Thyroid dysfunction highly prevalent in Cushing’s syndrome

Central hypothyroidism is prevalent in about 1 in 2 adults with Cushing’s syndrome, and thyroid function can be restored after curative surgery for most patients, according to study findings.

“Our study findings have confirmed and greatly extended previous smaller studies that suggested a link between hypercortisolism and thyroid dysfunction but were inconclusive due to smaller sample size and short follow-up,” Skand Shekhar, MD, an endocrinologist and clinical investigator in the reproductive physiology and pathophysiology group at the National Institute of Environmental Health Sciences, NIH, told Healio. “Due to our large sample and longer follow-up, we firmly established a significant negative correlation between hypercortisolemia measures — serum and urinary cortisol, serum adrenocorticotropic hormone — and thyroid hormones triiodothyronine, free thyroxine and thyrotropin.”

Shekhar and colleagues conducted a retrospective review of two groups of adults aged 18 to 60 years with Cushing’s syndrome. The first group was evaluated at the NIH Clinical Center from 2005 to 2018 (n = 68; mean age, 43.8 years; 62% white), and the second group was evaluated from 1985 to 1994 (n = 55; mean age, 37.2 years; 89% white). The first cohort was followed for 6 to 12 months to observe the pattern of thyroid hormone changes after surgical cure of adrenocorticotropic hormone-dependent Cushing’s syndrome. The second group underwent diurnal thyroid-stimulating hormone evaluation before treatment and during remission for some cases.

Urinary free cortisol and morning thyroid hormone levels were collected for all participants. In the second group, researchers evaluated diurnal patterns of TSH concentrations with hourly measurements from 3 to 7 p.m. and midnight to 4 p.m. In the first group, adrenocorticotropic hormone and serum cortisol were measured.

In the first cohort, seven participants were receiving levothyroxine for previously diagnosed primary or central hypothyroidism. Of the remaining 61 adults, 32 had untreated central hypothyroidism. Thirteen participants had free T4 at the lower limit of normal, and 19 had subnormal levels. There were 29 adults with subnormal levels of T3 and seven with subnormal TSH.

Before surgery, 36 participants in the first group had central hypothyroidism. Six months after surgery, central hypothyroidism remained for 10 participants. After 12 months, the number of adults with central hypothyroidism dropped to six. Preoperative T3 and TSH levels were negatively associated with morning and midnight cortisol, adrenocorticotropic hormone and urinary free cortisol. In post hoc analysis, a baseline urinary free cortisol of more than 1,000 g per day was adversely associated with baseline and 6-month T3 and free T4 levels.

In the second group, there were 51 participants not on thyroid-modifying drugs who had a thyroid function test 6 or 12 months after surgery. Before surgery, free Tlevels were subnormal in 17 participants, T3 levels were subnormal in 22, and TSH levels were in the lower half of the reference range or below in all but one participant.

After surgery, two participants had below normal free T4, one had subnormal T3, and TSH levels were in the lower half of the reference range or below in 23 of 48 participants. Before surgery, there was no difference in mean TSH between daytime and nighttime. A mean 8 months after surgery, the second group had a normal nocturnal TSH surge from 1.3 mIU/L during the day to 2.17 mIU/L at night (P = .01). The nocturnal TSH increase persisted as long as 3 years in participants who had follow-up evaluations.

“We found a very high prevalence of thyroid hormone deficiency that appears to start at the level of the hypothalamus-pituitary gland and extend to the tissue level,” Shekhar said. “Some of these patients may experience thyroid hormone deficiency symptoms, such as fatigue, depression, cold intolerance, weight gain, etc, as a result of systematic and tissue-level thyroid hormone deficiency. We also noted a strong correlation between hypothyroidism and hypogonadism, which implies that hypothyroid patients are also likely to suffer adverse reproductive effects. Thus, it is imperative to perform thorough thyroid hormone assessment in patients with Cushing’s syndrome, and thyroid hormone supplementation should be considered for these patients unless cure of Cushing’s syndrome is imminent.”

Researchers said providers should routinely screen for hypothyroidism in adults with Cushing’s syndrome. Even after thyroid function is restored, regular follow-up should also be conducted.

Further research is needed to investigate thyroid dysfunction in iatrogenic Cushing’s syndrome and the impact of these findings on euthyroid sick syndrome, Shekhar said.

For more information:

Skand Shekhar, MD, can be reached at skand.shekhar@nih.gov.

From https://www.healio.com/news/endocrinology/20210208/thyroid-dysfunction-highly-prevalent-in-cushings-syndrome

Thyroid cancer: Cushing syndrome is a lesser-known warning sign – what is it?

Thyroid cancer survival rates are 84 percent for 10 years or more if diagnosed early. Early diagnosis is crucial therefore and spotting the unusual signs could be a matter of life and death. A sign your thyroid cancer has advanced includes Cushing syndrome.

What is it?

What is Cushing syndrome?

 

Cushing syndrome occurs when your body is exposed to high levels of the hormone cortisol for a long time, said the Mayo Clinic.

The health site continued: “Cushing syndrome, sometimes called hypercortisolism, may be caused by the use of oral corticosteroid medication.

“The condition can also occur when your body makes too much cortisol on its own.

“Too much cortisol can produce some of the hallmark signs of Cushing syndrome — a fatty hump between your shoulders, a rounded face, and pink or purple stretch marks on your skin.”

In a study published in the US National Library of Medicine National Institutes of Health, thyroid carcinoma and Cushing’s syndrome was further investigated.

The study noted: “Two cases of thyroid carcinoma and Cushing’s syndrome are reported.

“Both of our own cases were medullary carcinomas of the thyroid, and on reviewing the histology of five of the other cases all proved to be medullary carcinoma with identifiable amyloid in the stroma.

“A consideration of the temporal relationships of the development of the carcinoma and of Cushing’s syndrome suggested that in the two cases with papillary carcinoma these conditions could have been unrelated, but that in eight of the nine cases with medullary carcinoma there was evidence that thyroid carcinoma was present at the time of diagnosis of Cushing’s syndrome.

“Medullary carcinoma of the thyroid is also probably related to this group of tumours. It is suggested that the great majority of the tumours associated with Cushing’s syndrome are derived from cells of foregut origin which are endocrine in nature.”

In rare cases, adrenal tumours can cause Cushing syndrome a condition arising when a tumour secretes hormones the thyroid wouldn’t normally create.

Cushing syndrome associated with medullary thyroid cancer is uncommon.

The syndrome is more commonly caused by the pituitary gland overproducing adrenocorticotropic hormone (ACTH), or by taking oral corticosteroid medication.

See a GP if you have symptoms of thyroid cancer, warns the NHS.

The national health body added: “The symptoms may be caused by less serious conditions, such as an enlarged thyroid, so it’s important to get them checked.

“A GP will examine your neck and can organise a blood test to check how well your thyroid is working.

“If they think you could have cancer or they’re not sure what’s causing your symptoms, you’ll be referred to a hospital specialist for more tests.”

 

Adapted from https://www.express.co.uk/life-style/health/1351753/thyroid-cancer-signs-symptoms-cushing-syndrome

Cushing’s Patients at Risk for Autoimmune Diseases After Condition Is Resolved

Children with Cushing’s syndrome are at risk of developing new autoimmune and related disorders after being cured of the disease, a new study shows.

The study, “Incidence of Autoimmune and Related Disorders After Resolution of Endogenous Cushing Syndrome in Children,” was published in Hormone and Metabolic Research.

Patients with Cushing’s syndrome have excess levels of the hormone cortisol, a corticosteroid that inhibits the effects of the immune system. As a result, these patients are protected from autoimmune and related diseases. But it is not known if the risk rises after their disease is resolved.

To address this, researchers at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) examined 127 children with Cushing’s syndrome at the National Institutes of Health from 1997 until 2017.

Among the participants, 77.5 percent had a pituitary tumor causing the disease, 21.7 percent had ACTH-independent disease, and one patient had ectopic Cushing’s syndrome. All patients underwent surgery to treat their symptoms.

After a mean follow-up of 31.2 months, 7.8 percent of patients developed a new autoimmune or related disorder.

Researchers found no significant differences in age at diagnosis, gender, cortisol levels, and urinary-free cortisol at diagnosis, when comparing those who developed autoimmune disorders with those who didn’t. However, those who developed an immune disorder had a significantly shorter symptom duration of Cushing’s syndrome.

This suggests that increased cortisol levels, even for a short period of time, may contribute to more reactivity of the immune system after treatment.

The new disorder was diagnosed, on average, 9.8 months after Cushing’s treatment. The disorders reported were celiac disease, psoriasis, Hashimoto thyroiditis, Graves disease, optic nerve inflammation, skin hypopigmentation/vitiligo, allergic rhinitis/asthma, and nerve cell damage of unknown origin responsive to glucocorticoids.

“Although the size of our cohort did not allow for comparison of the frequency with the general population, it seems that there was a higher frequency of optic neuritis than expected,” the researchers stated.

It is still unclear why autoimmune disorders tend to develop after Cushing’s resolution, but the researchers hypothesized it could be a consequence of the impact of glucocorticoids on the immune system.

Overall, the study shows that children with Cushing’s syndrome are at risk for autoimmune and related disorders after their condition is managed. “The presentation of new autoimmune diseases or recurrence of previously known autoimmune conditions should be considered when concerning symptoms arise,” the researchers stated.

Additional studies are warranted to further explore this link and improve care of this specific population.

From https://cushingsdiseasenews.com/2018/03/06/after-cushings-cured-autoimmune-disease-risk-looms-study/

In Memory: Edward H. Oldfield, MD, 1947–2017

Dr. Oldfield was my pituitary surgeon at NIH back in 1987.  This was back in the olden days of transsphenoidal surgery.  I honestly expected to die but this man saved my life.

 

Ed started as Senior Staff Fellow in the Surgical Neurology Branch at the NIH (1981). After 5 years, Ed would become the Chief of the Surgical Neurology Branch. He would stay on as Branch Chief and lead the neurosurgical effort at the NIH for the next 21 years. During his tenure, he developed clinical, research, and training programs in epilepsy, congenital malformations, syringomyelia, nervous system neoplasia, drug delivery, and vascular malformations. The strength of these programs was his leadership and their multidisciplinary nature, which incorporated physicians and scientists across the basic, translational, and clinical arenas. Research investigation was always targeted at defined clinical problems. Under his direction, these programs shaped understanding of the studied neurological disorders, as well as improving patient care.

Read the entire obituary here: Edward H. Oldfield, MD, 1947–2017

Crinetics Pharmaceuticals Awarded Two SBIR Grants to Develop New Therapeutics for Congenital Hyperinsulinism and Cushing’s Disease

SAN DIEGO, Sept. 06, 2017 (GLOBE NEWSWIRE) — Crinetics Pharmaceuticals, Inc., a rare disease therapeutics company focused on endocrine disorders and endocrine-related cancers, announced today that it was awarded two new grants from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) of the National Institutes of Health (NIH) that could total $2.4 million. Both are Small Business Innovation Research (SBIR) grants and include a Fast Track grant for up to $2.1 million and a Phase I grant of $0.3 million, which will be used for the development of Crinetics’ nonpeptide, oral somatostatin agonists for congenital hyperinsulinemia, and the discovery of novel small molecule drugs for Cushing’s disease, respectively.

“We are delighted with the NIH’s continuing support of our programs to develop new drugs for patients with rare endocrine disorders,” said Stephen Betz, Ph. D., Founder and Vice President of Biology of Crinetics. “These awards will enable us to advance our efforts in both hyperinsulinemia and Cushing’s disease, expanding our pipeline to include these diseases with significant unmet medical needs, and bring these treatments to the patients who need them.”

Presently, there are no medical therapies that were specifically developed to treat the life-threatening chronic hypoglycemia precipitated by congenital hyperinsulinism (CHI). The current options for patients are limited to drugs developed for other purposes in the hope that they might help. Despite their poor profiles, these drugs are prescribed because the next line of treatment is typically a partial or full pancreatectomy. Even when successful, patients who undergo the surgery often become diabetic and must actively manage glucose with multiple daily insulin injections for the rest of their lives.

Similarly, first line treatments for Cushing’s disease are surgical and involve removal of either the ACTH-secreting tumor in the pituitary or the adrenal glands themselves. As this is often unsuccessful, contraindicated or delayed, medical therapy for these patients becomes necessary. Current treatment options include inhibitors of steroid synthesis enzymes that can prevent the production of cortisol and improve symptoms, but these treatments also induce a host of unwanted side effects due to the accumulation of other steroid products.

About Congenital Hyperinsulinism (CHI)

Hyperinsulinemic hypoglycemia (HH) is one of the most frequent causes of persistent hypoglycemia in infants and can result in seizures, developmental delays, learning disabilities, and even death. The most severe form of HH is inherited and referred to as CHI. CHI largely results from mutations in key genes in the insulin secretion pathway in the islets of Langerhans in the pancreas.

About Cushing’s Disease

Clinical signs of Cushing’s syndrome include growth of fat pads (collarbone, back of neck, face and trunk), excessive sweating, dilation of capillaries, thinning of the skin, muscle weakness, hirsutism, depression/anxiety, hypertension, osteoporosis, insulin resistance, hyperglycemia, heart disease, and a range of other metabolic disturbances resulting in high morbidity. If inadequately controlled in its severe forms, Cushing’s syndrome is associated with high mortality. The most common form of Cushing’s syndrome is Cushing’s disease which is caused by microadenomas of pituitary corticotropic cells that secrete excess adrenocorticotropic hormone (ACTH).

About the NIDDK

The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) conducts and supports research on diabetes and other endocrine and metabolic diseases; digestive diseases, nutrition, and obesity; and kidney, urologic, and hematologic diseases. Spanning the full spectrum of medicine and afflicting people of all ages and ethnic groups, these diseases encompass some of the most common, severe, and disabling conditions affecting Americans. For more information about the NIDDK and its programs, visit www.niddk.nih.gov.

About Crinetics Pharmaceuticals

Crinetics Pharmaceuticals discovers and develops novel therapeutics targeting peptide hormone receptors for the treatment of rare endocrine disorders and endocrine-related cancers. Crinetics was founded by a team of scientists with a proven track record of endocrine drug discovery and development to create important new therapeutic options for endocrinologists and their patients. The company is backed by top life sciences investors, 5AM Ventures, Versant Ventures, and Vivo Capital and is headquartered in San Diego. For more information, please visit www.crinetics.com.

More: http://www.pharmiweb.com/pressreleases/pressrel.asp?ROW_ID=241628#.WbFJGNN97-Y

%d bloggers like this: