Pregnancy Doesn’t Boost Cushing Disease Recurrences

Researchers published the study covered in this summary on Research Square as a preprint that has not yet been peer reviewed.

Key Takeaways

  • Among women who underwent pituitary surgery to treat Cushing disease subsequent pregnancy had no apparent effect on Cushing disease recurrence, in a single-center review of 113 women treated over a 30-year period.

Why This Matters

  • No single factor predicts the recurrence of Cushing disease during long-term follow-up of patients who have undergone pituitary surgery.
  • This is the first study to assess the effect of pregnancy on Cushing disease recurrence in a group of reproductive-age women who initially showed post-surgical remission.

Study Design

  • Retrospective study of 355 patients with confirmed Cushing disease who were admitted to a single tertiary hospital in Brazil between 1990 and 2020. All patients had transsphenoidal surgery, with a minimum follow-up of 6 months and median follow-up of 83 months. Remission occurred in 246 of these patients.
  • The current analysis focused on 113 of the patients who achieved remission, were women, were 45 years old or younger at time of surgery (median 32 years old), and had information available on their obstetric history.
  • Ninety-one of these women (81%) did not become pregnant after their surgery, and 22 (19%) became pregnant after surgery.

Key Results

  • Among the 113 women in the main analysis 43 (38%) had a Cushing disease recurrence, a median of 48 months after their pituitary surgery.
  • Following surgery, 11 women in each of the two subgroups (recurrence, no recurrence) became pregnant.
  • Although the subgroup with recurrence had a higher incidence of pregnancy (11/43; 26%) compared with those with no recurrence (11/70; 16%) Kaplan-Meier analysis showed that survival free of Cushing disease recurrence was similar and not significantly different in the women with a postsurgical pregnancy and those who did not become pregnant (P=.531).
  • The review also showed that, of the women who became pregnant, several obstetrical measures were similar between patients who had a recurrence and those who remained in remission, including number of pregnancies per patient, maternal weight gain, type of delivery (normal or cesarean), delivery time (term or premature), neonatal weight, and neonatal size. The review also showed roughly similar rates of maternal and fetal complications in these two subgroups of women who became pregnant.

Limitations

  • The study was retrospective and included a relatively small number of patients.
  • The authors collected information on obstetric history for some patients by telephone or email contacts.

Disclosures

  • The study received no commercial funding.
  • None of the authors had disclosures.

This is a summary of a preprint research study ” Pregnancy After Pituitary Surgery Does Not Influence the Recurrence of Cushing s Disease,  written by researchers at the Sao Paulo (Brazil) University Faculty of Medicine on Research Square provided to you by Medscape. This study has not yet been peer reviewed. The full text of the study can be found on researchsquare.com.

Clinical Trial: Multicenter Study of Seliciclib (R-roscovitine) for Cushing Disease

Sponsor:
Information provided by (Responsible Party):
Shlomo Melmed, MD, Cedars-Sinai Medical Center
Brief Summary:

This phase 2 multicenter, open-label clinical trial will evaluate safety and efficacy of 4 weeks of oral seliciclib in patients with newly diagnosed, persistent, or recurrent Cushing disease.

Funding Source – FDA Office of Orphan Products Development (OOPD)

Condition or disease  Intervention/treatment  Phase 
Cushing Disease Drug: Seliciclib Phase 2
Detailed Description:
This phase 2 multicenter, open-label clinical trial will evaluate safety and efficacy of two of three potential doses/schedules of oral seliciclib in patients with newly diagnosed, persistent, or recurrent Cushing disease. Up to 29 subjects will be treated with up to 800 mg/day oral seliciclib for 4 days each week for 4 weeks and enrolled in sequential cohorts based on efficacy outcomes. The study will also evaluate effects of seliciclib on quality of life and clinical signs and symptoms of Cushing disease.
Ages Eligible for Study: 18 Years and older   (Adult, Older Adult)
Sexes Eligible for Study: All
Accepts Healthy Volunteers: No
Criteria

Inclusion criteria:

  • Male and female patients at least 18 years old
  • Patients with confirmed pituitary origin of excess adrenocorticotropic hormone (ACTH) production:
    • Persistent hypercortisolemia established by two consecutive 24 h UFC levels at least 1.5x the upper limit of normal
    • Normal or elevated ACTH levels
    • Pituitary macroadenoma (>1 cm) on MRI or inferior petrosal sinus sampling (IPSS) central to peripheral ACTH gradient >2 at baseline and >3 after corticotropin-releasing hormone (CRH) stimulation
    • Recurrent or persistent Cushing disease defined as pathologically confirmed resected pituitary ACTH-secreting tumor or IPSS central to peripheral ACTH gradient >2 at baseline and >3 after CRH stimulation, and 24 hour UFC above the upper limit of normal reference range beyond post-surgical week 6
    • Patients on medical treatment for Cushing disease. The following washout periods must be completed before screening assessments are performed:
      • Inhibitors of steroidogenesis (metyrapone, ketoconazole): 2 weeks
      • Somatostatin receptor ligand pasireotide: short-acting, 2 weeks; long-acting, 4 weeks
      • Progesterone receptor antagonist (mifepristone): 2 weeks
      • Dopamine agonists (cabergoline): 4 weeks
      • CYP3A4 strong inducers or inhibitors: varies between drugs; minimum 5-6 times the half-life of drug

Exclusion criteria:

  • Patients with compromised visual fields, and not stable for at least 6 months
  • Patients with abutment or compression of the optic chiasm on MRI and normal visual fields
  • Patients with Cushing’s syndrome due to non-pituitary ACTH secretion
  • Patients with hypercortisolism secondary to adrenal tumors or nodular (primary) bilateral adrenal hyperplasia
  • Patients who have a known inherited syndrome as the cause for hormone over secretion (i.e., Carney Complex, McCune-Albright syndrome, Multiple endocrine neoplasia (MEN) 1
  • Patients with a diagnosis of glucocorticoid-remedial aldosteronism (GRA)
  • Patients with cyclic Cushing’s syndrome defined by any measurement of UFC over the previous 1 months within normal range
  • Patients with pseudo-Cushing’s syndrome, i.e., non-autonomous hypercortisolism due to overactivation of the hypothalamic-pituitary-adrenal (HPA) axis in uncontrolled depression, anxiety, obsessive compulsive disorder, morbid obesity, alcoholism, and uncontrolled diabetes mellitus
  • Patients who have undergone major surgery within 1 month prior to screening
  • Patients with serum K+< 3.5 while on replacement treatment
  • Diabetic patients whose blood glucose is poorly controlled as evidenced by HbA1C >8%
  • Patients who have clinically significant impairment in cardiovascular function or are at risk thereof, as evidenced by congestive heart failure (NYHA Class III or IV), unstable angina, sustained ventricular tachycardia, clinically significant bradycardia, high grade atrioventricular (AV) block, history of acute MI less than one year prior to study entry
  • Patients with liver disease or history of liver disease such as cirrhosis, chronic active hepatitis B and C, or chronic persistent hepatitis, or patients with alanine aminotransferase (ALT) or aspartate aminotransferase (AST) more than 1.5 x ULN, serum total bilirubin more than ULN, serum albumin less than 0.67 x lower limit of normal (LLN) at screening
  • Serum creatinine > 2 x ULN
  • Patients not biochemically euthyroid
  • Patients who have any current or prior medical condition that can interfere with the conduct of the study or the evaluation of its results, such as
    • History of immunocompromise, including a positive HIV test result (ELISA and Western blot). An HIV test will not be required, however, previous medical history will be reviewed
    • Presence of active or suspected acute or chronic uncontrolled infection
    • History of, or current alcohol misuse/abuse in the 12 month period prior to screening
  • Female patients who are pregnant or lactating, or are of childbearing potential and not practicing a medically acceptable method of birth control. If a woman is participating in the trial then one form of contraception is sufficient (pill or diaphragm) and the partner should use a condom. If oral contraception is used in addition to condoms, the patient must have been practicing this method for at least two months prior to screening and must agree to continue the oral contraceptive throughout the course of the study and for 3 months after the study has ended. Male patients who are sexually active are required to use condoms during the study and for three month afterwards as a precautionary measure (available data do not suggest any increased reproductive risk with the study drugs)
  • Patients who have participated in any clinical investigation with an investigational drug within 1 month prior to screening or patients who have previously been treated with seliciclib
  • Patients with any ongoing or likely to require additional concomitant medical treatment to seliciclib for the tumor
  • Patients with concomitant treatment of strong CYP3A4 inducers or inhibitors.
  • Patients who were receiving mitotane and/or long-acting somatostatin receptor ligands octreotide long-acting release (LAR) or lanreotide
  • Patients who have received pituitary irradiation within the last 5 years prior to the baseline visit
  • Patients who have been treated with radionuclide at any time prior to study entry
  • Patients with known hypersensitivity to seliciclib
  • Patients with a history of non-compliance to medical regimens or who are considered potentially unreliable or will be unable to complete the entire study
  • Patients with presence of Hepatitis B surface antigen (HbsAg)
  • Patients with presence of Hepatitis C antibody test (anti-HCV)

ACTH Levels After Surgery Help Predict Remission, Recurrence in Cushing’s

Levels of adrenocorticotropic hormone (ACTH) in circulation after pituitary surgery may help predict which Cushing’s disease patients will achieve early remission and which will eventually see the disease return, a study shows.

Also, the earlier that patients reached their lowest peak of ACTH levels, the better their long-term outcomes.

The study, “Prognostic usefulness of ACTH in the postoperative period of Cushing’s disease,” was published in the journal Endocrine Connections.

Removing the pituitary tumor through a minimally invasive surgery called transsphenoidal surgery is still the treatment of choice for Cushing’s disease patients. But not all patients enter remission, and even among those who do, a small proportion will experience disease recurrence.

While cortisol levels have been suggested as a main predictor of remission and recurrence, there is no consensus as to which cutoff point should be used after surgery, or the best time for measuring this hormone.

Because Cushing’s disease is caused by an ACTH-producing tumor in the pituitary gland, and ACTH has a short half-life (approximately 10 minutes), it is expected that ACTH levels drop markedly within a few hours after surgery.

Thus, a group of researchers in Spain aimed to determine whether blood levels of ACTH could be useful for predicting remission of Cushing’s disease both immediately after surgery (defined as less than 72 hours) and in the long term.

Researchers analyzed 65 patients with Cushing’s disease who had undergone transsphenoidal surgery (seven required a second intervention) between 2005 and 2016. Remission within three months was seen in 56 of 65 cases; late disease recurrence was seen in 18 of 58 cases.

Investigators measured the ACTH nadir concentration (defined as the lowest concentration) and the time taken to reach nadir levels after surgery, as well as the plasma ACTH concentration before hospital discharge.

While ACTH levels had no predictive value, the team found that people who went into remission had significantly lower ACTH nadir levels and ACTH levels at discharge. On the other hand, levels of ACHT nadir and at discharge were significantly higher for people who experienced a relapse, compared to those who remained in remission.

Using artificial intelligence algorithms, the researchers further found that ACTH nadir, ACTH at discharge, and cortisol nadir values were all of great relevance to predict remission within three months.

Analysis indicated that using a cutoff point of 3.3 pmol/L of ACTH after surgery and before discharge gave the best sensitivity and specificity for predicting a patient’s prognosis.

Researchers further found that the time patients took to reach their ACTH nadir, regardless of nadir levels, also influenced their outcomes. In fact, patients reaching this nadir in less than than 46 hours more likely achieved early remission.

And taking longer than 39 hours to reach the ACTH nadir was significantly more frequent in patients who experienced recurrence. This indicates that the time to ACTH nadir is an important measure for prognosis.

“In the immediate postoperative period of patients with [Cushing’s disease], the ACTH concentration is of prognostic utility in relation to late disease remission,” the researchers said.

Overall, “we propose an ACTH value <3.3 pmol/L as a good long-term prognostic marker in the postoperative period of CD. Reaching the ACTH nadir in less time is associated to a lesser recurrence rate,” the study concluded.

Patricia holds her Ph.D. in Cell Biology from University Nova de Lisboa, and has served as an author on several research projects and fellowships, as well as major grant applications for European Agencies. She also served as a PhD student research assistant in the Laboratory of Doctor David A. Fidock, Department of Microbiology & Immunology, Columbia University, New York.

New discoveries offer possible Cushing’s disease cure

LOS ANGELES — More than a century has passed since the neurosurgeon and pathologist Harvey Cushing first discovered the disease that would eventually bear his name, but only recently have several key discoveries offered patients with the condition real hope for a cure, according to a speaker here.

There are several challenges clinicians confront in the diagnosis and treatment of Cushing’s disease, Shlomo Melmed, MB, ChB, FRCP, MACP, dean, executive vice president and professor of medicine at Cedars-Sinai Medical Center in Los Angeles, said during a plenary presentation. Patients who present with Cushing’s disease typically have depression, impaired mental function and hypertension and are at high risk for stroke, myocardial infarction, thrombosis, dyslipidemia and other metabolic disorders, Melmed said. Available therapies, which range from surgery and radiation to the somatostatin analogue pasireotide (Signifor LAR, Novartis), are often followed by disease recurrence. Cushing’s disease is fatal without treatment; the median survival if uncontrolled is about 4.5 years, Melmed said.

“This truly is a metabolic, malignant disorder,” Melmed said. “The life expectancy today in patients who are not controlled is apparently no different from 1930.”

The outlook for Cushing’s disease is now beginning to change, Melmed said. New targets are emerging for treatment, and newly discovered molecules show promise in reducing the secretion of adrenocorticotropic hormone (ACTH) and pituitary tumor size.

“Now, we are seeing the glimmers of opportunity and optimism, that we can identify specific tumor drivers — SST5, [epidermal growth factor] receptor, cyclin inhibitors — and we can start thinking about personalized, precision treatment for these patients with a higher degree of efficacy and optimism than we could have even a year or 2 ago,” Melmed said. “This will be an opportunity for us to broaden the horizons of our investigations into this debilitating disorder.”

Challenges in diagnosis, treatment

Overall, about 10% of the U.S. population harbors a pituitary adenoma, the most common type of pituitary disorder, although the average size is only about 6 mm and 40% of them are not visible, Melmed said. In patients with Cushing’s disease, surgery is effective in only about 60% to 70% of patients for initial remission, and overall, there is about a 60% chance of recurrence depending on the surgery center, Melmed said. Radiation typically leads to hypopituitarism, whereas surgical or biochemical adrenalectomy is associated with adverse effects and morbidity. Additionally, the clinical features of hypercortisolemia overlap with many common illnesses, such as obesity, hypertension and type 2 diabetes.

“There are thousands of those patients for every patient with Cushing’s disease who we will encounter,” Melmed said.

The challenge for the treating clinician, Melmed said, is to normalize cortisol and ACTH with minimal morbidity, to resect the tumor mass or control tumor growth, preserve pituitary function, improve quality of life and achieve long-term control without recurrence.

“This is a difficult challenge to meet for all of us,” Melmed said.

Available options

Pituitary surgery is typically the first-line option offered to patients with Cushing’s disease, Melmed said, and there are several advantages, including rapid initial remission, a one-time cost and potentially curing the disease. However, there are several disadvantages with surgery; patients undergoing surgery are at risk for postoperative venous thromboembolism, persistent hypersecretion of ACTH, adenoma persistence or recurrence, and surgical complications.

Second-line options are repeat surgery, radiation, adrenalectomy or medical therapy, each with its own sets of pros and cons, Melmed said.

“The reality of Cushing’s disease — these patients undergo first surgery and then recur, second surgery and then recur, then maybe radiation and then recur, and then they develop a chronic illness, and this chronic illness is what leads to their demise,” Melmed said. “Medical therapy is appropriate at every step of the spectrum.”

Zebrafish clues

Searching for new options, Melmed and colleagues introduced a pituitary tumor transforming gene discovered in his lab into zebrafish, which caused the fish to develop the hallmark features of Cushing’s disease: high cortisol levels, diabetes and cardiovascular disease. In the fish models, researchers observed that cyclin E activity, which drives the production of ACTH, was high.

Melmed and colleagues then screened zebrafish larvae in a search for cyclin E inhibitors to derive a therapeutic molecule and discovered R-roscovitine, shown to repress the expression of proopiomelanocortin (POMC), the pituitary precursor of ACTH.

In fish, mouse and in vitro human cell models, treatment with R-roscovitine was associated with suppressed corticotroph tumor signaling and blocked ACTH production, Melmed said.

“Furthermore, we asked whether or not roscovitine would actually block transcription of the POMC gene,” Melmed said. “It does. We had this molecule (that) suppressed cyclin E and also blocks transcription of POMC leading to blocked production of ACTH.”

In a small, open-label, proof-of-principal study, four patients with Cushing’s disease who received roscovitine for 4 weeks developed normalized urinary free cortisol, Melmed said.

Currently, the FDA Office of Orphan Products Development is funding a multicenter, phase 2, open-label clinical trial that will evaluate the safety and efficacy of two of three potential doses of oral roscovitine (seliciclib) in patients with newly diagnosed, persistent or recurrent Cushing disease. Up to 29 participants will be treated with up to 800 mg per day of oral seliciclib for 4 days each week for 4 weeks and enrolled in sequential cohorts based on efficacy outcomes.

“Given the rarity of the disorder, it will probably take us 2 to 3 years to recruit patients to give us a robust answer,” Melmed said. “This zebrafish model was published in 2011, and we are now in 2019. It has taken us 8 years from publication of the data to, today, going into humans with Cushing’s. Hopefully, this will light the pathway for a phase 2 trial.”

 Offering optimism’

Practitioners face a unique paradigm when treating patients with Cushing’s disease, Melmed said. Available first- and second-line therapy options often are not a cure for many patients, who develop multimorbidity and report a low quality of life.

“Then, we are kept in this difficult cycle of what to do next and, eventually, running out of options,” Melmed said. “Now, we can look at novel, targeted molecules and add those to our armamentarium and at least offer our patients the opportunity to participate in trials, or at least offer the optimism that, over the coming years, there will be a light at the end of the tunnel for their disorder.”

Melmed compared the work to Lucas Cranach’s Fons Juventutis (The Fountain of Youth). The painting, completed in 1446, shows sick people brought by horse-drawn ambulance to a pool of water, only to emerge happy and healthy.

“He was imagining this ‘elixir of youth’ (that) we could offer patients who are very ill and, in fact, that is what we as endocrinologists do,” Melmed said. “We offer our patients these elixirs. These Cushing’s patients are extremely ill. We are trying with all of our molecular work and our understanding of pathogenesis and signaling to create this pool of water for them, where they can emerge with at least an improved quality of life and, hopefully, a normalized mortality. That is our challenge.” – by Regina Schaffer

Reference:

Melmed S. From zebrafish to humans: translating discoveries for the treatment of Cushing’s disease. Presented at: AACE Annual Scientific and Clinical Congress; April 24-28, 2019; Los Angeles.

Disclosure: Melmed reports no relevant financial disclosures.

 

From https://www.healio.com/endocrinology/neuroendocrinology/news/online/%7B585002ad-640f-49e5-8d62-d1853154d7e2%7D/new-discoveries-offer-possible-cushings-disease-cure

Faster Adrenal Recovery May Predict Cushing’s Disease Recurrence

A shorter duration of adrenal insufficiency — when the adrenal gland is not working properly — after surgical removal of a pituitary tumor may predict recurrence in Cushing’s disease patients, a new study suggests.

The study, “Recovery of the adrenal function after pituitary surgery in patients with Cushing Disease: persistent remission or recurrence?,” was published in the journal Neuroendocrinology.

Cushing’s disease is a condition characterized by excess cortisol in circulation due to a tumor in the pituitary gland that produces too much of the adrenocorticotropic hormone (ACTH). This hormone acts on the adrenal glands, telling them to produce cortisol.

The first-line treatment for these patients is pituitary surgery to remove the tumor, but while success rates are high, most patients experience adrenal insufficiency and some will see their disease return.

Adrenal insufficiency happens when the adrenal glands cannot make enough cortisol — because the source of ACTH was suddenly removed — and may last from months to years. In these cases, patients require replacement hormone therapy until normal ACTH and cortisol production resumes.

However, the recovery of adrenal gland function may mean one of two things: either patients have their hypothalamus-pituitary-adrenal axis — a feedback loop that regulates ACTH and cortisol production — functioning normally, or their disease returned.

So, a team of researchers in Italy sought to compare the recovery of adrenal gland function in patients with a lasting remission to those whose disease recurred.

The study included 61 patients treated and followed at the Ospedale Maggiore Policlinico of Milan between 1990 and 2017. Patients had been followed for a median of six years (minimum three years) and 10 (16.3%) saw their disease return during follow-up.

Overall, the median time to recovery of adrenal function was 19 months, but while most patients in remission (67%) had not yet recovered their adrenal function after a median of six years, all patients whose disease recurred experienced adrenal recovery within 22 months.

Among those with disease recurrence, the interval from adrenal recovery to recurrence lasted a median of 1.1 years, but in one patient, signs of disease recurrence were not seen for 15.5 years.

Statistical analysis revealed that the time needed for adrenal recovery was negatively associated with disease recurrence, suggesting that patients with sorter adrenal insufficiency intervals were at an increased risk for recurrence.

“In conclusion, our study shows that the duration of adrenal insufficiency after pituitary surgery in patients with CD is significantly shorter in recurrent CD than in the persistent remission group,” researchers wrote.

“The duration of AI may be a useful predictor for CD [Cushing’s disease] recurrence and those patients who show a normal pituitary-adrenal axis within 2 years after surgery should be strictly monitored being more at risk of disease relapse,” they concluded.

From https://cushingsdiseasenews.com/2019/01/29/faster-adrenal-recovery-may-predict-recurrence-cushings-disease/

%d bloggers like this: