Metyrapone Reduced Urinary-Free Cortisol Levels in Cushing Syndrome

Metyrapone treatments helped patients with Cushing syndrome reach normal, urinary-free cortisol levels in the short-term and also had long-term benefits, according to a study published in Endocrine.

This observational, longitudinal study evaluated the effects of the 11β -hydroxylase inhibitor metyrapone on adult patients with Cushing syndrome. Urinary-free cortisol and late-night salivary cortisol levels were evaluated in 31 patients who were already treated with metyrapone to monitor cortisol normalization and rhythm.

The average length of metyrapone treatment was 9 months, and 6 patients had 24 months of treatment. After 1 month of treatment, the mean urinary-free cortisol was reduced from baseline by 67% and mean late-night salivary cortisol level decreased by 57%.

Analyzing only patients with severe hypercortisolism, after 1 month of treatment, the mean urinary-free cortisol decreased by 86% and the mean late-night salivary cortisol level decreased 80%. After 3 months, normalization of the mean urinary-free cortisol was established in 68% of patients. Mean late-night salivary cortisol levels took longer to decrease, especially in severe and very severe hypercortisolism, which could take 6 months to drop. Treatment was more successful at normalizing cortisol excretion (70%) than cortisol rhythm (37%). Nausea, abdominal pain, and dizziness were the most common adverse events, but no severe adverse event was reported.

Future research is needed to evaluate a larger cohort with randomized dosages and stricter inclusion criteria to evaluate metyrapone’s effects on cortisol further.

Study researchers conclude that metyrapone was successful and safe in lowering urinary-free cortisol after just 1 month of treatment and controlling long-term levels in patients with Cushing syndrome.

This study was supported by Novartis.

Reference

Ceccato F, Zilio M, Barbot M, et al. Metyrapone treatment in Cushing’s syndrome: a real-life study [published online July 16, 2018]. Endocrine. doi: 10.1007/s12020-018-1675-4

From https://www.endocrinologyadvisor.com/general-endocrinology/metyrapone-cushing-syndrome/article/786716/

Night Cortisol Levels for Diagnosing Cushing’s Syndrome Less Accurate in Clinical Practice

Salivary cortisol levels can be used to diagnose Cushing’s syndrome with relatively high reliability, but each test center should establish its own measurement limits depending on the exact method used for the test, a study from Turkey shows.

Researchers, however, caution that late-night salivary cortisol measurements in clinical practice is likely to be less accurate than that seen in controlled studies, and some patients might require additional tests for a correct diagnosis.

The study, “Diagnostic value of the late-night salivary cortisol in the diagnosis of clinical and subclinical Cushing’s syndrome: results of a single-center 7-year experience,” was published in the Journal of Investigative Medicine

In healthy individuals, the levels of cortisol — a steroid hormone secreted by the adrenal glands — go through changes over a 24-hour period, with the lowest levels normally detected at night.

But this circadian rhythm is disrupted in certain diseases such as Cushing’s syndrome, where night cortisol levels can be used as a diagnostic tool.

Among the tests that can be used to detect these levels are late-night serum cortisol (LNSeC) and late-night salivary cortisol (LNSaC) tests. Since it uses saliva samples, LNSaC is more practical and does not require hospitalization, so it is often recommended for the diagnosis of Cushing’s syndrome.

So far, though, there has been no consensus regarding cutoff values and the sensitivity of the test.

Mustafa Kemal Balci, MD, and his team at the Akdeniz University in Turkey aimed to evaluate the diagnostic use of LNSaC in patients with clinical Cushing’s syndrome and in those with subclinical Cushing’s syndrome — people with excess cortisol but without signs of the disease.

The study involved 58 patients with clinical Cushing’s syndrome (CCS), 53 with subclinical Cushing’s syndrome (SCS), and 213 patients without Cushing’s syndrome who were used as controls.

Saliva and serum cortisol levels were measured in all patients, and statistical tests were used to study differences in these levels among the three groups of patients.

In CSC patients, the median cortisol levels were 0.724 micrograms per deciliter of blood (µg/dL), which dropped to 0.398 and 0.18 in patients with subclinical disease and controls.

The optimal cutoff point to distinguish patients with clinical Cushing’s was set at 0.288 µg/dL, where 89.6% of patients identified as positive actually have the disease (sensitivity), and 81.6% of patients deemed as negative were without the disease (specificity).

With a lower cutoff point — 0.273 µg/dL — researchers were also able to identify patients with subclinical disease with high sensitivity and specificity.

While the test showed high sensitivity and specificity values for clinical Cushing’s syndrome, its diagnostic performance was lower than expected in daily clinical practice, researchers said.

“The diagnostic performance of late-night salivary cortisol in patients with subclinical Cushing’s syndrome was close to its diagnostic performance in patients with clinical Cushing’s syndrome,” researchers wrote.

However, regarding the application of this test in other centers, they emphasize that “each center should determine its own cut-off value based on the method adopted for late-night salivary cortisol measurement, and apply that cut-off value in the diagnosis of Cushing’s syndrome.”

From https://cushingsdiseasenews.com/2018/07/31/late-night-salivary-cortisol-levels-questioned-diagnosis-cushings-syndrome/

MEKT1 Could Be a Potential New Therapy for Treating Cushing’s Disease

MEKT1, a type of therapy called a PPAR-γ agonist, acts to reduce levels of the adrenocorticotropic hormone and could be a potential new therapy for Cushing’s disease, according to researchers.

Their study, “Inhibitory Effects of a Novel PPAR-γ Agonist MEKT1 on Pomc Expression/ACTH Secretion in AtT20 Cells,” was published in the journal PPAR Research.

Cushing’s disease is caused by a tumor in the pituitary gland — generally a type of tumor called an adenoma that produces high levels of adrenocorticotropic hormone (ACTH).

ACTH causes the adrenal glands to make too much cortisol, leading to the classic symptoms associated with Cushing’s disease.

PPAR-gamma (PPAR-γ) is a transcription factor protein (meaning it regulates the levels of certain genes by acting through other proteins), and is seen in high levels in the normal human pituitary and in ACTH-secreting pituitary adenomas.

The Pomc gene is a precursor molecule to ACTH. While it is known that PPAR-γ plays a role in regulating Pomc levels, its mechanism has not yet been clarified in pituitary cells.

PPAR-γ agonists — agents that activate PPAR-γ — include the medications rosiglitazone and pioglitazone, both of which are used to treat type 2 diabetes. Some studies have shown that rosiglitazone and pioglitazone have an effect on Pomc suppression, which would lead to lower levels of ACTH and help treat patients with Cushing’s disease.

However, the benefits of PPAR-γ agonists in the treatment of Cushing’s disease are still controversial.

Researchers examined the effects of a new PPAR-γ agonist, MEKT1, on Pomc levels and ACTH secretion using a mouse pituitary tumor-derived cell line called AtT20 cells. They also compared its effects with the well-established PPAR-γ agonists rosiglitazone and pioglitazone.

AtT20 cells were treated with either MEKT1, rosiglitazone, or pioglitazone at various concentrations ranging from 1 nM to 10 μM (micrometers) for 24 hours.

Results showed that 10 μM of MEKT1 significantly inhibited Pomc gene levels compared to rosiglitazone and pioglitazone. Additionally, ACTH secretion from AtT20 cells was also significantly inhibited by the agonist.

To see if it worked to decrease Pomc levels by acting specifically on PPAR-γ, researchers eliminated the PPAR-γ protein using a technique called siRNA knockdown. In this case, the effects of MEKT1 on Pomc levels were significantly halted.

It is known that other proteins, such as Nur77, Nurr1, and Tpit activate Pomc levels by binding to the promoter region of Pomc — the area of the gene responsible for activating gene levels.

To determine whether these proteins could be targeted by MEKT1, researchers also looked at levels of Nur77, Nurr1, and Tpit. The PPAR-γ agonist was found to significantly suppress the levels of the three genes that encode these proteins.

“Although clinical trials of MEKT1 are needed to determine its drug efficacy in the future, it can be speculated that MEKT1 is much more effective than the previously recognized PPAR-γ agonists rosiglitazone, and pioglitazone for the suppression of Pomc expression/ACTH secretion from our in vitro [laboratory] research,” they added.

Results from this study suggest MEKT1 could be a potential new therapy for the treatment of Cushing’s disease.

From https://cushingsdiseasenews.com/2018/06/12/mekt1-could-be-potential-therapy-treatment-cushings-disease/

Transsphenoidal Surgery Is Safe and Effective Treatment for Cushing’s Disease

Transsphenoidal surgery, a minimally invasive surgery to remove tumors in the pituitary gland, is safe and effective to treat Cushing’s disease, a 20-year history of cases in a Belgian hospital shows.

The surgery resulted in high remission rates (83%) in patients. It was also found to be safe, rarely leading to insufficient functioning of the pituitary gland.

The study, “Outcome of transsphenoidal surgery for Cushing’s Disease: a single-center experience over 20 years,” was published in the journal World Neurosurgery.

Surgical removal of tumors in the pituitary gland of the brain remains the gold standard for Cushing’s disease treatment.

Transsphenoidal surgery (TSS) usually leads to good remission rates ranging from 68-95%, depending on the location and type of tumor, the neurosurgeon’s expertise, follow-up period, and the definition of remission.

Today, TSS consists of surgery directed through the nose to get to the bottom of the skull, where the pituitary gland is located. The tumor is reached via the nasal cavity with no need for incisions on the face.

To address the safety and effectiveness of this type of surgery for treating Cushing’s, researchers retrospectively reviewed the outcome of 71 patients who received their first TSS at Saint-Luc Hospital, Belgium, between 1996 and 2017. Patients were followed for an average of 6.8 years (82 months).

Surgeons used a type of TSS that is image-guided with the help of a microscope which magnifies the surgeon’s vision.

Remission was defined as normal fasting cortisol level, normal 24-hour urinary-free cortisol, or prolonged need for hydrocortisone replacement for one year after surgery.

Replacement therapies are sometimes needed when the pituitary is not producing enough cortisol after surgery.

Patients were mostly women, ages 15 to 84. Some of them, 32%, required multiple surgeries.

In total, 46 patients out of 71 were in remission after the first surgery, 11 after the second surgery, one after the third, and one after the fourth intervention.

A successful first surgery, resulting in a one-year remission, was a positive indicator for patients, as it was associated with high final remission rates (95%).

However, if the first surgery failed, only 36% of patients achieved a final remission.

“Obtaining a lasting remission after a first TSS could be an interesting parameter to influence future therapeutic decisions [like] performing repeated surgery rather than choosing second-line therapies,” researchers wrote.

Overall, remission was achieved in 83% of patients who underwent a single or multiple TSS intervention, a recurrence rate comparable to previous reports.

Surgery was particularly successful for curing patients with macroadenomas — tumors larger than 10 mm — leading to a 92% remission rate.

Small tumors that were not visible on magnetic resonance imaging (MRI) scans were more difficult to treat, with only 71% of patients being cured. Still, such a remission rate was better than what is commonly reported for MRI-negative tumors. This is likely explained by a higher level of expertise by the surgeon.

Levels of cortisol one day after TSS were significantly lower in patients with long-term remission. However, high levels were still observed in a few patients, especially those who had Cushing’s disease for many years.

“Therefore, high cortisol levels in the postoperative early days do not always indicate persistent disease and later [cortisol] evaluation is warranted,” the researchers wrote.

Most complications from surgery were minor and transient, except for seven patients who developed diabetes. Only 8.8% of patients developed long-term failure of the pituitary gland, likely because physicians favored a less aggressive intervention plan to leave the pituitary gland as intact as possible.

However, such an approach may also explain why some patients had to undergo multiple surgeries to completely remove the tumor.

In addition, a longer duration of Cushing’s disease symptoms and higher cortisol levels before surgery could significantly predict a poorer likelihood of being cured by TSS.

“Neuronavigation-guided microscopic TSS is a safe and effective primary treatment for [Cushing’s disease], allowing high remission rates,” the researchers wrote.

From https://cushingsdiseasenews.com/2018/07/26/transsphenoidal-surgery-safe-effective-treatment-cushings-disease/

Health Alert: Adrenal Crisis Causes Death in Some People Who Were Treated with hGH

Doctors conducting the follow-up study of individuals treated with hGH looked at causes of death among recipients and found some disturbing news. Many more people have died from a treatable condition called adrenal crisis than from CJD (MaryO’Note: Creutzfeldt-Jakob Disease). This risk does not affect every recipient. It can affect those who lack other hormones in addition to growth hormone. Please read on to find out if this risk applies to you. Death from adrenal crisis can be prevented.

Adrenal crisis is a serious condition that can cause death in people who lack the pituitary hormone ACTH. ACTH is responsible for regulating the adrenal gland. Often, people are unaware that they lack this hormone and therefore do not know about their risk of adrenal crisis.

Most people who were treated with hGH did not make enough of their own growth hormone. Some of them lacked growth hormone because they had birth defects, tumors or other diseases that cause the pituitary gland to malfunction or shut down. People with those problems frequently lack other key hormones made by the pituitary gland, such as ACTH, which directs the adrenal gland to make cortisol, a hormone necessary for life. Having too little cortisol can be fatal if not properly treated.

Treatment with hGH does not cause adrenal crisis, but because a number of people lacking growth hormone also lack ACTH, adrenal crisis has occurred in some people who were treated with hGH. In earlier updates we have talked about how adrenal crisis can be prevented, but people continue to die from adrenal crisis, which is brought on by lack of cortisol. These deaths can be prevented. Please talk to your doctor about whether you are at risk for adrenal crisis.

  • Why should people treated with hGH know about adrenal crisis? Among the people who received hGH, those who had birth defects, tumors, and other diseases affecting the brain lacked hGH and often, other hormones made by the pituitary gland. A shortage of the hormones that regulate the adrenal glands can cause many health problems. It can also lead to death from adrenal crisis. This tragedy can be prevented.
  • What are adrenal hormones? The pituitary gland makes many hormones, including growth hormone and ACTH, a hormone which signals the adrenal glands to make cortisol, a hormone needed for life. If the adrenal gland doesn’t make enough cortisol, replacement medications must be taken. The most common medicines used for cortisol replacement are:
    • Hydrocortisone
    • Prednisone
    • Dexamethasone
  • What is adrenal crisis? Adrenal hormones are needed for life. The system that pumps blood through the body cannot work during times of physical stress, such as illness or injury, if there is a severe lack of cortisol (or its replacement). People who lack cortisol must take their cortisol replacement medication on a regular basis, and when they are sick or injured, they must take extra cortisol replacement to prevent adrenal crisis. When there is not enough cortisol, adrenal crisis can occur and may rapidly lead to death.
  • What are the symptoms of lack of adrenal hormones? If you don’t have enough cortisol or its replacement, you may have some of these problems:
    • feeling weak
    • feeling tired all the time
    • feeling sick to your stomach
    • vomiting
    • no appetite
    • weight loss

    When someone with adrenal gland problems has weakness, nausea, or vomiting, that person needs immediate emergency treatment to prevent adrenal crisis and possible death.

  • Why are adrenal hormones so important? Cortisol (or its replacement) helps the body respond to stress from infection, injury, or surgery. The normal adrenal gland responds to serious illness by making up to 10 times more cortisol than it usually makes. It automatically makes as much as the body needs. If you are taking a cortisol replacement drug because your body cannot make these hormones, you must increase the cortisol replacement drugs during times of illness, injury, or surgery. Some people make enough cortisol for times when they feel well, but not enough to meet greater needs when they are ill or injured. Those people might not need cortisol replacement every day but may need to take cortisol replacement medication when their body is under stress. Adrenal crisis is extremely serious and can cause death if not treated promptly. Discuss this problem with your doctor to help decide whether you need more medication or other treatment to protect your health.
  • How is adrenal crisis treated? People with adrenal crisis need immediate treatment. Any delay can cause death. When people with adrenal crisis are vomiting or unconscious and cannot take medicine, the hormones can be given as an injection. Getting an injection of adrenal hormones can save your life if you are in adrenal crisis. If you lack the ability to make cortisol naturally, you should carry a medical ID card and wear a Medic-Alert bracelet to tell emergency workers that you lack adrenal hormones and need treatment. This precaution can save your life if you are sick or injured.
  • How can I prevent adrenal crisis?
    • If you are always tired, feel weak, and have lost weight, ask your doctor if you might have a shortage of adrenal hormones.
    • If you take hydrocortisone, prednisone, or dexamethasone, learn how to increase the dose when you become ill.
    • If you are very ill, especially if you are vomiting and cannot take pills, seek emergency medical care immediately. Make sure you have a hydrocortisone injection with you at all times, and make sure that you and those around you (in case you’re not conscious) know how and when to administer the injection.
    • Carry a medical ID card and wear a bracelet telling emergency workers that you have adrenal insufficiency and need cortisol. This way, they can treat you right away if you are injured.

Remember: Some people who lacked growth hormone may also lack cortisol, a hormone necessary for life. Lack of cortisol can cause adrenal crisis, a preventable condition that can cause death if treated improperly. Deaths from adrenal crisis can be prevented if patients and their families recognize the condition and are careful to treat it right away. Adrenal crisis is a medical emergency. Know the symptoms and how to adjust your medication when you are ill. Taking these precautions can save your life.

From https://www.niddk.nih.gov/health-information/endocrine-diseases/national-hormone-pituitary-program/health-alert-adrenal-crisis-causes-death-people-treated-hgh

%d bloggers like this: