Cushing’s Disease Treatment Market to Witness an Outstanding Growth by 2017 – 2025

Cushing disease is caused by tumour in the pituitary gland which leads to excessive secretion of a hormone called adrenocorticotrophic (ACTH), which in turn leads to increasing levels of cortisol in the body. Cortisol is a steroid hormone released by the adrenal glands and helps the body to deal with injury or infection. Increasing levels of cortisol increases the blood sugar and can even cause diabetes mellitus. However the disease is also caused due to excess production of hypothalamus corticotropin releasing hormone (CRH) which stimulates the synthesis of cortisol by the adrenal glands.

The condition is named after Harvey Cushing, the doctor who first identified the disease in 1912. Cushing disease results in Cushing syndrome. Cushing syndrome is a group of signs and symptoms developed due to prolonged exposure to cortisol.

Signs and symptoms of Cushing syndrome includes hypertension, abdominal obesity, muscle weakness, headache, fragile skin, acne, thin arms and legs, red stretch marks on stomach, fluid retention or swelling, excess body and facial hair, weight gain, acne, buffalo hump, tiredness, fatigue, brittle bones, low back pain, moon shaped face etc.

Symptoms vary from individual to individual depending upon the disease duration, age and gender of the patient.  Disease diagnosis is done by measuring levels of cortisol in patient’s urine, saliva or blood. For confirming the diagnosis, a blood test for ACTH is performed. The first-line treatment of the disease is through surgical resection of ACTH-secreting pituitary adenoma, however disease management is also done through medications, Cushing disease treatment market comprises of the drugs designed for lowering the level of cortisol in the body. Thus patients suffering from Cushing disease are prescribed medications such as ketoconazole, mitotane, aminoglutethimide metyrapone, mifepristone, etomidate and pasireotide.

Request to View Tables of Content @ http://www.persistencemarketresearch.com/toc/14155

Cushing’s disease treatment market revenue is growing with a stable growth rate, this is attributed to increasing number of pipeline drugs. Also increasing interest of pharmaceutical companies to develop Cushing disease drugs is a major factor contributing to the revenue growth of Cushing disease treatment market over the forecast period. Current and emerging players’ focuses on physician education and awareness regarding availability of different drugs for curing Cushing disease, thus increasing the referral speeds, time to diagnosis and volume of diagnosed Cushing disease individuals. Growing healthcare expenditure and increasing awareness regarding Cushing syndrome aids in the revenue growth of Cushing’s disease treatment market. Increasing number of new product launches also drives the market for Cushing’s disease Treatment devices. However availability of alternative therapies for curing Cushing syndrome is expected to hamper the growth of the Cushing’s disease treatment market over the forecast period.

The Cushing’s disease Treatment market is segment based on the product type, technology type and end user

Cushing’s disease Treatment market is segmented into following types:

By Drug Type

  • Ketoconazole
  • Mitotane
  • Aminoglutethimide
  • Metyrapone
  • Mifepristone
  • Etomidate
  • Pasireotide

By End User

  • Hospital Pharmacies
  • Retail Pharmacies
  • Drug Stores
  • Clinics
  • e-Commerce/Online Pharmacies

Cushing’s disease treatment market revenue is expected to grow at a good growth rate, over the forecast period. The market is anticipated to perform well in the near future due to increasing awareness regarding the condition. Also the market is anticipated to grow with a fastest CAGR over the forecast period, attributed to increasing investment in R&D and increasing number of new product launches which is estimated to drive the revenue growth of Cushing’s disease treatment market over the forecast period.

Depending on geographic region, the Cushing’s disease treatment market is segmented into five key regions: North America, Latin America, Europe, Asia Pacific (APAC) and Middle East & Africa (MEA).

North America is occupying the largest regional market share in the global Cushing’s disease treatment market owing to the presence of more number of market players, high awareness levels regarding Cushing syndrome. Healthcare expenditure and relatively larger number of R&D exercises pertaining to drug manufacturing and marketing activities in the region. Also Europe is expected to perform well in the near future due to increasing prevalence of the condition in the region.

Asia Pacific is expected to grow at the fastest CAGR because of increase in the number of people showing the symptoms of Cushing syndrome, thus boosting the market growth of Cushing’s disease treatment market throughout the forecast period.

Some players of Cushing’s disease Treatment market includes CORCEPT THERAPEUTICS, HRA Pharma, Strongbridge Biopharma plc, Novartis AG, etc. However there are numerous companies producing branded generics for Cushing disease. The companies in Cushing’s disease treatment market are increasingly engaged in strategic partnerships, collaborations and promotional activities to capture a greater pie of market share.

Buy Now: You can now buy a single user license of the report at http://www.persistencemarketresearch.com/checkout/14155

The final report customized as per your specific requirement will be sent to your e-mail id within 7-20 days, depending on the scope of the report.

The research report presents a comprehensive assessment of the market and contains thoughtful insights, facts, historical data, and statistically supported and industry-validated market data. It also contains projections using a suitable set of assumptions and methodologies. The research report provides analysis and information according to categories such as market segments, geographies, types, technology and applications.

For more information, please e-mail us at sales@persistencemarketresearch.com

About Us 

Persistence Market Research (PMR) is a U.S.-based full-service market intelligence firm specializing in syndicated research, custom research, and consulting services. PMR boasts market research expertise across the Healthcare, Chemicals and Materials, Technology and Media, Energy and Mining, Food and Beverages, Semiconductor and Electronics, Consumer Goods, and Shipping and Transportation industries. The company draws from its multi-disciplinary capabilities and high-pedigree team of analysts to share data that precisely corresponds to clients’ business needs.

PMR stands committed to bringing more accuracy and speed to clients’ business decisions. From ready-to-purchase market research reports to customized research solutions, PMR’s engagement models are highly flexible without compromising on its deep-seated research values.

Contact

Persistence Market Research Pvt. Ltd

305 Broadway

7th Floor, New York City,

NY 10007, United States,

USA – Canada Toll Free: 800-961-0353

Email: sales@persistencemarketresearch.com

 media@persistencemarketresearch.com

 Web: http://www.persistencemarketresearch.com

What a Hoot! Healing Cushing’s Syndrome Naturally

This guy must be nuts!

Healing Cushing’s Syndrome Naturally

by Dr. Paul Haider, Spiritual Teacher and Master Herbalist

Cushing’s Syndrome is the over production of cortisol by the adrenals glands and the resulting obesity, high blood pressure, fatigue, depression, muscle weakness, glucose intolerance, and more… are all part of the syndrome.

But there is hope, here are a few great herbs and other processes that can heal Cushing’s Syndrome naturally.

Read more of how you, too, can “Heal Your Cushing’s here: https://www.linkedin.com/pulse/healing-cushings-syndrome-naturally-dr-paul-haider

Identification Of Potential Markers For Cushing’s Disease

Endocr Pract. 2016 Jan 20. [Epub ahead of print]

Abstract

OBJECTIVE:

Cushing’s disease (CD) causes a wide variety of nonspecific symptoms, which may result in delayed diagnosis. It may be possible to uncover unusual combinations of otherwise common symptoms using ICD-9-CM codes. Our aim was to identify and evaluate dyads of clinical symptoms or conditions associated with CD.

METHODS:

We conducted a matched case-control study using a commercial healthcare insurance claims database, designed to compare the relative risk (RR) of individual conditions and dyad combinations of conditions among patients with CD versus matched non-CD controls.

RESULTS:

With expert endocrinologist input, we isolated 10 key conditions (localized adiposity, hirsutism, facial plethora, polycystic ovary syndrome, abnormal weight gain, hypokalemia, deep venous thrombosis, muscle weakness, female balding, osteoporosis) with RR varying from 5.1 for osteoporosis to 27.8 for hirsutism. The RR of dyads of these conditions ranged from 4.1 for psychiatric disorders/serious infections to 128.0 for hirsutism/fatigue in patients with vs. without CD. Construction of uncommon dyads resulted in further increases in RR beyond single condition analyses, such as osteoporosis alone had RR of 5.3, which increased to 8.3 with serious infections and to 52.0 with obesity.

CONCLUSION:

This study demonstrated that RR of any one of 10 key conditions selected by expert opinion was ≥5 times greater in CD compared to non-CD, and nearly all dyads had RR≥5. An uncommon dyad of osteoporosis and obesity had an RR of 52.0. If clinicians consider the diagnosis of CD when the highest-risk conditions are seen, identification of this rare disease may improve.

KEYWORDS:

Cushing’s disease; delay in diagnosis; disease markers; insurance claims; relative risk

PMID:
26789346
[PubMed – as supplied by publisher]

From http://www.ncbi.nlm.nih.gov/pubmed/26789346

Adrenal insufficiency – how to spot this rare disease and how to treat it

adrenal-glandsAddison’s disease, or adrenal insufficiency, is a rare hormonal disorder of the adrenal glands that affects around 8,400 people in the UK.

The adrenal glands are about the size of a pea and perched on top of the kidneys, and affect the body’s production of the hormones cortisol and sometimes aldosterone.

When someone suffers from adrenal insufficiency, those glands aren’t producing a sufficient amount of these hormones. This can have a detrimental effect on someone’s health and well-being. But because the symptoms are similar to a host of other conditions, Addison’s disease can prove tough to isolate.

What to look out for

According to advice provided by the NHS, the symptoms in the early stages of Addison’s disease, which affects both men and women, are gradual and easy to misread as they’re similar to many other conditions.

People can experience severe fatigue, muscle weakness, low moods, loss of appetite, unintentional weight loss, low blood pressure, nausea, vomiting and salt craving.

“Symptoms are often misread or ignored until a relatively minor infection leads to an abnormally long convalescence, which prompts an investigation,” says Professor Wiebke Arlt from the Centre for Endocrinology, Diabetes & Metabolism at the University of Birmingham.

Life-threatening condition

If Addison’s disease is left untreated, the level of hormones produced by the adrenal gland will gradually decrease in the body. This will cause symptoms to get progressively worse and eventually lead to a potentially life-threatening situation called an adrenal, or Addisonian, crisis. Signs include severe dehydration; pale, cold, clammy skin; rapid, shallow breathing; extreme sleepiness; severe vomiting and diarrhoea. If left untreated, it can prove fatal, so the patient should be admitted to hospital as an emergency.

Back to basics

To understand the disorder, it’s important to get to grips with the basics and that means understanding what the adrenal glands are – and so to the science.

“Adrenal glands have an inner core (known as the medulla) surrounded by an outer shell (known as the cortex) ,” explains Arlt.
The inner medulla produces adrenaline, the ‘fight or flight’ stress hormone. While the absence of this does not cause the disease, the cortex is more critical.

“It produces the steroid hormones that are essential for life: cortisol and aldosterone,” he adds.

“Cortisol mobilises nutrients, enables the body to fight inflammation, stimulates the liver to produce blood sugar and also helps control the amount of water in the body. Aldosterone, meanwhile, regulates the salt and water levels, which can affect blood volume and pressure.”

Why does it happen?

The disorder occurs if the adrenal glands are destroyed, absent or unable to function and failure of the glands themselves is known as primary adrenal insufficiency.

“It’s most often caused by autoimmune disease where the body’s immune system mounts an attack against its own adrenal glands,” explains Arlt.

“However it can also be caused by infection, most importantly by tuberculosis and sometimes by both adrenal glands being surgically removed.”

The pituitary effect

Another important cause is any disease affecting the pituitary gland, which is located behind the nose at the bottom of the brain.
“The pituitary is the master gland that tells the other glands in the body what to do,” continues Arlt.

“The pituitary gland produces a hormone called ACTH (adrenocorticotropic hormone to give it its full name), which travels in the blood stream to the adrenal glands.

“Here it acts as a signal, causing the adrenal glands to produce more cortisol. If the pituitary gland stops making ACTH, [then] cortisol production by the adrenals is no longer controlled properly and a condition called secondary adrenal insufficiency arises.”

But in most cases, aldosterone is still produced, which means that people suffering from secondary adrenal insufficiency have fewer problems than those with primary adrenal insufficiency.

Determining a diagnosis

Due to the ambiguous nature of the symptoms, a Short Synacthen Test (SST) needs to be performed in order to diagnose adrenal insufficiency.

“This measures the ability of the adrenal glands to produce cortisol in response to (the pituitary hormone) ACTH,” says Arlt. “When carrying out this test, a baseline blood sample is drawn before injecting a dose of ACTH, followed by drawing a second blood sample 30 to 60 minutes later. Failing adrenal glands will not be able to produce a certain level of cortisol.”

Getting treatment

If someone has been conclusively diagnosed with adrenal insufficiency, they should receive adrenal hormone replacement therapy as advised by an endocrinologist, a doctor specialising in hormone-related diseases.

“A normal adrenal gland does not need supplements to function properly and there is no recognised medical condition called ‘adrenal fatigue’,” warns Arlt.

“Either the adrenal gland is fine and needs no treatment or there is adrenal insufficiency due to adrenal or pituitary failure.”

So if in doubt, don’t self-diagnose but book an appointment with your GP.

For more information, visit Addison’s Disease Self-Help Group (www.addisons.org.uk) or Pituitary Foundation.

From https://home.bt.com/lifestyle/wellbeing/adrenal-insufficiency-how-to-spot-this-rare-disease-and-how-to-treat-it-11363985141306

Genetics Research Demystifies Fatal Glandular Disease (Cushing’s)

Researchers at Tokyo Institute of Technology have identified genetic mutations responsible for Cushing’s disease, a potentially fatal glandular condition.

Symptoms of Cushing’s disease include weight gain, muscular weakness, mood and reproductive problems, and if untreated patients can die from the resulting infections and cardiovascular problems. Although first described by Harvey Cushing back in 1932, as Martin Reincke and colleagues in Germany and Japan point out in their latest Nature Genetics report, the mechanism causing the disease “has remained obscure since its first description”. Now by sequencing the tissues responsible the researchers have identified clusters of mutations that cause Cushing’s disease as well as how these mutations bring the disease into effect.

The disease arises from benign tumours on glandular pituitary tissue – corticotroph adenomas – which excessively secrete the hormone adrenocorticotropin (ACTH). Previous studies sought to identify mutations that might cause the disease through sequencing candidate genes and microarray studies, but these made little progress. Instead, the researchers applied a particular type of DNA sequencing known as ‘exome sequencing’ to the pituitary corticotroph adenoma.

The collaboration included researchers from Ludwig-Maximilians-Universität Munich, the University of Würzburg, the Max Planck Institute, the Helmholtz-Center Munich, Universität Hamburg , Universität Erlangen in Germany and Tokyo Institute of Technology in Japan. The research team exome-sequenced samples from 10 patients with Cushing’s disease and noticed a small number of protein altering mutations in the adenoma tissue. The researchers further identified the gene harbouring the mutations as ubiquitin-specific protease 8 (USP8), and were able to pinpoint the region of USP8 prone to mutation in Cushing’s disease.

Previous research observations of Cushing’s disease have highlighted strong expression of another gene, epidermal growth factor receptor (EGFR). By examining EGFR in HeLa cells expressing USP8, the researchers behind this latest research demonstrated that this was the result of USP8 mutations inhibiting downregulation of EGFR.

The researchers conclude that their results “not only identify the first of so far enigmatic driver mutations in corticotroph adenomas but also elucidate a novel mechanism by which the EGFR pathway is constitutively activated in human tumours.” Further research will be required for a more detailed understanding of genetic onset of the disease.

Reference

Martin Reincke etal, Nature Genetics, Advance Online Publication 9 December 2014

Background

Cushing’s disease adenomas

The adenomas that cause Cushing’s disease are benign tumours of epithelial tissue that grow on the pituitary gland. The tumours comprise corticotroph cells, a hormone producing cell that secretes asdrenocorticotropin (ACTH). While the pathological role of ACTH hypersecretion was already known, previous studies had been unable to identify the molecular mechanisms behind these hormone processes that lead to Cushing’s disease.

Exome sequencing

When RNA is processed by splicing, parts of the RNA – the introns – are removed. The remaining RNA, the exons, are collectively referred to as the exome.

While DNA sequencing finds the sequence of proteins for the whole DNA, by focusing on the exons, exome sequencing provides information specifically on the protein-coding genes. Changes to these genes are more likely to have significant ramifications on the organism.

Ubiquitination and USP8

Ubiquitination is a reversible protein modification process that occurs by means of a small protein called ubitquitin, which is found in all eukaryotic cells (cells containing a nucleus and other structures enclosed within a membrane). Ubiquitination regulates the fate and function of proteins.

USP8 is a ubiquitin-specific protease enzyme that can remove ubitquitin molecules from target proteins. The discovery of a high number of mutations in the USP8 gene in Cushing’s disease prompted the researchers to make further investigations on the mutant USP8 enzymes at biochemical and cellular levels. From these studies they could identify the mechanisms behind the mutations and the effect on epidermal growth factor receptor (EGFR), a gene that mediates the synthesis of an ACTH precursor.

Figure (click to view larger)

corticotroph

Figure caption: Schematic representation showing the proposed mechanisms how USP8 mutations lead to increased ACTH secretion and tumorigenesis in corticotroph.

Further information

Yukiko Tokida, Asuka Suzuki

Center for Public Affairs and Communications, Tokyo Institute of Technology

2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan

E-mail: media@jim.titech.ac.jp

URL: http://www.titech.ac.jp/english/

Tel: +81-3-5734-2975     Fax: +81-3-5734-3661

About Tokyo Institute of Technology

As one of Japan’s top universities, Tokyo Institute of Technology seeks to contribute to civilization, peace and prosperity in the world, and aims at developing global human capabilities par excellence through pioneering research and education in science and technology, including industrial and social management. To achieve this mission, we have an eye on educating highly moral students to acquire not only scientific expertise but also expertise in the liberal arts, and a balanced knowledge of the social sciences and humanities, all while researching deeply from basics to practice with academic mastery. Through these activities, we wish to contribute to global sustainability of the natural world and the support of human life.

 

Source: Tokyo Institute of Technology, Center for Public Affairs and Communications: http://www.healthcanal.com/genetics-birth-defects/58155-tokyo-institute-of-technology-research-genetics-research-demystifies-fatal-glandular-disease.html

%d bloggers like this: