Successful Cushing’s Surgery Leads to Better Bone Density

Biomarkers in a majority of Cushing’s syndrome patients with surgically induced disease remission showed a high rate of bone turnover and greater bone mineral density one and two years later, a study reports.

Before treatment, these patients were found to have greater bone degradation and poorer bone formation, as can be common to disease-related bone disorders.

Researchers believe their work is the first study of its kind, “and the data obtained will be instrumental for clinicians who care for patients with Cushing’s syndrome.”

The study, “The Effect of Biochemical Remission on Bone Metabolism in Cushing’s Syndrome: A 2‐Year Follow‐Up Study,” was published in the Journal of Bone and Mineral Research.

Two common co-conditions of Cushing’s syndrome are osteopenia, a loss of bone mass, and osteoporosis, in which the body makes too little bone, loses too much bone, or both. Studies suggest up to 80% of people with Cushing’s have evidence of reduced bone mineral density affecting the entire skeleton.

However, few risk factors to predict bone health have been identified so far, and guidelines for osteoporosis management due to Cushing’s are lacking. Uncertainty as to the natural course of osteoporosis once a diagnosis of Cushing’s syndrome has been made is also still evident.

Investigators at the University of Munich, reportedly for a first time, analyzed the natural course of bone mineral density and bone turnover (recycling) in a group of people with endogenous Cushing’s syndrome — which refers to the disease caused by excess cortisol in the bloodstream, often due to a tumor in the adrenal or pituitary glands.

They examined medical records of 89 Cushing syndrome patients with a mean age of 44, of which 74% were women. Of these, 65% had pituitary Cushing’s (Cushing’s disease), 28% had adrenal, and 7% had ectopic Cushing’s, which is caused by tumors outside the adrenal or pituitary glands. A group of 71 age- and sex-matched healthy participants were included as controls.

In all patients, blood samples were collected at the time of diagnosis (baseline) and one and two years after removing one or both adrenal glands or moving tumors affecting the pituitary gland. Blood samples were analyzed for biomarkers related to bone formation and degradation (resorption).

At the study’s beginning, the mean levels of two bone formation markers, osteocalcin and intact PINP, were significantly decreased in patients compared with controls, whereas the bone formation marker alkaline phosphatase was increased.

Both markers for bone degradation — called CTX and TrAcP — were also high, which demonstrated “increased bone resorption and decreased bone formation in [Cushing’s syndrome],” the team wrote.

While bone markers were similar in participants with a reduced bone mass relative to those with a normal bone mass, bone mineral density was lower overall. Bone mineral density was significantly lower in the neck and spine compared with the femur (thigh bone). Normal bone mineral density was reported in 28 (32%) patients, while 46 (52%) had osteopenia, and the remaining 15 (17%) lived with osteoporosis.

A history of low-trauma bone fractures due to osteoporosis occurred in 17 (19%) patients, taking place shortly before diagnosis in more than half of these (58%) people, and more than two years before a Cushing’s diagnosis in the remaining group (42%).

Compared to patients without fractures, those with fractures had a significantly lower T‐score, a bone density measure that represents how close a person is to average peak bone density. While Cushing’s subtype, age, or body mass index (BMI, body fat based on height) did not differ between groups, men had a significantly higher risk of fractures than women (35% of men vs. 14% of women).

Both disease severity and duration did not contribute to fractures rates, but urinary free cortisol (a circulating cortisol measure) was significantly higher in patients with a low T‐score.

At the one year after tumor removal, which led to Cushing’s remission based on blood tests, a significant increase in bone formation markers was reported. These biomarkers decreased slightly at two years post-surgery, but remained elevated.

At the beginning of the study, bone resorption markers were mildly increased, which rose further one year after surgery before returning almost to normal levels by two years. In parallel, bone density measures conducted in 40 patients showed a matching increase in T-score, particularly in the spine.

After two years, bone mineral density improved in 78% of patients, and T-scores improved in 45% of them. No fractures occurred after Cushing’s treatment, and there was no significant correlation between bone turnover markers and better bone mineral density.

“This study analyzes for the first time in a comprehensive way bone turnover markers during the course of [Cushing’s syndrome],” the researchers wrote. “Our data suggest that the phase immediately after remission from [Cushing’s syndrome] is characterized by a high rate of bone turnover, resulting in a spontaneous net increase in bone mineral density in the majority of patients.”

These results “will influence future therapeutic strategies in patients” with Cushing’s syndrome, they added.

 

Steve holds a PhD in Biochemistry from the Faculty of Medicine at the University of Toronto, Canada. He worked as a medical scientist for 18 years, within both industry and academia, where his research focused on the discovery of new medicines to treat inflammatory disorders and infectious diseases. Steve recently stepped away from the lab and into science communications, where he’s helping make medical science information more accessible for everyone.

Treatment for Rare Cancer May Help Cushing’s Patients

The cancer medicine bexarotene may hold promise for treating Cushing’s disease, a study suggests.

The study, “Targeting the TR4 nuclear receptor with antagonist bexarotene can suppress the proopiomelanocortin signalling in AtT‐20 cells,” was published in the Journal of Cellular and Molecular Medicine.

Cushing’s disease is caused by a tumor on the pituitary gland, leading this gland to produce too much adrenocorticotropic hormone (ACTH). Excess ACTH causes the adrenal glands to release too much of the stress hormone cortisol; abnormally high cortisol levels are primarily responsible for the symptoms of Cushing’s.

Typically, first-line treatment is surgical removal of the pituitary tumor. But surgery, while effective in the majority of cases, does not help all. Additional treatment with medications or radiation therapy (radiotherapy) works for some, but not others, and these treatments often have substantial side effects.

“Thus, the development of new drugs for CD [Cushing’s disease] treatment is extremely urgent especially for patients who have low tolerance for surgery and radiotherapy,” the researchers wrote.

Recent research has shown that a protein called testicular receptor 4 (TR4) helps to drive ACTH production in pituitary cancers. Thus, blocking the activity of TR4 could be therapeutic in Cushing’s disease.

Researchers conducted computer simulations to screen for compounds that could block TR4. This revealed bexarotene as a potential inhibitor. Further biochemical tests confirmed that bexarotene could bind to, and block the activity of, TR4.

Bexarotene is a type of medication called a retinoid. It is approved to treat cutaneous T-cell lymphoma, a rare cancer that affects the skin, and available under the brand name Targretin.

When pituitary cancer cells in dishes were treated with bexarotene, the cells’ growth was impaired, and apoptosis (a type of programmed cell death) was triggered. Bexarotene treatment also reduced the secretion of ACTH from these cells.

In mice with ACTH-secreting pituitary tumors, bexarotene’s use significantly reduced tumor size, and lowered levels of ACTH and cortisol. Cushing’s-like symptoms also eased; for example, bexarotene treatment reduced the accumulation of fat around the abdomen in these mice.

Additional cellular experiments suggested that bexarotene specifically works on TR4 by changing the location of the protein. Normally, TR4 is present in the nucleus — the cellular compartment that houses DNA — where it helps to control the production of ACTH.

But with bexarotene treatment, TR4 tended to go outside of the nucleus, leading to lower ACTH production. The researchers noted that other mechanisms may also be involved in the observed effects of bexarotene.

“In summary, our work demonstrates that bexarotene is a potential inhibitor for TR4. Importantly, bexarotene may represent a new drug candidate to treat CD,” the researchers concluded.

COVID-19 and Cushing’s Syndrome: Recommendations For A Special Population With Endogenous Glucocorticoid Excess

https://doi.org/10.1016/S2213-8587(20)30215-1

Over the past few months, COVID-19, the pandemic disease caused by severe acute respiratory syndrome coronavirus 2, has been associated with a high rate of infection and lethality, especially in patients with comorbidities such as obesity, hypertension, diabetes, and immunodeficiency syndromes.1

These cardiometabolic and immune impairments are common comorbidities of Cushing’s syndrome, a condition characterised by excessive exposure to endogenous glucocorticoids. In patients with Cushing’s syndrome, the increased cardiovascular risk factors, amplified by the increased thromboembolic risk, and the increased susceptibility to severe infections, are the two leading causes of death.2

In healthy individuals in the early phase of infection, at the physiological level, glucocorticoids exert immunoenhancing effects, priming danger sensor and cytokine receptor expression, thereby sensitising the immune system to external agents.3 However, over time and with sustained high concentrations, the principal effects of glucocorticoids are to produce profound immunosuppression, with depression of innate and adaptive immune responses. Therefore, chronic excessive glucocorticoids might hamper the initial response to external agents and the consequent activation of adaptive responses. Subsequently, a decrease in the number of B-lymphocytes and T-lymphocytes, as well as a reduction in T-helper cell activation might favour opportunistic and intracellular infection. As a result, an increased risk of infection is seen, with an estimated prevalence of 21–51% in patients with Cushing’s syndrome.4 Therefore, despite the absence of data on the effects of COVID-19 in patients with Cushing’s syndrome, one can make observations related to the compromised immune state in patients with Cushing’s syndrome and provide expert advice for patients with a current or past history of Cushing’s syndrome.

Fever is one of the hallmarks of severe infections and is present in up to around 90% of patients with COVID-19, in addition to cough and dyspnoea.1 However, in active Cushing’s syndrome, the low-grade chronic inflammation and the poor immune response might limit febrile response in the early phase of infection.2 Conversely, different symptoms might be enhanced in patients with Cushing’s syndrome; for instance, dyspnoea might occur because of a combination of cardiac insufficiency or weakness of respiratory muscles.2 Therefore, during active Cushing’s syndrome, physicians should seek different signs and symptoms when suspecting COVID-19, such as cough, together with dysgeusia, anosmia, and diarrhoea, and should be suspicious of any change in health status of their patients with Cushing’s syndrome, rather than relying on fever and dyspnoea as typical features.

The clinical course of COVID-19 might also be difficult to predict in patients with active Cushing’s syndrome. Generally, patients with COVID-19 and a history of obesity, hypertension, or diabetes have a more severe course, leading to increased morbidity and mortality.1 Because these conditions are observed in most patients with active Cushing’s syndrome,2 these patients might be at an increased risk of severe course, with progression to acute respiratory distress syndrome (ARDS), when developing COVID-19. However, a key element in the development of ARDS during COVID-19 is the exaggerated cellular response induced by the cytokine increase, leading to massive alveolar–capillary wall damage and a decline in gas exchange.5 Because patients with Cushing’s syndrome might not mount a normal cytokine response,4 these patients might parodoxically be less prone to develop severe ARDS with COVID-19. Moreover, Cushing’s syndrome and severe COVID-19 are associated with hypercoagulability, such that patients with active Cushing’s syndrome might present an increased risk of thromboembolism with COVID-19. Consequently, because low molecular weight heparin seems to be associated with lower mortality and disease severity in patients with COVID-19,6 and because anticoagulation is also recommended in specific conditions in patients with active Cushing’s syndrome,7 this treatment is strongly advised in hospitalised patients with Cushing’s syndrome who have COVID-19. Furthermore, patients with active Cushing’s syndrome are at increased risk of prolonged duration of viral infections, as well as opportunistic infections, particularly atypical bacterial and invasive fungal infections, leading to sepsis and an increased mortality risk,2 and COVID-19 patients are also at increased risk of secondary bacterial or fungal infections during hospitalisation.1 Therefore, in cases of COVID-19 during active Cushing’s syndrome, prolonged antiviral treatment and empirical prophylaxis with broad-spectrum antibiotics14 should be considered, especially for hospitalised patients (panel).

Panel

Risk factors and clinical suggestions for patients with Cushing’s syndrome who have COVID-19

Reduction of febrile response and enhancement of dyspnoea

Rely on different symptoms and signs suggestive of COVID-19, such as cough, dysgeusia, anosmia, and diarrhoea.

Prolonged duration of viral infections and susceptibility to superimposed bacterial and fungal infections

Consider prolonged antiviral and broad-spectrum antibiotic treatment.

Impairment of glucose metabolism (negative prognostic factor)

Optimise glycaemic control and select cortisol-lowering drugs that improve glucose metabolism. Hypertension (negative prognostic factor) Optimise blood pressure control and select cortisol-lowering drugs that improve blood pressure.

Thrombosis diathesis (negative prognostic factor)

Start antithrombotic prophylaxis, preferably with low-molecular-weight heparin treatment.

Surgery represents the first-line treatment for all causes of Cushing’s syndrome,89 but during the pandemic a delay might be appropriate to reduce the hospital-associated risk of COVID-19, any post-surgical immunodepression, and thromboembolic risks.10 Because immunosuppression and thromboembolic diathesis are common Cushing’s syndrome features,24 during the COVID-19 pandemic, cortisol-lowering medical therapy, including the oral drugs ketoconazole, metyrapone, and the novel osilodrostat, which are usually effective within hours or days, or the parenteral drug etomidate when immediate cortisol control is required, should be temporarily used.9 Nevertheless, an expeditious definitive diagnosis and proper surgical resolution of hypercortisolism should be ensured in patients with malignant forms of Cushing’s syndrome, not only to avoid disease progression risk but also for rapidly ameliorating hypercoagulability and immunospuppression;9 however, if diagnostic procedures cannot be easily secured or surgery cannot be done for limitations of hospital resources due to the pandemic, medical therapy should be preferred. Concomitantly, the optimisation of medical treatment for pre-existing comorbidities as well as the choice of cortisol-lowering drugs with potentially positive effects on obesity, hypertension, or diabates are crucial to improve the eventual clinical course of COVID-19.

Once patients with Cushing’s syndrome are in remission, the risk of infection is substantially decreased, but the comorbidities related to excess glucocorticoids might persist, including obesity, hypertension, and diabetes, together with thromboembolic diathesis.2 Because these are features associated with an increased death risk in patients with COVID-19,1 patients with Cushing’s syndrome in remission should be considered a high-risk population and consequently adopt adequate self-protection strategies to minimise contagion risk.

In conclusion, COVID-19 might have specific clinical presentation, clinical course, and clinical complications in patients who also have Cushing’s syndrome during the active hypercortisolaemic phase, and therefore careful monitoring and specific consideration should be given to this special, susceptible population. Moreover, the use of medical therapy as a bridge treatment while waiting for the pandemic to abate should be considered.

RP reports grants and personal fees from Novartis, Strongbridge, HRA Pharma, Ipsen, Shire, and Pfizer; grants from Corcept Therapeutics and IBSA Farmaceutici; and personal fees from Ferring and Italfarmaco. AMI reports non-financial support from Takeda and Ipsen; grants and non-financial support from Shire, Pfizer, and Corcept Therapeutics. BMKB reports grants from Novartis, Strongbridge, and Millendo; and personal fees from Novartis and Strongbridge. AC reports grants and personal fees from Novartis, Ipsen, Shire, and Pfizer; personal fees from Italfarmaco; and grants from Lilly, Merck, and Novo Nordisk. All other authors declare no competing interests.

References

View Abstract

From https://www.thelancet.com/journals/landia/article/PIIS2213-8587(20)30215-1/fulltext

Long-Term Obesity Persists Despite Pituitary Adenoma Treatment In Childhood

Sethi A, et al. Clin Endocrinol. 2019;doi:10.1111/CEN.14146.

January 5, 2020

Obesity is common at diagnosis of pituitary adenoma in childhood and may persist despite successful treatment, according to findings published in Clinical Endocrinology.

“The importance of childhood and adolescent obesity on noncommunicable disease in adult life is well recognized, and in this new cohort of patients, we report that obesity is common at presentation of pituitary adenoma in childhood and that successful treatment is not necessarily associated with weight loss,” Aashish Sethi, MD, MBBS, a pediatric endocrinologist in the department of endocrinology at Alder Hey Children’s Hospital in Liverpool, United Kingdom, and colleagues wrote. “We have reported obesity, and obesity-related morbidity in a mixed cohort of children and young adults previously, but [to] our knowledge, this is the first time this observation has been reported in a purely pediatric cohort.”

In a retrospective study, Sethi and colleagues analyzed clinical and radiological data from 24 white children from Alder Hey Children’s Hospital followed for a median of 3.3 years between 2000 and 2019 (17 girls; mean age at diagnosis, 15 years). Researchers assessed treatment modality (medical, surgical or radiation therapy), pituitary hormone deficiencies and BMI, as well as results of any genetic testing.

Within the cohort, 13 girls had prolactinomas (mean age, 15 years), including 10 macroadenomas between 11 mm and 35 mm in size. Children presented with menstrual disorders (91%), headache (46%), galactorrhea (46%) and obesity (38%). Nine children were treated with cabergoline alone, three also required surgery, and two were treated with the dopamine agonist cabergoline, surgery and radiotherapy.

Five children had Cushing’s disease (mean age, 14 years; two girls), including one macroadenoma. Those with Cushing’s disease presented with obesity (100%), short stature (60%) and headache (40%). Transsphenoidal resection resulted in biochemical cure; however, two patients experienced relapse 3 and 6 years after surgery, respectively, requiring radiotherapy. One patient also required bilateral adrenalectomy.

Six children had a nonfunctioning pituitary adenoma (mean age, 16 years; two girls), including two macroadenomas. These children presented with obesity (67%), visual field defects (50%) and headache (50%). Four required surgical resections, with two experiencing disease recurrence after surgery and requiring radiotherapy.

During the most recent follow-up exam, 13 children (54.1%) had obesity, including 11 who had obesity at diagnosis.

“The persistence of obesity following successful treatment, in patients with normal pituitary function, suggests that mechanisms other than pituitary hormone excess or deficiency may be important,” the researchers wrote. “It further signifies that obesity should be a part of active management in cases of pituitary adenoma from diagnosis.” – by Regina Schaffer

Disclosures: The authors report no relevant financial disclosures.

From https://www.healio.com/endocrinology/adrenal/news/online/%7Bde3fd83b-e8e0-4bea-a6c2-99eb896356ab%7D/long-term-obesity-persists-despite-pituitary-adenoma-treatment-in-childhood

New Phase 3 Data Further Support Recorlev’s Ability to Safely Lower Cortisol Levels in Cushing’s Patients

Strongbridge Biopharma released additional positive results from a Phase 3 trial evaluating whether the company’s investigational therapy Recorlev (levoketoconazole) is safe and effective for people with endogenous Cushing’s syndrome.

The latest results were presented in the scientific poster “Safety and Efficacy of Levoketoconazole in Cushing Syndrome:  Initial Results From the Phase 3 SONICS Study,\” at the 18th Annual Congress of the European NeuroEndocrine Association (ENEA), which took place in Wrocław, Poland, last month.

The SONICS study (NCT01838551) was a multi-center, open-label Phase 3 trial evaluating Recorlev’s safety and effectiveness in 94 patients with endogenous Cushing’s syndrome.

The trial consisted of three parts: a dose-escalation phase to determine the appropriate Recorlev dose that achieved normalization of cortisol levels; a maintenance phase in which patients received the established dose for six months; and a final extended phase, in which patients were treated with Recorlev for an additional six months, with the possibility of dose adjustments.

Its primary goal was a reduction in the levels of cortisol in the patients’ urine after six months of maintenance treatment, without any dose increase during that period. Among secondary goals was a reduction in the characteristically high risk of cardiovascular disease in these people, through the assessment of multiple cardiovascular risk markers.

Strongbridge announced top-line results of the SONICS study in August, which showed that the trial had reached its primary and secondary goals. It concluded last month.

After six months of maintenance therapy, Recorlev successfully lowered to normal the levels of cortisol in 30% of patients without a dose increase. It also led to statistically and clinically significant reductions in cardiovascular risk biomarkers, including blood sugar, cholesterol levels, body weight, and body mass index.

Maria Fleseriu, MD, director of the Oregon Health Sciences University Northwest Pituitary Center, presented additional and detailed results of SONICS at the congress.

Additional analyses showed that among the 77 patients who completed the dose-escalation phase and entered the study’s maintenance phase, 81% had their cortisol levels normalized.

At the end of the six months of maintenance treatment, 29 (53%) of the 55 patients who had their cortisol levels assessed at the beginning of the study and at the end of the maintenance phase had achieved normalization of cortisol levels, regardless of dose increase.

Among all patients who completed maintenance treatment (including patients with some missing data) and regardless of dose increase, 38% had achieved normalization of cortisol levels and 48% recorded a 50% or more decrease or normalization.

The results also highlighted that Recorlev substantially reduced patients’ cortisol levels regardless of their levels at the study’s beginning (which were on average about five-fold higher than the upper limit of normal). In those patients with the highest levels of cortisol in their urine, Recorlev led to a median reduction of more than 80%.

As previously reported, Recorlev was found to be generally well-tolerated, with no new safety concerns, and only 12 participants (12.8%) stopped treatment due to adverse events.

Ten patients had three- or five-fold increased levels of alanine aminotransferase — a liver enzyme used to assess liver damage — which were fully resolved without further complications. These liver-related adverse events “were all noted in the first 60 days, thus suggesting a timeline interval for monitoring,” Fleseriu said in a press release.

“We continue to be encouraged by the positive efficacy results of SONICS and the overall benefit-to-risk profile of Recorlev and look forward to sharing additional planned analyses from the study in the near future,” said Fredric Cohen, Strongbridge’s chief medical officer.

From https://cushingsdiseasenews.com/2018/11/01/new-data-from-phase-3-trial-supports-recorlev-ability-to-safely-treat-cushings-syndrome/

%d bloggers like this: