How does COVID-19 impact the adrenal gland?

This month marks a little over one year since the first surge of COVID-19 across the United States. April is also Adrenal Insufficiency Awareness month, a good time to review the data on how COVID-19 infection can impact the adrenal glands.

The adrenal glands make hormones to help regulate blood pressure and the ability to respond to stress. The hormones include steroids such as glucocorticoid (cortisol), mineralocorticoid (aldosterone), and forms of adrenaline known as catecholamines (norepinephrine, epinephrine, and dopamine). The activity of the adrenal gland is controlled through its relationship with the pituitary gland (the master regulator of hormones in the body).

Some common adrenal diseases include the following:

  • Addison’s Disease (where the body attacks the adrenal glands making them dysfunctional)
  • Hyperaldosteronism
  • Cushing’s Syndrome
  • Pheochromocytoma
  • Adrenal Nodules/Masses (termed incidentaloma)
  • Congenital adrenal hyperplasia

COVID-19 was found in the adrenal and pituitary glands of some patients who succumbed to the illness, suggesting that these organs might be among the targets for infection.  One of the first highly effective therapies for COVID-19 infection was the use of IV steroid (dexamethasone) supplementation in hospitalized patients in patients requiring oxygen.

A focused search of COVID-19-related health literature shows 85 peer-reviewed papers that have been published in medical literature specifically on the adrenal gland and COVID-19. This literature focuses on three phases of COVID infection that may impact the adrenal gland: the acute active infection phase, the immediate post-infection phase, and the long-term recovery phase.

Medical research has identified that during the acute active infection, the adrenal system is one of the most heavily affected organ systems in the body in patients who have COVID-19 infection requiring hospitalization. In these cases, supplementation with the steroid dexamethasone serves as one of the most powerful lifesaving treatments.

Concern has also been raised regarding the period of time just after the acute infection phase – particularly, the development of adrenal insufficiency following cases of COVID-19 hospitalizations. Additionally, some professional societies recommend that for patients who have adrenal insufficiency and are on adrenal replacement therapy, they be monitored closely post-COVID-19 vaccine for the development of stress-induced adrenal insufficiency.

In mild-to-moderate COVID-19 cases, there does not seem to be an effect on adrenaline-related hormones (norepinephrine, epinephrine, dopamine). However, in cases of severe COVID-19 infection triggering the development of shock, patients will need supplementation with an infusion of catecholamines and a hormone called vasopressin to maintain their blood pressure.

Finally, some studies have addressed the concern of adrenal insufficiency during the long-term recovery phase. Dr Sara Bedrose, adrenal endocrine specialist at  Baylor College of Medicine, indicates that studies which included adrenal function in COVID survivors showed a large percentage of patients with suboptimal cortisol secretion during what is called ACTH stimulation testing.

Results indicated that most of those cases had central adrenal insufficiency. It was concluded that adrenal insufficiency might be among the long-term consequences of COVID-19 and it seemed to be secondary to pituitary gland inflammation (called hypophysitis) or due to direct hypothalamic damage. Long-term follow-up of COVID 19 survivors will be necessary to exclude a gradual and late-onset adrenal insufficiency.

Some patients who have COVID-19 will experience prolonged symptoms. To understand what is happening to them, patients may question whether or not they have a phenomenon called adrenal fatigue. This is a natural question to ask, especially after having such a severe health condition. A tremendous amount of resources are being developed to investigate the source and treatment of the symptoms, and this work has only just begun.

However, adrenal fatigue is not a real medical diagnosis. It’s a term to describe a group of signs and symptoms that arise due to underactive adrenal glands. Current scientific data indicate that adrenal fatigue is not in and of itself a medical disease – although a variety of over-the-counter supplements and compounded medications may be advocated for in treatment by alternative medicine/naturopathic practitioners.

My takeaway is that we have learned a great deal about the effects COVID-19 infection has on the adrenal glands. Long-term COVID-19 remains an area to be explored –  especially in regards to how it may affect the adrenal glands.

-By Dr. James Suliburk, associate professor of surgery in the Division of Surgical Oncology and section chief of endocrine surgery for the Thyroid and Parathyroid Center at Baylor College of Medicine

From https://blogs.bcm.edu/2021/04/22/how-does-covid-19-impact-the-adrenal-gland/

Severe COVID-19 risks greatly increased for children with adrenal insufficiency

Adrenal insufficiency increases the risk for severe outcomes, including death, 23-fold for children who contract COVID-19, according to a data analysis presented at the ENDO annual meeting.

“Adrenal insufficiency in pediatrics does increase risk of complications with COVID-19 infections,” Manish Gope Raisingani, MD, assistant professor in the department of pediatrics in the division of pediatric endocrinology at Arkansas Children’s Hospital, University of Arkansas for Medical Sciences, told Healio. “The relative risk of complications is over 20 for sepsis, intubation and mortality, which is very significant.”

Adrenal transparent _Adobe
Source: Adobe Stock

Using the TriNetX tool and information on COVID-19 from 54 health care organizations, Raisingani and colleagues analyzed data from children (aged 0-18 years) with COVID-19; 846 had adrenal insufficiency and 252,211 did not. The mortality rate among children with adrenal insufficiency was 2.25% compared with 0.097% for those without, for a relative risk for death of 23.2 (P < .0001) for children with adrenal insufficiency and COVID-19. RRs for these children were 21.68 for endotracheal intubation and 25.45 for sepsis.

“Children with adrenal insufficiency should be very careful during the pandemic,” Raisingani said. “They should take their steroid medication properly. They should also be appropriately trained on stress steroids for infection, other significant events.”

From https://www.healio.com/news/endocrinology/20210321/severe-covid19-risks-greatly-increased-for-children-with-adrenal-insufficiency

Largest-ever analysis of its kind finds Cushing’s syndrome triples risk of death

WASHINGTON–Endogenous Cushing’s syndrome, a rare hormonal disorder, is associated with a threefold increase in death, primarily due to cardiovascular disease and infection, according to a study whose results will be presented at ENDO 2021, the Endocrine Society’s annual meeting.

The research, according to the study authors, is the largest systematic review and meta-analysis to date of studies of endogenous (meaning “inside your body”) Cushing’s syndrome. Whereas Cushing’s syndrome most often results from external factors–taking cortisol-like medications such as prednisone–the endogenous type occurs when the body overproduces the hormone cortisol, affecting multiple bodily systems.

Accurate data on the mortality and specific causes of death in people with endogenous Cushing’s syndrome are lacking, said the study’s lead author, Padiporn Limumpornpetch, M.D., an endocrinologist from Prince of Songkla University, Thailand and Ph.D. student at the University of Leeds in Leeds, U.K. The study analyzed death data from more than 19,000 patients in 92 studies published through January 2021.

“Our results found that death rates have fallen since 2000 but are still unacceptably high,” Limumpornpetch said.

Cushing’s syndrome affects many parts of the body because cortisol responds to stress, maintains blood pressure and cardiovascular function, regulates blood sugar and keeps the immune system in check. The most common cause of endogenous Cushing’s syndrome is a tumor of the pituitary gland called Cushing’s disease, but another cause is a usually benign tumor of the adrenal glands called adrenal Cushing’s syndrome. All patients in this study had noncancerous tumors, according to Limumpornpetch.

Overall, the proportion of death from all study cohorts was 5 percent, the researchers reported. The standardized mortality ratio–the ratio of observed deaths in the study group to expected deaths in the general population matched by age and sex–was 3:1, indicating a threefold increase in deaths, she stated.

This mortality ratio was reportedly higher in patients with adrenal Cushing’s syndrome versus Cushing’s disease and in patients who had active disease versus those in remission. The standardized mortality ratio also was worse in patients with Cushing’s disease with larger tumors versus very small tumors (macroadenomas versus microadenomas).

On the positive side, mortality rates were lower after 2000 versus before then, which Limumpornpetch attributed to advances in diagnosis, operative techniques and medico-surgical care.

More than half of observed deaths were due to heart disease (24.7 percent), infections (14.4 percent), cerebrovascular diseases such as stroke or aneurysm (9.4 percent) or blood clots in a vein, known as thromboembolism (4.2 percent).

“The causes of death highlight the need for aggressive management of cardiovascular risk, prevention of thromboembolism and good infection control and emphasize the need to achieve disease remission, normalizing cortisol levels,” she said.

Surgery is the mainstay of initial treatment of Cushing’s syndrome. If an operation to remove the tumor fails to put the disease in remission, other treatments are available, such as medications.

Study co-author Victoria Nyaga, Ph.D., of the Belgian Cancer Centre in Brussels, Belgium, developed the Metapreg statistical analysis program used in this study.

###

Endocrinologists are at the core of solving the most pressing health problems of our time, from diabetes and obesity to infertility, bone health, and hormone-related cancers. The Endocrine Society is the world’s oldest and largest organization of scientists devoted to hormone research and physicians who care for people with hormone-related conditions.

The Society has more than 18,000 members, including scientists, physicians, educators, nurses and students in 122 countries. To learn more about the Society and the field of endocrinology, visit our site at http://www.endocrine.org. Follow us on Twitter at @TheEndoSociety and @EndoMedia.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

From https://www.eurekalert.org/pub_releases/2021-03/tes-lao031621.php

Increased Mortality Risk in Patients With Primary and Secondary Adrenal Insufficiency

The Journal of Clinical Endocrinology & Metabolism, dgab096, https://doi.org/10.1210/clinem/dgab096

Abstract

Context

Mortality data in patients with adrenal insufficiency are inconsistent, possibly due to temporal and geographical differences between patients and their reference populations.

Objective

To compare mortality risk and causes of death in adrenal insufficiency with an individually-matched reference population.

Design

Retrospective cohort study.

Setting

UK general practitioner database (CPRD).

Participants

6821 patients with adrenal insufficiency (primary, 2052; secondary, 3948) and 67564 individually-matched controls (primary, 20366; secondary, 39134).

Main outcome measures

All-cause and cause-specific mortality; hospital admission from adrenal crisis.

Results

With follow-up of 40799 and 406899 person-years for patients and controls respectively, the hazard ratio (HR; [95%CI]) for all-cause mortality was 1.68 [1.58 – 1.77]. HRs were greater in primary (1.83 [1.66 – 2.02]) than in secondary (1.52 [1.40 – 1.64]) disease; (HR; primary versus secondary disease, 1.16 [1.03 – 1.30]). The leading cause of death was cardiovascular disease (HR 1.54 [1.32-1.80]), along with malignant neoplasms and respiratory disease. Deaths from infection were also relatively high (HR 4.00 [2.15 – 7.46]). Adrenal crisis contributed to 10% of all deaths. In the first two years following diagnosis, the patients’ mortality rate and hospitalisation from adrenal crisis were higher than in later years.

Conclusion

Mortality was increased in adrenal insufficiency, especially primary, even with individual matching and was observed early in the disease course. Cardiovascular disease was the major cause but mortality from infection was also high. Adrenal crisis was a common contributor. Early education for prompt treatment of infections and avoidance of adrenal crisis hold potential to reduce mortality.

PDF available at https://academic.oup.com/jcem/advance-article-abstract/doi/10.1210/clinem/dgab096/6141434?redirectedFrom=fulltext

New study identifies the main genetic causes of autoimmune Addison’s disease

Novel genetic associations could pave the way for early interventions and personalized treatment of an incurable condition.

Scientists from the University of Bergen (Norway) and Karolinska Institutet (Sweden) have discovered the genes involved in autoimmune Addison’s disease, a condition where the body’s immune systems destroys the adrenal cortex leading to a life-threatening hormonal deficiency of cortisol and aldosterone.

Groundbreaking study

The rarity of Addison’s disease has until now made scanning of the whole genome for clues to the disease’s genetic origins difficult, as this method normally requires many thousands of study participants. However, by combining the world’s two largest Addison’s disease registries, Prof. Eystein Husebye and his team at the University of Bergen and collaborators at Karolinska Institutet in Sweden (prof. Kämpe) were able to identify strong genetic signals associated with the disease. Most of them are directly involved in the development and functioning of the human immune system including specific molecular types in the so-called HLA-region (this is what makes matching donors and recipients in organ transplants necessary) and two different types of a gene called AIRE (which stands for AutoImmune REgulator).

AIRE is a key factor in shaping the immune system by removing self-reacting immune cells. Variants of AIRE, such as the ones identified in this study, could compromise this elimination of self-reacting cells, which could lead to an autoimmune attack later in life.

Knowing what predisposes people to develop Addison’s disease opens up the possibilities of determining the molecular repercussions of the predisposing genetic variation (currently ongoing in Prof. Husebye’s lab). The fact that it is now feasible to map the genetic risk profile of an individual also means that personalised treatment aimed at stopping and even reversing the autoimmune adrenal destruction can become a feasible option in the future.

###

Contact information:

Professor at the University of Bergen, Eystein Husebye – Eystein.Husebye@uib.no – cell phone +47 99 40 47 88

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

From https://www.eurekalert.org/pub_releases/2021-02/tuob-nsi021221.php

%d bloggers like this: