Gender-related Differences in the Presentation and Course of Cushing’s Disease

2003 Apr;88(4):1554-8.  doi: 10.1210/jc.2002-021518.

Abstract

Cushing’s disease (CD) presents a marked female preponderance, but whether this skewed gender distribution has any relevance to the presentation and outcome of CD is not known.

The aim of the present study was the comparison of clinical features, biochemical indices of hypercortisolism, and surgical outcome among male and female patients with CD. The study population comprised 280 patients with CD (233 females, 47 males) collected by the Italian multicentre study.

Epidemiological data, frequency of clinical signs and symptoms, urinary free cortisol (UFC), plasma ACTH and cortisol levels, responses to dynamic testing, and surgical outcome were compared in female and male patients.

Male patients with CD presented at a younger age, compared with females (30.5 +/- 1.93 vs. 37.1 +/- 0.86 yr, P < 0.01), with higher UFC and ACTH levels (434.1 +/- 51.96 vs. 342.1 +/- 21.01% upper limit of the normal range for UFC, P < 0.05; 163.9 +/- 22.92 vs. 117.7 +/- 9.59% upper limit of the normal range for ACTH, P < 0.05).

No difference in ACTH and cortisol responses to CRH, gradient at inferior petrosal sinus sampling, and cortisol inhibition after low-dose dexamethasone was recorded between sexes. In contrast, the sensitivity of the high-dose dexamethasone test was significantly lower in male than in female patients.

Of particular interest, symptoms indicative of hypercatabolic state were more frequent in male patients; indeed, males presented a higher prevalence of osteoporosis, muscle wasting, striae, and nephrolitiasis. Conversely, no symptom was more frequent in female patients with CD.

Patients with myopathy, hypokalemia, and purple striae presented significantly higher UFC levels, compared with patients without these symptoms. Lastly, in male patients, pituitary imaging was more frequently negative and immediate and late surgical outcome less favorable.

In conclusion, CD appeared at a younger age and with a more severe clinical presentation in males, compared with females, together with more pronounced elevation of cortisol and ACTH levels.

Furthermore, high-dose dexamethasone suppression test and pituitary imaging were less reliable in detecting the adenoma in male patients, further burdening the differential diagnosis with ectopic ACTH secretion. Lastly, the postsurgical course of the disease carried a worse prognosis in males. Altogether, these findings depict a different pattern for CD in males and females.

From https://pubmed.ncbi.nlm.nih.gov/12679438/

New way to study pituitary tumors holds potential for better diagnoses and treatments

Houston Methodist neurosurgeons and neuroscientists are looking at a new way to classify pituitary tumors that could lead to more precise and accurate diagnosing for patients in the future.

Found in up to 10% of the population, pituitary tumors, also called adenomas, are noncancerous growths on the pituitary gland and very common. Although these pituitary tumors are benign in nature, they pose a major health challenge in patients.

The new tests being investigated at Houston Methodist not only have the potential to lead to better diagnoses for patients with pituitary adenomas, but also for many other types of brain tumors in the future. The findings, which were published Jan. 28 in Scientific Reports, an online journal from Nature Publishing Group, describe a new way being looked at to study the blood of patients with pituitary tumors to determine exactly what tumor type they have and whether they might respond to medical treatment rather than surgery.

“Often called the ‘master gland,’ the pituitary gland controls the entire endocrine system and regulates various body functions by secreting hormones into the bloodstream to control such things as metabolism, growth and development, reproduction and sleep,” said corresponding author Kumar Pichumani, Ph.D., a research physicist at the Houston Methodist Research Institute. “When pituitary adenomas occur, they may secrete too much of one or more hormones that could lead to a variety of issues, ranging from infertility and sexual dysfunction to vision problems and osteoporosis, among many other health problems.”

Neurosurgeon David S. Baskin, M.D., director of the Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research in the Department of Neurosurgery at Houston Methodist Hospital, collaborated with Pichumani on this study. He said some pituitary tumors can be treated with medication rather than surgery, but a precise diagnosis of the type of tumor someone has and what  it’s secreting is essential for proper treatment. This is sometimes very difficult to do based on standard endocrine hormone testing.

“To guide our decisions on diagnosis and treatment, we currently rely on a blood-based hormone panel test that measures the levels of hormones in the blood to determine which hormones are overproducing in the tumor,” Baskin said. “However, some tumors secrete too much of more than one hormone, making this test ambiguous for diagnosis.”

Led by Pichumani and Baskin, a team of researchers from the Peak Brain and Pituitary Tumor Treatment and Research Center and Houston Methodist Neurological Institute studied 47 pituitary adenoma patients of different subtypes by collecting blood during surgery to remove their tumors. They confirmed that elevated blood levels of a non-hormonal compound called betahydroxybutyrate, also known as BHB, was found only in patients with the prolactinoma subtype of noncancerous pituitary gland brain tumor that overproduces the hormone prolactin. This compound is known to supply energy to the brain during starvation, which led the researchers to speculate that BHB might be providing non-hormonal energy to these prolactinoma tumors causing them to grow and spread. The discovery could be further developed into a diagnostic lab test.

This study is part of a developing field called metabolomics in which researchers study small molecules in tumors to see what’s unique about their metabolism and how they’re used as nutrients to supply energy. This contributes to better diagnoses and discovering new ways to kill tumors by poisoning the specific energy they use without causing damage to normal cells.

The researchers are now enrolling more patients in a larger study currently underway to validate the results of their pilot study. If successful, they say BHB could be used as a non-hormonal metabolic biomarker for prolactinoma pituitary tumor diagnosis and prognosis to supplement the current hormone panel tests. They’re also looking for biological reasons why only prolactin-secreting tumors have elevated BHB blood levels to inform therapeutic intervention.

From https://medicalxpress.com/news/2020-02-pituitary-tumors-potential-treatments.html

BIPSS Diagnostic Method May Cause False Positive in Some Cases of Cyclic Cushing’s Syndrome

A diagnostic technique called bilateral inferior petrosal sinus sampling (BIPSS), which measures the levels of the adrenocorticotropic hormone (ACTH) produced by the pituitary gland, should only be used to diagnose cyclic Cushing’s syndrome patients during periods of cortisol excess, a case report shows.

When it is used during a spontaneous remission period of cycling Cushing’s syndrome, this kind of sampling can lead to false results, the researchers found.

The study, “A pitfall of bilateral inferior petrosal sinus sampling in cyclic Cushing’s syndrome,” was published in BMC Endocrine Disorders.

Cushing’s syndrome is caused by abnormally high levels of the hormone cortisol. This is most often the result of a tumor on the pituitary gland that produces too much ACTH, which tells the adrenal glands to increase cortisol secretion.

However, the disease may also occur due to adrenal tumors or tumors elsewhere in the body that also produce excess ACTH — referred to as ectopic Cushing’s syndrome.

Because treatment strategies differ, doctors need to determine the root cause of the condition before deciding which treatment to choose.

BIPSS can be useful in this regard. It is considered a gold standard diagnostic tool to determine whether ACTH is being produced and released by the pituitary gland or by an ectopic tumor.

However, in people with cycling Cushing’s syndrome, this technique might not be foolproof.

Researchers reported the case of a 43-year-old woman who had rapidly cycling Cushing’s syndrome, meaning she had periods of excess cortisol with Cushing’s syndrome symptoms — low potassium, high blood pressure, and weight gain — followed by normal cortisol levels where symptoms resolved spontaneously.

In general, the length of each period can vary anywhere from a few hours to several months; in the case of this woman, they alternated relatively rapidly — over the course of weeks.

After conducting a series of blood tests and physical exams, researchers suspected of Cushing’s syndrome caused by an ACTH-producing tumor.

The patient eventually was diagnosed with ectopic Cushing’s disease, but a BIPSS sampling performed during a spontaneous remission period led to an initial false diagnosis of pituitary Cushing’s. As a result, the woman underwent an unnecessary exploratory pituitary surgery that revealed no tumor on the pituitary.

Additional imaging studies then identified a few metastatic lesions, some of which were removed surgically, as the likely source of ACTH. However, the primary tumor still hasn’t been definitively identified. At the time of publication, the patient was still being treated for Cushing’s-related symptoms and receiving chemotherapy.

There is still a question of why the initial BIPSS result was a false positive. The researchers think that the likely explanation is that BIPSS was performed during an “off phase,” when cortisol levels were comparatively low. In fact, a later BIPSS performed during a period of high cortisol levels showed no evidence of ACTH excess in the pituitary.

This case “demonstrates the importance of performing diagnostic tests only during the phases of active cortisol secretion, as soon as first symptoms appear,” the researchers concluded.

From https://cushingsdiseasenews.com/2020/01/02/cushings-syndrome-case-study-shows-drawback-in-bipss-method/

Imaging Agent Effectively Detects, Localizes Tumors in Cushing’s Syndrome

Wannachalee T, et al. Clin Endocrinol. 2019;doi:10.1111/cen.14008.
May 20, 2019

A radioactive diagnostic agent for PET imaging effectively localized primary tumors or metastases in most adults with ectopic Cushing’s syndrome, leading to changes in clinical management for 64% of patients, according to findings from a retrospective study published in Clinical Endocrinology.

As Endocrine Today previously reported, the FDA approved the first kit for the preparation of gallium Ga-68 dotatate injection (Netspot, Advanced Accelerator Applications USA Inc.), a radioactive diagnostic agent for PET scan imaging, in June 2016. The radioactive probe is designed to help locate tumors in adult and pediatric patients with somatostatin receptor-positive neuroendocrine tumors. Ga-68 dotatate, a positron-emitting analogue of somatostatin, works by binding to the hormone.

In a retrospective review, Richard Auchus, MD, PhD, professor of pharmacology and internal medicine in the division of metabolism, endocrinology and diabetes at the University of Michigan, and colleagues analyzed data from 28 patients with ectopic Cushing’s syndrome who underwent imaging with gallium Ga-68 dotatate for identification of the primary tumor or follow-up between November 2016 and October 2018 (mean age, 50 years; 22 women). All imaging was completed at tertiary referral centers at Mayo Clinic, University of Michigan and The University of Texas MD Anderson Cancer Center. Researchers assessed patient demographics, imaging modalities, histopathological results and treatment data. Diagnosis of Cushing’s syndrome was confirmed by clinical and hormonal evaluation. The clinical impact of gallium Ga-68 dotatate was defined as the detection of primary ectopic Cushing’s syndrome or new metastatic foci, along with changes in clinical management.

Within the cohort, 17 patients underwent imaging with gallium Ga-68 dotatate for identification of the primary tumor and 11 underwent the imaging for follow-up. Researchers found that gallium Ga-68 dotatate identified suspected primary ectopic Cushing’s syndrome in 11 of 17 patients (65%), of which seven tumors were solitary and four were metastatic. Diagnosis was confirmed by pathology in eight of the 11 patients: Five patients had a bronchial neuroendocrine tumor, one patient had a thymic tumor, one had a pancreatic neuroendocrine tumor, and one metastatic neuroendocrine tumor was of unknown primary origin. One patient had a false positive scan, according to researchers.

Among the 11 patients with ectopic Cushing’s syndrome who underwent gallium Ga-68 dotatate imaging to assess disease burden or recurrence, the imaging led to changes in clinical management in seven cases (64%), according to researchers.

“Our study demonstrates the high sensitivity of [gallium Ga-68 dotatate] in the localization of [ectopic Cushing’s syndrome], for both occult primary tumors and metastatic lesions,” the researchers wrote. “Importantly, the use of [gallium Ga-68 dotatate] impacted clinical management in 64% of patients with [ectopic Cushing’s syndrome] overall.”

The researchers noted that the high cost and limited availability of PET/CT imaging might preclude the widespread use of gallium Ga-68 dotatate for imaging in patients with suspected ectopic Cushing’s syndrome, and that experience with the scans remains limited vs. other imaging studies.

“Nevertheless, combing the experience of three large referral centers, our study gathers the largest number of [patients with ectopic Cushing’s syndrome] imaged with [gallium Ga-68 dotatate] to date and provides a benchmark for the utility of this diagnostic modality for this rare but highly morbid condition,” the researchers wrote. – by Regina Schaffer

DisclosuresThe authors report no relevant financial disclosures.

From https://www.healio.com/endocrinology/adrenal/news/online/%7B69e458a8-e9a0-4567-a786-00868118b435%7D/imaging-agent-effectively-detects-localizes-tumors-in-cushings-syndrome

How to avoid pitfalls in interpretation of adrenal imaging

By Philip Ward, AuntMinnieEurope.com staff writer

January 15, 2019 — A clear understanding of the pitfalls in the performance and interpretation of adrenal CT can help prevent incorrect and inappropriate investigations, award-winning researchers from a top London facility have found. It’s essential to keep aware of the full range of pseudolesions and mimics, they said.

“Evaluation of adrenal tumor function is limited on imaging, but may be inferred from imaging findings,” noted Dr. Gurinder Nandra and colleagues from the department of radiology at St. George’s University Hospitals NHS Foundation Trust in an e-poster presentation that received a cum laude award at RSNA 2018 in Chicago.

Other adrenal pathology, including metastases and adrenocortical carcinoma, may be encountered, and this means it’s important to know about the imaging approaches to evaluate the adrenals, the authors pointed out.

Incidental adrenal nodules are identified in around 5% of patients who undergo CT. The prevalence of detecting incidentalomas increases with age, but most incidentally encountered adrenal pathology is benign and of little clinical relevance, they wrote. Adenomas are by far the most common adrenal pathology identified.

Among the technical aspects that deserve special attention are the following:

  • The region of interest (ROI): Changing the size of the ROI can alter the perceived attenuation of the nodule. The ROI should cover at least two-thirds of the circumference of the nodule, and exclude tiny areas of heterogeneity from the ROI (e.g., flecks of calcification) that are not representative of the adrenal pathology. Unenhanced attenuation of less than 10 Hounsfield units (HU) can be used to diagnose lipid-rich adrenal adenoma (sensitivity 71%, specificity of 98%).
  • Attenuation values on unenhanced CT: A homogenously dense lesion on unenhanced CT suggests a lack of microscopic lipid content. If attenuation on unenhanced CT is greater than 20 to 30 HU, evaluate the enhancement kinetics with CT.
  • Effect of kVp on attenuation values in a dual energy study: To use threshold of less than 10 HU to diagnose a lipid-rich adrenal adenoma, the kVp should be 120. Changing kVp can alter the attenuation values of soft tissues and adrenal glands.
  • Timing of post-contrast acquisitions: “Imaging needs to be performed at the correct times to allow sufficient time for enhancement and washout of contrast. Post-contrast images should be obtained at 60 to 75 seconds and 15 minutes,” the authors stated.
  • Assessment of washout on nondedicated studies: Relative washout can be calculated on nondedicated studies if more than one acquisition is made within 15 minutes post-intravenous contrast.
  • Suspicious attenuation: Attenuation of more than 43 HU on noncontrast CT is suspicious for malignancy, regardless of washout characteristics. PET/CT is of more use than CT and MRI in such cases, and adrenal hemorrhage also is a consideration at this attenuation.
  • Evaluation of small nodules: Minor nodularity of less than 1 cm in diameter does not require further radiological investigation. Also, CT evaluation of small adrenal nodules is limited by partial volume artifacts. MRI evaluation of small adrenal nodules is limited by the India ink artifact, or black boundary artifact, on an out-of-phase sequence. This artifact may give the impression of signal loss and lead to an incorrect diagnosis of a lipid-rich adenoma.
  • Evaluation of large adrenal masses: Malignancy risk increases with size (over 4 cm, 70%; over 6 cm, 85%) when excluding myelolipoma. In the absence of known malignancy, an adrenal lesion of less than 4 cm with indeterminate imaging features is likely to be benign.
  • Enhancement characteristics of metastases: Enhancement/washout characteristics of adrenal metastases are variable, and they can be confused with pheochromocytoma.
  • Adrenal calcification: Calcification is seen in benign adrenal pathology, but also can be seen in cases of malignancy, including adrenocortical carcinoma. “Look for ancillary features of malignancy including size, heterogeneity and invasion,” the authors recommended. “Evaluation of a predominantly calcified adrenal lesion will be limited with chemical shift MRI.”
  • Heterogeneous signal loss: Heterogeneous signal loss is not typical for a small lipid-rich adenoma and raises the possibility of malignant pathology. It also can be seen in larger adenomas because of calcification/cystic change/myelolipomatous metaplasia.

In their RSNA 2018 exhibit, Nandra and colleagues also identified the following list of mimics that can crop up:

  • Mimics arising from gastrointestinal tract: Gastric pathology can extend into the left suprarenal space and mimic adrenal pathology. The most common mimics include gastrointestinal stromal tumors and gastric diverticula. Pathology elsewhere in the gastrointestinal tract can mimic adrenal pathology (e.g., a fluid-filled colon).
  • Mimics arising from solid viscera: Pathology from the spleen, pancreas, liver, and kidneys can extend into the suprarenal space and mimic adrenal pathology. This includes splenic lobulation, splenunculi, upper pole renal pathology, pancreatic tail pathology, and exophytic hepatic lesions.
  • Mimics arising from vessels: Dilated, tortuous, or aneurysmal vessels may extend into the suprarenal space and mimic adrenal pathology. The most common mimics include splenic varices and splenic artery pseudoaneurysms.
  • Mimics arising from retroperitoneal tissues: Various retroperitoneal lesions can extend into the suprarenal space and mimic adrenal pathology, and normal anatomy in the retroperitoneum also can mimic adrenal pathology (e.g., a thickened diaphragmatic crus).

From https://www.auntminnieeurope.com/index.aspx?sec=ser&sub=def&pag=dis&ItemID=616803

%d bloggers like this: