health and Disease

pp 165-179

Date: 03 December 2016

Medical Therapies in Cushing’s Syndrome

Abstract

Medical therapy has an important, albeit secondary, role in patients with Cushing’s syndrome. While medications are not currently used as definitive therapy of this condition, they can be very effective in controlling hypercortisolism in patients who fail surgery, those who are not surgical candidates, or those whose tumor location is unknown. Medical therapies can be particularly helpful to control hypercortisolism in patients with Cushing’s disease who underwent radiation therapy and are awaiting its salutary effects.

Currently available treatment options include several steroidogenesis inhibitors (ketoconazole, metyrapone, mitotane, etomidate), which block one or several steps in cortisol synthesis in the adrenal glands, centrally acting agents (cabergoline, pasireotide), which decrease ACTH secretion, and glucocorticoid receptor antagonists, which are represented by a single agent (mifepristone). With the exception of pasireotide and mifepristone, available agents are used “off-label” to manage hypercortisolism. Several other medications are at various stages of development and may offer additional options for the management of this serious condition.

As more potential molecular targets become known and our understanding of the pathogenesis of Cushing’s syndrome improves, it is anticipated that novel, rationally designed medical therapies may emerge. Clinical trials are needed to further investigate the relative risks and benefits of currently available and novel medical therapies and examine the potential role of combination therapy in the management of Cushing’s syndrome.

Keywords

Cabergoline, Etomidate, Ketoconazole, Levoketoconazole, Metyrapone, Mifepristone, Mitotane, Osilodrostat, Pasireotide, Pituitary adenoma

Causes of Cushing’s Syndrome

Cushing’s syndrome—also referred to as hypercortisolism—is fairly rare. However, researchers have boiled down a few key causes of Cushing’s syndrome, which you’ll read about below.

The cause of Cushing’s syndrome boils down to: Your body is exposed to too much cortisol. There are a few ways that this over-exposure can happen, including taking certain medications and having a tumor on your pituitary gland or adrenal gland.

Can Taking Corticosteroids Cause Cushing’s Disease?
One particular type of medication can cause Cushing’s syndrome: corticosteroids. But rest assured: Not all steroid medications cause Cushing’s syndrome. It’s more common to develop Cushing’s syndrome from steroids you take in pill form or steroids you inject. Steroid creams and steroids you inhale are not common causes of Cushing’s syndrome.

Some steroid medications have the same effect as the hormone cortisol does when produced in your body. But as with an excessive production of cortisol in your body, taking too much corticosteroid medications can, over time, lead to Cushing’s syndrome.

It’s common for people with asthma, rheumatoid arthritis, and lupus to take corticosteroids. Prednisone (eg, Deltasone) is an example of a corticosteroid medication.

Other Cushing’s Disease Causes
Your body can over-produce cortisol or adrenocorticotropic hormone (ACTH). The pituitary gland secretes ACTH, which is in charge of stimulating the adrenal glands to produce cortisol, and the adrenal glands are responsible for releasing cortisol into the bloodstream.

Cortisol performs important tasks in your body, such as helping to maintain blood pressure and regulate how your body metabolizes proteins, fats, and carbohydrates, so it’s necessary for your body to maintain normal levels of it.

The following can cause excessive production of cortisol or ACTH, leading to Cushing’s syndrome.

  • Pituitary gland tumors: A benign (non-cancerous) tumor of the pituitary gland can secrete an excess amount of ACTH, which can cause Cushing’s syndrome. Also known as pituitary adenomas, benign tumors of the pituitary gland affect women 5 times more often than men.
  • Adrenal gland tumors: A tumor in one of your adrenal glands can lead to Cushing’s syndrome by causing too much cortisol to enter your bloodstream. Most of these tumors are non-cancerous (called adrenal adenomas).

    Cancerous adrenal tumors—called adrenocortical carcinomas—are relatively rare. These types of tumors typically cause extremely high levels of cortisol and very rapid development of symptoms.

  • Other tumors in the body: Certain tumors that develop outside the pituitary gland can also produce ACTH. When this happens, it’s known as ectopic ACTH syndrome. Ectopic means that something is in an abnormal place or position. In this case, only the pituitary gland should produce ACTH, so if there is a tumor producing ACTH and it isn’t located on the pituitary, it’s ectopic.

    It’s unusual to have a tumor that secretes ACTH outside the pituitary. These tumors are usually found in the pancreas, lungs, or thyroid, and they can be benign or malignant (cancerous).

    The most common forms of ACTH-producing tumors are small cell lung cancer, which accounts for about 13% of all lung cancer cases, and carcinoid tumors—small, slow-growing tumors that arise from hormone-producing cells in various parts of the body.

  • Familial Cushing’s syndrome: Although it’s rare, Cushing’s syndrome can develop from an inherited tendency to have tumors on one or more of your endocrine glands. Some inherited conditions, such as multiple endocrine neoplasia (MEN 1), can involve tumors that over-produce cortisol or ACTH, leading to Cushing’s syndrome.

If you think you could have Cushing’s syndrome or you have questions about the causes of Cushing’s syndrome, talk to your doctor immediately.

Written by | Reviewed by Daniel J. Toft MD, PhD, adapted from  http://www.endocrineweb.com/conditions/cushings-syndrome/cushings-syndrome-causes

Cushing’s Syndrome and Skin Problems

By Afsaneh Khetrapal, BSc (Hons)

Cushing’s Syndrome (sometimes called hypercortisolism) is a hormonal disease caused by an abnormally high level of the hormone cortisol in the body. This may arise because of an endogenous or exogenous source of cortisol. Endogenous causes include the elevated production of cortisol by the adrenal glands, while exogenous causes include the excessive use of cortisol or other similar steroid (glucocorticoid) hormones over a prolonged period of time.

The adrenal glands are situated just above each kidney, and form part of the endocrine system. They have numerous functions such as the production of hormones called catecholamines, which includes epinephrine and norepinephrine. Interestingly, the outer layer (cortex) of the adrenal glands has the distinct responsibility of producing cortisol. This hormone is best known for its crucial role in the bodily response to stress.

At physiologically appropriate levels, cortisol is vital in maintaining normal sleep-wake cycles, and acts to increase blood sugar levels. It suppresses the immune system, regulates the effect of insulin on the metabolism of fats, proteins, and carbohydrates, and help with the homeostasis of water in the body.

Exogenous corticosteroids can also lead to Cushing’s syndrome, when they are used as a form of long-term treatment for various medical conditions. In fact, the long-term use of steroid medication is the most common reason for the development of Cushing’s syndrome.

Prednisolone is the most commonly prescribed steroid medicine. It belongs to a class of medicine that is sometimes used to treat conditions such as certain forms of arthritis and cancer. Other uses include the rapid and effective reduction of inflammation in conditions such as asthma and multiple sclerosis (MS), as well as the treatment of autoimmune conditions such as lupus erythematosus, and rheumatoid arthritis.

Overall, Cushing’s syndrome is quite uncommon and affects approximately 1 in 50,000 people. Most of them are adults between the ages of 20 and 50.  Women are 3 times more commonly affected than men. Additionally, patients who are obese, or those who have type 2 diabetes with poorly controlled blood sugar and blood pressure show a greater predisposition to the disorder.

Symptoms of Cushing’s syndrome

There are numerous symptoms associated with Cushing’s syndrome, which range from muscle weakness, hypertension, curvature of the spine (kyphosis), osteoporosis, and depression, to fatigue Specific symptoms which pertain to the skin are as follows:

  • Thinning of the skin and other mucous membranes: the skin becomes dry and bruises easily. Cortisol causes the breakdown of some dermal proteins along with the weakening of small blood vessels. In fact, the skin may become so weak as to develop a shiny, paper-thin quality which allows it to be torn easily.
  • Increased susceptibility of skin to infections
  • Poor wound healing  of bruises, cuts, and scratches
  • Spots appear on the upper body, that is, on the face, chest or shoulders
  • Darkened skin which is seen on the neck
  • Wide, red-purple streaks (at least half an inch wide) called striae which are most common on the sides of the torso, the lower abdomen, thighs, buttocks, arms, and breasts, or in areas of weight gain. The accumulation of fat caused by Cushing’s syndrome stretches the skin which is already thin and weakened due to cortisol action, causing it to hemorrhage and stretch permanently, healing by fibrosis.
  • Acne: this can develop in patients of all ages.
  • Swollen ankles: this is caused by the accumulation of fluid, called edema.
  • Hyperhidrosis (excessive sweating)

Reviewed by Dr Liji Thomas, MD

From http://www.news-medical.net/health/Cushings-Syndrome-and-Skin-Problems.aspx

Who’s at Risk for Cushing’s?

by Kristen Monaco
Contributing Writer, MedPage Today

Researchers have developed a new method to assess specific populations for Cushing’s syndrome, based on results from a multicenter study.

The prospective cohort study evaluated at-risk patients for Cushing’s syndrome to create a novel type of scoring system in order to better predict the development of disease, stated lead author Antonio León-Justel, PhD,of the Seville Institute of Biomedicine in Spain, and colleagues.

Cushing’s syndrome is identified by an excess of cortisol and/or glucocorticoids in the blood, which can result in myriad negative health outcomes, including an increased risk of death and morbidity, according to the study in The Journal of Clinical Endocrinology & Metabolism.

Because Cushing’s syndrome (CS) is complex and difficult to diagnose, there is a necessity for new methods to assess at-risk populations in order to mitigate the rising prevalence of the disorder, the authors noted.

“The diagnosis of CS might pose a considerable challenge even for experienced endocrinologists since there are no pathognomonic symptoms or signs of CS and most of the symptoms and signs of CS are common in the general population including obesity, hypertension, bone loss, and diabetes,” the senior author, Alfonso Leal Cerro, MD, toldMedPage Today via email. “Routine screening for CS remains impractical due to the estimated low prevalence of the disease. However this prevalence might be higher in at-risk populations.”

The authors screened a total of 353 at-risk patients from 13 different hospitals across Spain between January 2012 and July 2013 to measure cortisol variability from saliva samples.

At-risk populations, which the authors note have a higher prevalence of Cushing’s syndrome, included individuals with type 2 diabetes, hypertension, and osteoporosis.

The patients screened in the study were each identified as having at least two of the risk factors for Cushing’s syndrome: high blood pressure (defined as taking two or more drugs and having a systolic blood pressure over 140 mmHg and/or a diastolic blood pressure over 90 mmHg), obesity (body mass index >30), uncontrolled diabetes (HbA1c>7.0%), osteoporosis (T-score ≥ -2.5 SD), and virilization syndrome (hirsutism) with menstrual disorders.

The researchers used clinical and biochemical methods of assessment. Clinical methods included inspection of physical characteristics, such as muscle atrophy, purple striae, and/or facial plethora. Biochemical methods included collecting saliva and blood samples from participants to test cortisol levels using a chemiluminescence method. Each individual was identified as either negative for hypercortisolism (late-night salivary cortisol [LNSC] ≤ 7.5 nmol/L and dexamethasone suppression test [DST] ≤ 50 nmol/L) or positive for hypercortisolism (LNSC > 7.5 nmol/L and DST > 50 nmol/L).

Univariate testing indicated the following significant characteristics to be positively correlated with the development of Cushing’s syndrome:

  • Muscular atrophy (15.2, CI 95% 4.48-51.25);
  • Osteoporosis (4.60, 1.66-12.75); and
  • Dorsocervical fat pad (3.32, 1.48-7.5).

A logistic regression analysis of LNSC values also showed significant correlation between Cushing’s syndrome and the following top three characteristics:

  • Muscular atrophy (9.04, CI 95% 2.36-34.65);
  • Osteoporosis (3.62, CI 95% 1.16-11.35); and
  • Dorsocervical fat pad (3.3, CI 95% 1.52-7.17).

Roberto Salvatori, MD, professor and medical director of the Johns Hopkins Pituitary Center, who was not involved with the study, commented to MedPage Today in an email: “Any endocrinologist would proceed with careful Cushing biochemical evaluation in the presence of the clinical features (muscular atrophy, osteoporosis, and dorsocervical fat pad) that are well known to be associated with hypercortisolism. Of notice, the odds ratio is further increased by an abnormal late-night salivary cortisol, which is already a screening test for hypercortisolism.”

The researchers used their results to develop an equation to determine the level of risk a patient has for developing Cushing’s syndrome, taking into account factors for osteoporosis, dorsocervical fat pads, muscular atrophy, and LNSC levels.

Although the study was able to develop a comprehensive risk model for the syndrome, when tested against the prevalence for Cushing’s syndrome in the subject group, the equation generated a total of 56 false-positive and 25 true-positive results. Overall, the researchers wrote, 83% of patients were accurately classified as belonging to the at-risk population when using the equation.

Because the newly developed equation for identifying at-risk individuals involved factors that are relatively easy to test for, the authors noted that clinical application is broad and cost-effective in a primary care setting.

“We would like to test the scoring system in different clinical settings such as primary care or hypertension clinics,” Leal Cerro said. “Primary care would be a particularly interesting setting since it might significantly decrease the time to diagnosis, something critical to avoid an excessive exposure to glucocorticoid excess and consequent deleterious effects.”

Salvatori said that while the study was a good start at shedding light on some of the unknowns about Cushing’s syndrome, more research is required. “The real question in my mind is when does a non-endocrinologist need to suspect Cushing in a general medicine, orthopedic, or other clinic? When the internal medicine residents ask me about guidelines for ‘who to screen for hypercortisolism in my clinic,’ I am unable to provide an evidence-based answer.”

The study was funded by a grant from Novartis Oncology, Spain.

León-Justel and Leal Cerro disclosed financial relationships with Novartis Oncology, Spain.

  • Reviewed by F. Perry Wilson, MD, MSCEAssistant Professor, Section of Nephrology, Yale School of Medicine and Dorothy Caputo, MA, BSN, RN, Nurse Planner

LAST UPDATED 08.15.2016

%d bloggers like this: