Cushing’s Syndrome: A Tale of Frequent Misdiagnosis


What is it?

Cushing’s syndrome is a condition you probably have never heard of, but for those who have it, the symptoms can be quite scary.  Worse still, getting it diagnosed can take a while.  Cushing’s syndrome occurs when the tissues of the body are exposed to high levels of cortisol for an extended amount of time. Cortisol is the hormone the body produces to help you in times of stress. It is good to have cortisol at normal levels, but when those levels get too high it causes health problems.  Although cortisol is related to stress, there is no evidence that Cushing’s syndrome is directly or indirectly caused by stress.

Cushing’s syndrome is considered rare, but that may be because it is under-reported. As a result, we don’t have good estimates for how many people have it, which is why the estimates for the actual number of cases vary so much–from 5 to 28 million people.[1] The most common age group that Cushing’s affects are those 20 to 50 years old.  It is thought that obesity, type 2 diabetes, and high blood pressure may increase your risk of developing this syndrome.[2]

What causes Cushing’s Syndrome?

Cushing’s syndrome is caused by high cortisol levels. Cushing’s disease is a specific form of Cushing’s syndrome. People with Cushing’s disease have high levels of cortisol because they have a non-cancerous (benign) tumor in the pituitary gland.  The tumor releases adrenocorticotropin hormone (ACTH), which causes the adrenal glands to produce excessive cortisol.

Cushing’s syndrome that is not Cushing’s disease can be also caused by high cortisol levels that result from tumors in other parts of the body.  One of the causes is “ectopic ACTH syndrome.” This means that the hormone-releasing tumor is growing in an abnormal place, such as the lungs or elsewhere.  The tumors can be benign, but most frequently they are cancerous. Other causes of Cushing’s syndrome are benign tumors on the adrenal gland (adrenal adenomas) and less commonly, cancerous adrenal tumors (adrenocortical carcinomas). Both secrete cortisol, causing cortisol levels to get too high.

In some cases, a person can develop Cushing’s syndrome from taking steroid medications, such as prednisone. These drugs, known as corticosteroids, mimic the cortisol produced by the body. People who have Cushing’s syndrome from steroid medications do not develop a tumor.[3]

What are the signs and symptoms of Cushing’s Syndrome?

The appearance of people with Cushing’s syndrome starts to change as cortisol levels build up. Regardless of what kind of tumor they have or where the tumor is located, people tend to put on weight in the upper body and abdomen, with their arms and legs remaining thin; their face grows rounder (“moon face”); they develop fat around the neck; and purple or pink stretch marks appear on the abdomen, thighs, buttocks or arms. Individuals with the syndrome usually experience one or more of the following symptoms: fatigue, muscle weakness, high glucose levels, anxiety, depression, and high blood pressure. Women are more likely than men to develop Cushing’s syndrome, and when they do they may have excess hair growth, irregular or absent periods, and decreased fertility.[4]

Why is Cushing’s Syndrome so frequently misdiagnosed?

These symptoms seem distinctive, yet it is often difficult for those with Cushing’s syndrome to get an accurate diagnosis.  Why?  While Cushing’s is relatively rare, the signs and symptoms are common to many other diseases. For instance, females with excess hair growth, irregular or absent periods, decreased fertility, and high glucose levels could have polycystic ovarian syndrome, a disease that affects many more women than Cushing’s.   Also, people with metabolism problems (metabolic syndrome), who are at higher than average risk for diabetes and heart disease, also tend to have abdominal fat, high glucose levels and high blood pressure.[5]

Problems in testing for Cushing’s

When Cushing’s syndrome is suspected, a test is given to measure cortisol in the urine. This test measures the amount of free or unbound cortisol filtered by the kidneys and then released over a 24 hour period through the urine. Since the amount of urinary free cortisol (UFC) can vary a lot from one test to another—even in people who don’t have Cushing’s—experts recommend that the test be repeated 3 times. A diagnosis of Cushing’s is given when a person’s UFC level is 4 times the upper limit of normal.  One study found this test to be highly accurate, with a sensitivity of 95% (meaning that 95% of people who have the disease will be correctly diagnosed by this test) and a specificity of 98% (meaning that 98% of  people who do not have the disease will have a test score confirming that).[6] However, a more recent study estimated the sensitivity as only between 45%-71%, but with 100% specificity.[7]  This means that the test is very accurate at telling people who don’t have Cushing’s that they don’t have it, but not so good at identifying the people who really do have Cushing’s.  The authors that have analyzed these studies advise that patients use the UFC test together with other tests to confirm the diagnosis, but not as the initial screening test.[8]  

Other common tests that may be used to diagnose Cushing’s syndrome are: 1) the midnight plasma cortisol and late-night salivary cortisol measurements, and 2) the low-dose dexamethasone suppression test (LDDST).  The first test measures the amount of cortisol levels in the blood and saliva at night.  For most people, their cortisol levels drop at night, but people with Cushing’s syndrome have cortisol levels that remain high all night. In the LDDST, dexamethasone is given to stop the production of ACTH.  Since ACTH produces cortisol, people who don’t have Cushing’s syndrome will get lower cortisol levels in the blood and urine. If after giving dexamethasone, the person’s cortisol levels remain high, then they are diagnosed with Cushing’s.[9]

Even when these tests, alone or in combination, are used to diagnose Cushing’s, they don’t explain the cause. They also don’t distinguish between Cushing’s syndrome, and something called pseudo-Cushing state.

Pseudo-Cushing state

Some people have an abnormal amount of cortisol that is caused by something unrelated to Cushing’s syndrome such as polycystic ovarian syndrome, depression, pregnancy, and obesity. This is called pseudo-Cushing state.  Their high levels of cortisol and resulting Cushing-like symptoms can be reversed by treating whatever disease is causing the abnormal cortisol levels. In their study, Dr. Giacomo Tirabassi and colleagues recommend using the desmopressin (DDAVP) test to differentiate between pseudo-Cushing state and Cushing’s.  The DDAVP test is especially helpful in people who, after being given dexamethasone to stop cortisol production, continue to have moderate levels of urinary free cortisol (UFC) and midnight serum cortisol.[10]

An additional test that is often used to determine if one has pseudo-Cushing state or Cushing’s syndrome is the dexamethasone-corticotropin-releasing hormone (CRH) test. Patients are injected with a hormone that causes cortisol to be produced while also being given another hormone to stop cortisol from being produced. This combination of hormones should make the patient have low cortisol levels, and this is what happens in people with pseudo-Cushing state.  People with Cushing’s syndrome, however, will still have high levels of cortisol after being given this combination of hormones.[11]

How can Cushing’s be treated?

Perhaps because Cushing’s is rare or under-diagnosed, few treatments are available. There are several medications that are typically the first line of treatment.  None of the medications can cure  Cushing’s, so they are usually taken until other treatments are given to cure Cushing’s, and only after that if the other treatment fails.

The most common treatment for Cushing’s disease is transsphenoidal surgery, which requires the surgeon to reach the pituitary gland through the nostril or upper lip and remove the tumor.  Radiation may also be used instead of surgery to shrink the tumor.  In patients whose Cushing’s is caused by ectopic ACTH syndrome, all cancerous cells need to be wiped out through surgery, chemotherapy, radiation or a variety of other methods, depending on the location of the tumor. Surgery is also recommended for adrenal tumors.  If Cushing’s syndrome is being caused by corticosteroid (steroid medications) usage, the treatment is to stop or lower your dosage.[12]

Medications to control Cushing’s (before treatment or if treatment fails)

According to a 2014 study in the Journal of Clinical Endocrinology and Metabolism, almost no new treatment options have been introduced in the last decade. Researchers and doctors have focused most of their efforts on improving existing treatments aimed at curing Cushing’s. Unfortunately, medications used to control Cushing’s prior to treatment and when treatment fails are not very effective.

Many of the medications approved by the FDA for Cushing’s syndrome and Cushing’s disease, such as pasireotide, metyrapone, and mitotane, have not been extensively studied.  The research presented to the FDA by the makers of these three drugs did not even make clear what an optimal dose was.[13] In another 2014 study, published in Clinical Epidemiology, researchers examined these three same drugs, along with ten others, and found that only pasireotide had moderate evidence to support its approval.  The other drugs, many of which are not FDA approved for Cushing’s patients, had little or no available evidence to show that they work.[14] They can be sold, however, because the FDA has approved them for other diseases.  Unfortunately, that means that neither the FDA nor anyone else has proven the drugs are safe or effective for Cushing patients.

Pasireotide, the one medication with moderate evidence supporting its approval, caused hyperglycemia (high blood sugar) in 75% of patients who participated in the main study for the medication’s approval for Cushing’s.  As a result of developing hyperglycemia, almost half (46%) of the participants had to go on blood-sugar lowering medications. The drug was approved by the FDA for Cushing’s anyway because of the lack of other effective treatments.

Other treatments used for Cushing’s have other risks.  Ketoconazole, believed to be the most commonly prescribed medications for Cushing’s syndrome, has a black box warning due to its effect on the liver that can lead to a liver transplant or death.  Other side effects include: headache, nausea, irregular periods, impotence, and decreased libido. Metyrapone can cause acne, hirsutism, and hypertension. Mitotane can cause neurological and gastrointestinal symptoms such as dizziness, nausea, and diarrhea and can cause an abortion in pregnant women.[15]

So, what should you do if you suspect you have Cushing’s Syndrome?

Cushing’s syndrome is a serious disease that needs to be treated, but there are treatment options available for you if you are diagnosed with the disease. If the symptoms in this article sound familiar, it’s time for you to go see your doctor. Make an appointment with your general practitioner, and explain your symptoms to him or her.  You will most likely be referred to an endocrinologist, who will be able to better understand your symptoms and recommend an appropriate course of action.

 

All articles are reviewed and approved by Dr. Diana Zuckerman and other senior staff.

  1. Nieman, Lynette K. Epidemiology and clinical manifestations of Cushing’s syndrome, 2014. UpToDate: Wolters Kluwer Health
  2. Cushing’s syndrome/ disease, 2013. American Association of Neurological Surgeons. http://www.aans.org/Patient%20Information/Conditions%20and%20Treatments/Cushings%20Disease.aspx
  3. Cushing’s syndrome, 2012. National Endocrine and Metabolic Diseases: National Institutes of Health. http://endocrine.niddk.nih.gov/pubs/cushings/cushings.aspx#treatment
  4. Cushing’s syndrome, 2012. National Endocrine and Metabolic Diseases: National Institutes of Health. http://endocrine.niddk.nih.gov/pubs/cushings/cushings.aspx#treatment
  5. Cushing’s syndrome, 2012. National Endocrine and Metabolic Diseases: National Institutes of Health. http://endocrine.niddk.nih.gov/pubs/cushings/cushings.aspx#treatment
  6. Newell-Price, John, Peter Trainer, Michael Besser and Ashley Grossman. The diagnosis and differential diagnosis of Cushing’s syndrome and pseudo-Cushing’s states, 1998. Endocrine Reviews: Endocrine Society
  7. Carroll, TB and JW Findling. The diagnosis of Cushing’s syndrome, 2010. Reviews in Endocrinology and Metabolic Disorders: Springer
  8. Ifedayo, AO and AF Olufemi. Urinary free cortisol in the diagnosis of Cushing’s syndrome: How useful?, 2013. Nigerian Journal of Clinical Practice: Medknow.
  9. Cushing’s syndrome, 2012. National Endocrine and Metabolic Diseases: National Institutes of Health. http://endocrine.niddk.nih.gov/pubs/cushings/cushings.aspx#treatment
  10. Tirabassi, Giacomo, Emanuela Faloia, Roberta Papa, Giorgio Furlani, Marco Boscaro, and Giorgio Arnaldi. Use of the Desmopressin test in the differential diagnosis of pseudo-Cushing state from Cushing’s disease, 2013. The Journal of Clinical Endocrinology & Metabolism: Endocrine Society.
  11. Cushing’s syndrome, 2012. National Endocrine and Metabolic Diseases: National Institutes of Health. http://endocrine.niddk.nih.gov/pubs/cushings/cushings.aspx#treatment
  12. Cushing’s syndrome, 2012. National Endocrine and Metabolic Diseases: National Institutes of Health. http://endocrine.niddk.nih.gov/pubs/cushings/cushings.aspx#treatment
  13. Tirabassi, Giacomo, Emanuela Faloia, Roberta Papa, Giorgio Furlani, Marco Boscaro, and Giorgio Arnaldi. Use of the Desmopressin test in the differential diagnosis of pseudo-Cushing state from Cushing’s disease, 2013. The Journal of Clinical Endocrinology & Metabolism: Endocrine Society.
  14. Galdelha, Monica R. and Leonardo Vieira Neto. Efficacy of medical treatment in Cushing’s disease: a systematic review, 2014. Clinical Endocrinology: John Wiley & Sons.
  15. Adler, Gail. Cushing syndrome treatment & management, 2014. MedScape: WebMD.

Adapted from https://www.center4research.org/cushings-syndrome-frequent-misdiagnosis/

Pediatric Endocrine Society Provides Guidance for Growth Hormone Use in Pediatric Patients

HealthDay News—Use of growth hormone in children and adolescents should be considered carefully, with assessment of the risks and benefits necessary for each patient, according to guidelines published in the January issue of Hormone Research in Paediatrics.

Adda Grimberg, MD, from the Perelman School of Medicine at the University of Pennsylvania in Philadelphia, and colleagues updated guidelines on the use of growth hormone, focusing on idiopathic short stature (ISS), GH deficiency (GHD), and primary insulin-like growth factor-I (IGF-I) deficiency (PIGFD). The guidelines were written on behalf of the Pediatric Endocrine Society.

The researchers recommend use of growth hormone for children and adolescents with GHD. Prospective recipients of growth hormone treatment should receive guidance regarding potential adverse effects and should be monitored for these effects. Parents and clinicians should take a shared decision-making approach to treating patients with ISS, and assess the physical and physiological burdens for the child, while considering the risks and benefits of treatment.Follow-up assessment of benefit and psychosocial impact should be conducted at 12 months after initiation and dose optimization of GH. IGF-I therapy is recommended for patients with severe PIGFD. Diagnosis of PIGFD/GH insensitivity syndrome should be based on a combination of factors that fall into four stages.

Physicians with expertise in managing endocrine disorders in children should provide consultation for evaluation of GHD-ISS-PIGFD and manage treatment.

“The taskforce suggests that the recommendations be applied in clinical practice with consideration of the evolving literature and the risks and benefits to each individual patient,” the authors write. “In many instances, careful review highlights areas that need further research.”

Several authors disclosed financial ties to the pharmaceutical industry.

Reference

Grimberg A, DiVall SA, Polychronakos C, et al; on behalf of the Drug and Therapeutics Committee of the Pediatric Endocrine Society. Guidelines for growth hormone and insulin-like growth factor-I treatment in children and adolescents: growth hormone deficiency, idiopathic short stature, and primary insulin-like growth factor-I deficiency. Horm Res Paediatr. 2016;86(6):361-397. doi: 10.1159/000452150

 From http://www.endocrinologyadvisor.com/adrenal/growth-hormone-use-in-pediatric-patients/article/634909/

Cushing’s Testing at NIH

Rank Status Study
1 Recruiting Study to Evaluate CORT125134 in Patients With Cushing’s Syndrome

Condition: Cushing’s Syndrome
Intervention: Drug: CORT125134
2 Recruiting Cushing’s Disease Complications

Condition: Cushing’s Disease
Intervention: Other: Exams and questionnaires
3 Recruiting The Accuracy of Late Night Urinary Free Cortisol/Creatinine and Hair Cortisol in Cushing’s Syndrome Diagnosis

Condition: Cushing Syndrome
Intervention:
4 Recruiting Treatment for Endogenous Cushing’s Syndrome

Condition: Endogenous Cushing’s Syndrome
Intervention: Drug: COR-003
5 Recruiting Saliva Cortisol Measurement as a Screening Test for Suspicious Cushings Syndrome in Children.

Condition: Cushings Syndrome
Intervention: Other: Children refered to the obesity clinic
6 Recruiting Safety and Efficacy of LCI699 for the Treatment of Patients With Cushing’s Disease

Condition: Cushing’s Disease
Intervention: Drug: LCI699
7 Recruiting Treatment of Cushing’s Disease With R-roscovitine

Condition: Cushings Disease
Intervention: Drug: R-roscovitine
8 Recruiting A Study of ATR-101 for the Treatment of Endogenous Cushing’s Syndrome

Condition: Cushing Syndrome
Interventions: Drug: ATR-101;   Drug: Placebos
9 Recruiting Evaluation of 68Ga-DOTATATE PET/CT, Octreotide and F-DOPA PET Imaging in Patients With Ectopic Cushing Syndrome

Condition: Cushing Syndrome
Interventions: Drug: F-DOPA PET Scan;   Drug: Mifepristone;   Drug: Ga-DOTATATE;   Drug: Octreoscan;   Other: CT, MRI
10 Not yet recruiting Endocrine Cardiomyopathy in Cushing Syndrome: Response to Cyclic GMP PDE5 inhibitOrs

Condition: Cushing’s Syndrome Cardiomyopathy
Intervention: Drug: Tadalafil
11 Recruiting Long-term Beneficial Metabolic Effects of Adrenalectomy in Subclinical Cushing’s Syndrome of Adrenal Incidentaloma

Condition: Cushing Syndrome
Intervention: Procedure: surgery
12 Recruiting Long Term Safety and Efficacy of Pasireotide s.c. in Patients With Cushing’s Disease

Condition: Cushings Disease
Intervention: Drug: SOM230
13 Recruiting New Imaging Techniques in the Evaluation of Patients With Ectopic Cushing Syndrome

Condition: Cushing Syndrome
Interventions: Drug: Pentetreotide;   Drug: 18-F-fluorodeoxyglucose;   Drug: (18F)-L-3,4-dihydroxyophenylalanine (18F-DOPA)
14 Not yet recruiting Targeting Iatrogenic Cushing’s Syndrome With 11β-hydroxysteroid Dehydrogenase Type 1 Inhibition

Condition: Iatrogenic Cushing’s Disease
Interventions: Drug: AZD4017 and prednisolone;   Drug: Placebo Oral Tablet and prednisolone
15 Not yet recruiting Assessment of Persistent Cognitive Impairment After Cure of Cushing’s Disease

Condition: Cushing’s Disease
Intervention: Device: Virtual radial task in 3D
16 Recruiting Biomarker Expression in Patients With ACTH-Dependent Cushing’s Syndrome Before and After Surgery

Condition: Cushing’s Syndrome
Intervention:
17 Recruiting Efficacy and Safety Evaluation of Osilodrostat in Cushing’s Disease

Condition: Cushing’s Disease
Interventions: Drug: osilodrostat;   Drug: osilodrostat Placebo
18 Recruiting Effects of Metyrapone in Patients With Endogenous Cushing’s Syndrome

Condition: Cushing’s Syndrome
Intervention: Drug: metyrapone
19 Recruiting Adrenal Venous Sampling in Patients With Overt or Subclinical Cushings Syndrome, and Bilateral Adrenal Tumors

Condition: Cushing Syndrome
Intervention: Radiation: Adrenal venous sampling
20 Recruiting Glycemic Fluctuations in Newly Diagnosed Growth Hormone-Secreting Pituitary Adenoma and Cushing Syndrome Subjects

Condition: Pituitary Adenoma
Intervention: Device: continuous glucose monitoring
Rank Status Study
21 Recruiting Targeted Therapy With Gefitinib in Patients With USP8-mutated Cushing’s Disease

Conditions: Cushing’s Disease;   Corticotrophin Adenoma
Intervention: Drug: Gefitinib
22 Recruiting Cardiac Steatosis in Cushing’s Syndrome

Conditions: Endocrine System Disease;   Cardiovascular Imaging
Intervention: Other: 1H magnetic resonance spectroscopy and CMRI
23 Recruiting Study of Management of Pasireotide-induced Hyperglycemia in Adult Patients With Cushing’s Disease or Acromegaly

Conditions: Cushing’s Disease;   Acromegaly
Interventions: Drug: Pasireotide s.c.;   Drug: Sitagliptin;   Drug: Liraglutide;   Drug: Insulin;   Drug: Pasireotide LAR;   Drug: Metformin
24 Recruiting Study of Efficacy and Safety of Osilodrostat in Cushing’s Syndrome

Conditions: Cushing’s Syndrome;   Ectopic Corticotropin Syndrome;   Adrenal Adenoma;   Adrenal Carcinoma;   AIMAH;   PPNAD
Intervention: Drug: Osilodrostat
25 Recruiting Effects of Hormone Stimulation on Brain Scans for Cushing s Disease

Condition: Pituitary Neoplasm
Intervention: Drug: Acthrel
26 Recruiting Does Serum-DXM Increase Diagnostic Accuracy of the Overnight DXM Suppression Test in the Work-up of Cushing’s Syndrome?

Conditions: Cushing’s Syndrome;   Adrenal Incidentalomas;   Alcoholism;   Obesity
Intervention:
27 Recruiting Adrenalectomy Versus Follow-up in Patients With Subclinical Cushings Syndrome

Condition: Adrenal Tumour With Mild Hypercortisolism
Intervention: Procedure: Adrenalectomy
28 Recruiting Study of Adrenalectomy Versus Observation for Subclinical Hypercortisolism

Conditions: Hypercortisolism;   Cushing Syndrome
Interventions: Procedure: Adrenalectomy;   Other: Observation
29 Not yet recruiting Dynamic Hormone Diagnostics in Endocrine Disease

Conditions: Adrenal Insufficiency;   Congenital Adrenal Hyperplasia;   Cushing Syndrome;   Growth Hormone Deficiency;   Acromegaly;   Primary Hyperaldosteronism
Intervention: Other: 27 hour subcutaneous fluid sampling
30 Recruiting An Investigation of Pituitary Tumors and Related Hypothalmic Disorders

Conditions: Abnormalities;   Craniopharyngioma;   Cushing’s Syndrome;   Endocrine Disease;   Pituitary Neoplasm
Intervention:
31 Recruiting Ga-68-DOTATOC -PET in the Management of Pituitary Tumours

Condition: Pituitary Tumours
Intervention: Procedure: Gallium-68 DOTATOC PET
32 Recruiting Efficacy of Mifepristone in Males With Type 2 Diabetes Mellitus

Conditions: Type 2 Diabetes Mellitus;   Insulin Resistance
Interventions: Drug: Mifepristone 600 mg daily;   Drug: Placebo
33 Recruiting Targeted Therapy With Lapatinib in Patients With Recurrent Pituitary Tumors Resistant to Standard Therapy

Conditions: Pituitary Adenomas;   Prolactinomas
Intervention: Drug: Lapatinib
34 Recruiting Mutations of Glucocorticoid Receptor in Bilateral Adrenal Hyperplasia

Condition: General Glucocorticoid Resistance
Intervention: Genetic: blood collection for mutation characterization
35 Recruiting Defining the Genetic Basis for the Development of Primary Pigmented Nodular Adrenocortical Disease (PPNAD) and the Carney Complex

Conditions: Cushing’s Syndrome;   Hereditary Neoplastic Syndrome;   Lentigo;   Neoplasm;   Testicular Neoplasm
Intervention:
36 Not yet recruiting Reduction by Pasireotide of the Effluent Volume in High-output Enterostomy in Patients Refractory to Usual Medical Treatment

Condition: Enterostomy
Interventions: Drug: Pasireotide;   Drug: Placebo
37 Recruiting Mifepristone for Breast Cancer Patients With Higher Levels of Progesterone Receptor Isoform A Than Isoform B.

Condition: Breast Cancer
Intervention: Drug: Mifepristone
38 Recruiting SOM230 Ectopic ACTH-producing Tumors

Condition: Ectopic ACTH Syndrome
Intervention: Drug: Pasireotide
39 Recruiting Decreasing Rates of Intraurethral Catheterization Postoperatively in Spine Surgery

Condition: Post-operative Urinary Retention
Interventions: Drug: Tamsulosin;   Drug: Placebo
40 Recruiting Adrenal Tumors – Pathogenesis and Therapy

Conditions: Adrenal Tumors;   Adrenocortical Carcinoma;   Cushing Syndrome;   Conn Syndrome;   Pheochromocytoma
Intervention:

Reasons You Have Flab Around Your Abdomen

Some diseases and conditions could be responsible for your abdominal fat.
Mita Majumdar | Updated: April 24, 2017 6:15 pm

Visceral fat or unhealthy belly fat that surrounds the liver and other organs in the abdomen puts you at risk for serious health problems, such as, metabolic syndrome, heart disease, and type 2 diabetes. But, what causes your pot belly or beer fat in the first place? The most obvious answers you will get is – ‘You are not exercising enough’, or, ‘you are eating too much of fatty foods or sugary foods’, or ‘you are not eating the right foods’, or ultimately, ‘It’s genetics! You got it from your parents’. All of these reasons are true, of course. However, some diseases/ disorders and conditions, too, could be responsible for your abdominal fat and these have nothing to do with not exercising or not eating right. Following are some of these disorders.

Cushing’s Syndrome

Cushing’s syndrome, also called hypercortisolism, is an endocrine disorder that occurs when your body is exposed to high cortisol levels over a long period of time. It is a treatable disorder, however, if it is chronic, the symptoms can last lifelong.

Symptoms: Symptoms vary according to the severity of the disorder. The characteristic symptoms include –

  • Fatty tissue deposits in the midsection
  • Fatty deposits in the upper back, especially between the shoulders, so that it resembles a hump
  • Puffy face
  • Violaceous stretch marks (pink or purple) on the arms, breast, stomach, and thighs that are more than 1 cm wide. [1]
  • Easy bruising
  • Fatigue
  • Hirsutism and irregularity in menstruation in women
  • Loss of libido and erectile dysfunction in men
  • Cognitive dysfunction, depression, unpredictable emotional outbursts, irritability is present in 70-85 percent of people with Cushing’s syndrome.[1]

Causes:

  • Overuse of corticosteroids
  • Overproduction of cortisol by the adrenal glands

Management:

  • Surgery is the first line of treatment for Cushing’s syndrome.
  • Medication include: [2]

a.Pituitary gland directed therapy

b.Adrenal-blocking drugs

c.Glucocorticoid receptor-antagonizing drugs

  • Pituitary radiotherapy

Addison’s disease

Addison’s disease, also called adrenal insufficiency, is a disorder where your adrenal glands produce insufficient hormones, especially, glucocorticoids including cortisol and aldosterone. It is a life-threatening disease that can affect anyone irrespective of their gender or age.

How do glucocorticoids influence abdominal fats? Glucocorticoids including cortisol convert the fats into energy in the liver. They also help your body respond to stress. When sufficient amount of glucocorticoids are not produced by the adrenal glands, the fats accumulate in the abdominal area, and you see it as flab around your middle.

Symptoms:

  • Hyperpigmentation
  • Extreme fatigue
  • Low blood sugar and low blood pressure
  • Salt craving as one of the functions of adrenal glands is to maintain the sodium-potassium balance in the body
  • Nausea, vomiting, abdominal pain
  • Weight loss but gain in abdominal fat

Causes:

  • Insufficient production of adrenal cortex hormones
  • Stopping of prescribed corticosteroids
  • Tuberculosis and other infections of adrenal glands
  • Spread of cancer to the adrenal glands

Management:

  • Oral corticosteroids or corticosteroid injections
  • Intravenous injections of hydrocortisone, saline solution, and dextrose in case of Addisonian crisis

Stress

Chronic stress is a very big cause of belly fat. When you are exposed to stress, a chain reaction starts in the body because of the dysregulation of HPA axis of the neuroendocrine system. HPA axis is a complex interaction between the hypothalamus, pituitary gland, and adrenal glands. The hypothalamus produces a corticotropin releasing hormone (CRH) and vasopressin. These together stimulate the secretion of adrenocorticotropic hormone (ACTH). ACTH is transported by the blood to the adrenal glands, which then produces corticosteroids, mainly, cortisol from cholesterol. One of the functions of cortisol is to signal the body to store fat, and specifically, the fat storage occurs in the abdominal area, where the cortisol receptors are greater. Researchers have found that stress causes hyperactivation of HPA axis, leading to accumulation of fat tissue, especially in the abdomen region.

So, the more and longer you are stressed (or if you are chronically stressed), chances are that you will be carrying more belly fat!

Ascites

Ascites is the buildup of fluid in the abdominal space. Ascites usually occurs in people with cancer, and it is then called malignant ascites. Onset of ascites is generally the terminal phase in cancer. Ascites also occurs in patients with liver cirrhosis, kidney failure, or heart disease.

Symptoms:

The first sign of ascites is an increase in abdominal girth accompanied by weight gain. [4] Although it looks like it is belly fat, it is actually the fluid that causes the bulging.

Other symptoms include:

  • Shortness of breath
  • Nausea and vomiting
  • Swelling in the feet and ankle
  • Decreased appetite, sense of fullness, bloating
  • Fatigue
  • Haemorrhoids

Management:

If the ascites is not causing any discomfort, it may not require any treatment. Treatment of ascites can have many side effects. Talk to your doctor before you go in for management/ treatment.

Abdominal hernia

Abdominal hernia is a swelling or a bulge in the abdominal area where an organ or fatty tissue pushes through a weak spot in the abdominal wall. The abdominal wall is made up of tough connective tissue and tendons that stretch from the ribs to the groin. Depending on the position of the weakness in your abdominal wall, the hernia can be inguinal (groin), femoral (upper thigh), umbilical (belly button), hiatal (upper stomach), or even incisional. Incisional hernia can occur when the intestine pushes through a weak spot at the site of abdominal surgery.

Symptoms:

  • Visible bulge that may or may not cause discomfort
  • Feeling of heaviness in the abdomen
  • Sharp pain when you strain or lift objects

Causes:

  • Constipation and diarrhoea
  • Persistent coughing and sneezing
  • Straining or suddenly lifting a heavy object

Management:

  • Umbilical hernia, common in young children, mostly resolves by itself as the abdominal muscles get stronger.
  • Other abdominal hernia normally do not resolve by themselves. Doctors suggest waiting and watching.
  • If treatment is required, surgery is the only option. Surgery involves pushing the hernia back into the abdomen and repairing the abdominal wall.

Menopause

Menopause is certainly not a disease or a disorder. It is the time in a woman’s life when she stops menstruating and cannot become pregnant because her ovaries stop producing the required amounts of hormones oestrogen and progesterone. A woman reaches menopause when she has not had her periods for 12 months.

Symptoms:

  • Hot flashes and/ or night sweats
  • Vaginal dryness
  • Mood swings
  • Sleep disturbances

It is very common to gain belly fat during menopause. This is because of the low oestrogen levels. Oestrogen seems to influence the distribution of fat in the body, in a way that the fat is redistributed from the hips, buttocks, and thighs to the belly. However, a study published in the journal Metabolism reported that though women did significantly gain belly fat, especially deep inside the belly, relative fat distribution is not significantly different after menopause. [5] But the fact remains that women do gain flab in the abdomen after menopause.

Belly fat can be seriously harmful. If your belly fat is not because of the above-mentioned conditions, you can lose it by adopting a healthy lifestyle that includes sleeping enough, exercising regularly, eating right, and reducing stress.

Reference

  1. Sharma ST, Nieman LK, Feelders RA. Cushing’s syndrome: epidemiology and developments in disease management. Clinical Epidemiology. 2015;7:281-293. doi:10.2147/CLEP.S44336.
  1. Feelders RA, Hofland LJ. Medical treatment of Cushing’s disease. J Clin Endocrinol Metab. 2013;98:425–438.
  1. Kyrou I, Chrousos GP, Tsigos C. Stress, visceral obesity, and metabolic complications. Ann N Y Acad Sci. 2006 Nov;1083:77-110.
  1. Sinicrope FA. Ascites. In: Kufe DW, Pollock RE, Weichselbaum RR, et al., editors. Holland-Frei Cancer Medicine. 6th edition. Hamilton (ON): BC Decker; 2003.
  2. Franklin RM, Ploutz-Snyder L, Kanaley JA. Longitudinal changes in abdominal fat distribution with menopause. Metabolism. 2009 Mar;58(3):311-5. doi: 10.1016/j.metabol.2008.09.030.

Adapted from http://www.thehealthsite.com/diseases-conditions/reasons-you-have-flab-around-your-abdomen-f0417/

 

Lower health-related quality of life observed in patients with Addison’s disease, Cushing’s syndrome

Patients with hypothalamic-pituitary-adrenal axis dysregulations report health-related quality of life that is far lower than that of the general population, according to findings of a prospective study.

“In most centers, both patients with adrenal deficiency and patients with Cushing’s syndrome are managed by the same team,” Charlotte DeBucy, of the Center for Rare Adrenal Diseases at Cochin Hospital in Paris, and colleagues wrote. “Despite the usual perception that both types of diseases alter quality of life, few studies have similarly investigated the impact of cortisol dysregulations on [health-related quality of life]. Such studies are important, however, to identify meaningful differences that would be important to consider to improve management and outcome.”

De Bucy and colleagues analyzed data from 343 patients with Addison’s disease or Cushing’s syndrome followed in routine practice at a single center in France between September 2007 and April 2014 (78% women; mean age, 48 years; mean length of time since diagnosis, 7.8 years; 61% married). All participants completed the short-form health survey (SF-36), a survey of health-related quality-of-life measures and the 12-item general health questionnaire (GHQ-12), a measure of psychological well-being or distress. Questionnaires were completed at baseline and at 6, 12, 24 and 36 months. Patients with Cushing’s syndrome were also assessed for cortisol status at baseline and at follow-up evaluations.

Within the cohort, 206 had Cushing’s syndrome of pituitary origin, 91 had Cushing’s syndrome of adrenal origin and 46 patients had Addison’s disease; 16% were included in the study before any treatment was initiated.

Researchers found that mean standard deviation scores for psychological and physical dimensions of the SF-36 were “well below” those of the general population, but diagnosis, cortisol status and time since treatment initiation all influenced individual scores. Cushing’s syndrome of pituitary origin was associated with worse health-related quality of life, especially for physical functioning, social functioning and mental health. In Cushing’s syndrome, health-related quality of life was generally worse during periods of hypercortisolism, but scores for these patients were lower than those of patients with Addison’s disease even during periods of hypocortisolism or eucortisolism, according to the researchers.

“The differences were particularly large for physical functioning and role-physical subscales,” the researchers wrote.

They also found that mental health scores for patients with Cushing’s syndrome decreased during periods of hypocortisolism, whereas other adrenal conditions were associated with higher mental health scores.

More than half of patients, regardless of diagnosis and cortisol status, had psychological distress requiring attention, according to the GHQ-12 survey.

“Our findings are important for clinical practice,” the researchers wrote. “The consequences of cortisol dysregulation on [health-related quality of life] should be considered in the management of adrenal insufficiency and even more (in) Cushing’s syndrome patients, and these consequences can be long term, affecting apparently cured patients. Early information on these consequences might be helpful for patients who often perceive a poor quality of life as the result of inadequate disease control or treatment. Even if this possibility exists, knowing that adrenal diseases have long-lasting effects on [health-related quality of life] may be helpful for patients to cope with them.” – by Regina Schaffer

Disclosure: L’association Surrénales supported this study. The researchers report no relevant financial disclosures.

From http://www.healio.com/endocrinology/adrenal/news/in-the-journals/%7B842655ce-e710-4476-a3c2-2909b06434ed%7D/lower-health-related-quality-of-life-observed-in-patients-with-addisons-disease-cushings-syndrome

%d bloggers like this: