Metyrapone Reduced Urinary-Free Cortisol Levels in Cushing Syndrome

Metyrapone treatments helped patients with Cushing syndrome reach normal, urinary-free cortisol levels in the short-term and also had long-term benefits, according to a study published in Endocrine.

This observational, longitudinal study evaluated the effects of the 11β -hydroxylase inhibitor metyrapone on adult patients with Cushing syndrome. Urinary-free cortisol and late-night salivary cortisol levels were evaluated in 31 patients who were already treated with metyrapone to monitor cortisol normalization and rhythm.

The average length of metyrapone treatment was 9 months, and 6 patients had 24 months of treatment. After 1 month of treatment, the mean urinary-free cortisol was reduced from baseline by 67% and mean late-night salivary cortisol level decreased by 57%.

Analyzing only patients with severe hypercortisolism, after 1 month of treatment, the mean urinary-free cortisol decreased by 86% and the mean late-night salivary cortisol level decreased 80%. After 3 months, normalization of the mean urinary-free cortisol was established in 68% of patients. Mean late-night salivary cortisol levels took longer to decrease, especially in severe and very severe hypercortisolism, which could take 6 months to drop. Treatment was more successful at normalizing cortisol excretion (70%) than cortisol rhythm (37%). Nausea, abdominal pain, and dizziness were the most common adverse events, but no severe adverse event was reported.

Future research is needed to evaluate a larger cohort with randomized dosages and stricter inclusion criteria to evaluate metyrapone’s effects on cortisol further.

Study researchers conclude that metyrapone was successful and safe in lowering urinary-free cortisol after just 1 month of treatment and controlling long-term levels in patients with Cushing syndrome.

This study was supported by Novartis.

Reference

Ceccato F, Zilio M, Barbot M, et al. Metyrapone treatment in Cushing’s syndrome: a real-life study [published online July 16, 2018]. Endocrine. doi: 10.1007/s12020-018-1675-4

From https://www.endocrinologyadvisor.com/general-endocrinology/metyrapone-cushing-syndrome/article/786716/

Repeat Checks of Cortisol Levels in Saliva May Improve Use of Metopirone as Cushing’s Treatment

Measuring cortisol levels in saliva multiple times a day is a convenient and useful way to determine the best course of treatment for patients with Cushing’s syndrome, a preliminary study shows.

The research, “Multiple Salivary Cortisol Measurements Are a Useful Tool to Optimize Metyrapone Treatment in Patients with Cushing’s Syndromes Treatment: Case Presentations,” appeared in the journal Frontiers of Endocrinology.

Prompt and effective treatment for hypercortisolism — the excessive amount of cortisol in the blood — is essential to lowering the risk of Cushing’s-associated conditions, including infections, cardiovascular disease, and stroke.

Steroid hormone inhibitors, such as HRA Pharma’s Metopirone (metyrapone), have been used significantly in Cushing’s syndrome patients.

These therapies not only suppress cortisol levels, but also avoid adrenal insufficiency (where not enough cortisol is produced) and restore the circadian rhythm, which is disrupted in Cushing’s patients. However, effective medical treatment requires monitoring cortisol activity throughout the day.

Salivary measurements of cortisol are a well-known method for diagnosing and predicting the risk of recurrence of Cushing’s syndrome. The method is convenient for patients and can be done in outpatient clinics. However, the medical field lacks data on whether measuring cortisol in saliva works for regulating treatment.

Researchers analyzed the effectiveness of salivary cortisol measurements for determining the best dosage and treatment timing of Cushing’s patients with Metopirone.

The study included six patients, three with cortisol-secreting masses in the adrenal glands and and three with ACTH (or adrenocorticotropin)-secreting adenomas in the pituitary glands, taking Metopirone. Investigators collected samples before and during treatment to assess morning serum cortisol and urinary free cortisol (UFC). Patients also had salivary cortisol assessments five times throughout the day.

Saliva samples were collected at 6 a.m. (wake-up time), 8 a.m. (before breakfast), noon (before lunch), 6 p.m. (before dinner), and 10 p.m. (before sleep).

Other studies have used UFC assessments to monitor treatment. However, the inability of this parameter to reflect changes in diurnal cortisol requires alternative approaches.

Results showed that although UFC was normalized in five out of six patients, multiple salivary cortisol measurements showed an impaired diurnal cortisol rhythm in these patients.

Whereas patients with cortisol-secreting adrenocortical adenoma showed elevated cortisol levels throughout the day, those with ACTH-secreting pituitary adenoma revealed increased levels mainly in the morning. This finding indicates that “the significance of elevated morning cortisol levels is different depending on the disease etiology,” the researchers wrote.

In a prospective case study to better assess the effectiveness of performing multiple salivary cortisol assessments, the research team analyzed one of the participants who had excessive cortisol production that was not controlled with four daily doses of Metoripone (a daily total of 2,250 mg).

Results revealed that cortisol levels increased before each dosage. After the patient’s treatment regimen was changed to a 2,500 mg dose divided into five daily administrations, researchers observed a significant improvement in the diurnal cortisol pattern, as well as in UFC levels.

Subsequent analysis revealed that performing multiple salivary cortisol measurements helps with a more precise assessment of excess cortisol than analyzing UFC levels, or performing a unique midnight salivary cortisol collection, the researchers said.

Although more studies are required, the results “suggest that multiple salivary cortisol measurements can be a useful tool to visualize the diurnal cortisol rhythm and to determine the dose and timing of metyrapone [Metopirone] during the treatment in patients with [Cushing’s syndrome],” the researchers wrote.

Future studies should include a larger sample size, evaluate changes over a longer term, use a standardized protocol for treatment dosing and timing, and evaluate changes in a patient’s quality of life, the investigators said.

From https://cushingsdiseasenews.com/2018/02/15/multiple-saliva-cortisol-checks-cushings-metyrapone-study/

Pregnant Women with Hypertension and Hypercortisolism May Have Cushing’s

Pregnant woman with hypertension and significant signs of hypercortisolism (high cortisol levels) may have Cushing’s disease, according to a new case report.

The report, titled “A Case of Cushing’s Syndrome in Pregnancy,” was published in the Iranian Journal of Medical Sciences.

While Cushing’s rarely occurs in women during pregnancy, high cortisol levels can lead to major complications for both the mother and the fetus, such as premature birth and high fetal mortality.

However, it can be difficult to diagnose pathological hypercortisolism in these women as the symptoms might resemble other diseases that commonly occur during pregnancy, such as preeclampsia (high blood pressure during pregnancy) and gestational diabetes.

Unfortunately, there are no effective long-term medical therapies for Cushing’s. The most definitive therapy is the surgical removal of the pituitary or adrenal adenoma, if that is the case of hypercortisolism.

The case report details that a 29-year old women in the 27th week of pregnancy presented to the Ghaem Hospital clinic in Mashhad, Iran, with edema, weakness, and hypertension. Her symptoms also included truncal obesity, moon face (her face had a rounded appearance), purple steria on her upper and lower limbs and abdomen, excessive edema, and wet skin.

At first, she was hospitalized for suspected preeclampsia, but the diagnosis was later excluded.

The patient’s hormonal profile showed high levels of 24-hour urine cortisol. There were also low levels of adrenocorticotropic hormone (ACTH), which results from a negative feedback due to excessive cortisol. However, plasma cortisol is generally elevated during pregnancy, and therefore may not be the best method for diagnosis.

An abdominal ultrasonography revealed a well-defined mass in the right adrenal gland.

While hospitalized, the patient experienced two crises of blood pressure, and while preeclampsia was ruled out, the physicians could find no more plausible explanation than eclampsia (the onset of seizures in a women with preeclampsia).

Since eclampsia was suspected, the physicians terminated the pregnancy at 28th week of gestation using misoprostol. The woman delivered a male infant weighing 1.94 pounds.

Two days after birth, the physicians conducted a computed tomography (CT) scan and again found a mass in the right adrenal gland.

As a result, the patient underwent a laparoscopic right adrenalectomy to remove the mass one week after giving birth. The patient’s blood pressure normalized and cortisol levels declined. Her condition remained stable after surgery.

“Cushing’s syndrome should be considered in hypertensive pregnant patients with remarkable signs of hypercortisolism,” the researchers concluded. “The best results would be achieved through a collaboration between obstetricians, endocrinologists, and surgeons.”

From https://cushingsdiseasenews.com/2017/12/19/pregnant-women-hypertension-hypercortisolism-may-have-cushings-disease/

The Challenge of Obesity in Diagnosing Cushing’s Syndrome and Strategies to Improve Methods

The effects of obesity on the diagnosis of Cushing’s syndrome and strategies to alter the traditional approaches have been addressed in a new review study.

The study, “Diagnosis and Differential Diagnosis of Cushing’s Syndrome,” appeared in The New England Journal of Medicine. The author was Dr. Lynn D. Loriaux, MD and PhD, and a professor of medicine at the Division of Endocrinology, Diabetes and Clinical Nutrition at the School of Medicine, Oregon Health & Science University (OHSU), in Portland, Oregon.

Traditionally, exams of patients with glucocorticoid excess focused on the presence of changes in anabolism (the chemical synthesis of molecules). Given the increase in obesity in the general population, changes in anabolism can no longer distinguish Cushing’s syndrome from metabolic syndrome.

However, analyses of anti-anabolic changes of cortisol – including osteopenia (lower bone density), thin skin, and ecchymoses (injury that causes subcutaneous bleeding) – are an effective way to make this distinction.

The worldwide prevalence of metabolic syndrome in obese people is estimated at about 10%. Conversely, the incidence of undiagnosed Cushing’s syndrome is about 75 cases per 1 million people.

Cushing’s and metabolic syndrome share significant clinical similarities, including obesity, hypertension, and type 2 diabetes. Therefore, “making the diagnosis is the least certain aspect in the care of patients with [Cushing’s],” Loriaux wrote.

Regarding a physical examination, patients with osteoporosis, reduced skin thickness in the middle finger, and three or more ecchymoses larger than 1 cm in diameter and not associated with trauma are more likely to have Cushing’s. Researchers estimate the probability of people with all three of these symptoms having Cushing’s syndrome is 95%.

Measuring 24-hour urinary-free cortisol levels allows the assessment of excess glucocorticoid effects, typical of Cushing’s syndrome. The test, which should be done with the most stringent techniques available, averages the augmented secretion of cortisol in the morning and the diminished secretion in the afternoon and at night.

Dexamethasone suppression is one of the currently used screening tests for Cushing’s syndrome. Patients with obesity and depression should not show decreased plasma cortisol levels when dexamethasone is suppressed. However, given its low estimated predictive value (the proportion of positive results that are “true positives”), “this test should not influence what the physician does next and should no longer be used” to screen for Cushing’s, the author wrote.

Some patients may show evidence of Cushing’s syndrome at a physical examination, but low urinary free cortisol excretion. This may be due to glucocorticoids being administered to the patient. In this case, the glucocorticoid must be identified and discontinued. Periodic Cushing’s assessments that measure urinary free cortisol should be performed.

The opposite can also occur: no clinical symptoms of Cushing’s, but elevated urinary free cortisol excretion and detectable plasma levels of the hormone corticotropin. In these patients, the source of corticotropin secretion, which can be a tumor or the syndrome of generalized glucocorticoid resistance, must be determined.

The disease process can be corticotropin-dependent or independent, depending on whether the hormone is detectable. Corticotropin in Cushing’s syndrome can come from the pituitary gland (eutopic) or elsewhere in the body (ectopic).

Loriaux recommends that the source of corticotropin secretion be determined before considering surgery. Up to 40% of patients with pituitary adenomas have nonfunctioning tumors (the tumor does not produce any hormones) and the corticotropin source is elsewhere. If misdiagnosed, patients will likely undergo an unnecessary surgery, with a mortality rate of 1%.

Patients with an ectopic source of corticotropin should undergo imaging studies in the chest, followed by abdominal and pelvic organs. If these tests fail to detect the source, patients should undergo either the blockade of cortisol synthesis or an adrenalectomy (removal of adrenal glands).

However, corticotropin-independent Cushing’s is usually caused by a benign adrenal tumor that uniquely secretes cortisol.

“Such tumors can be treated successfully with laparoscopic adrenalectomy,” Loriaux wrote. If the tumor secretes more than one hormone, it is likely malignant. Surgical to remove the tumor and any detectable metastases should be conducted.

Overall, “the treatment for all causes of [Cushing’s syndrome], other than exogenous glucocorticoids, is surgical, and neurosurgeons, endocrine surgeons, and cancer surgeons are needed,” Loriaux wrote in the study.

“This level of multidisciplinary medical expertise is usually found only at academic medical centers. Thus, most, if not all, patients with [Cushing’s syndrome] should be referred to such a center for treatment.”

From https://cushingsdiseasenews.com/2017/10/24/diagnosing-cushings-syndrome-amid-challenge-of-obesity-and-strategies-to-improve-methods/

Long-acting pasireotide safe, effective for recurrent Cushing’s disease

October 20, 2017

In patients with persistent or recurring Cushing’s disease after surgery, monthly pasireotide was safe and effective, leading to normal urinary free cortisol levels in about 40% of patients after 12 months, according to findings from a phase 3 clinical trial.

“Surgical resection of the causative pituitary adenoma is the first-line treatment of choice for most patients with Cushing’s disease, which leads to remission in greater than 75% of patients if done by an expert pituitary surgeon,” Andre Lacroix, MD, professor in the department of medicine at University of Montreal teaching hospital, and colleagues wrote in the study background. “However, surgery is not always successful, and disease recurrence can occur several years after initial remission, while some patients refuse or are not candidates for surgery. As a result, many patients require additional treatment options.”

Lacroix and colleagues analyzed data from 150 patients with a confirmed diagnosis of persistent, recurrent or new Cushing’s disease with mean urinary free cortisol level concentration 1.5 to five times the upper limit of normal, normal or greater than normal plasma and confirmed pituitary source of Cushing’s disease. Patients were recruited between December 2011 and December 2014; those who received mitotane therapy within 6 months, pituitary irradiation within 10 years or previous pasireotide treatment were excluded. Researchers randomly assigned patients to 10 mg (n = 74) or 30 mg (n = 76) monthly intramuscular pasireotide (Signifor LAR, Novartis) for 12 months, with investigators and patients masked to the group allocation and dose. Pasireotide was up-titrated from 10 mg to 30 mg or from 30 mg to 40 mg at month 4, or at month 7, 9 or 12 if urinary free cortisol concentrations remained greater than 1.5 times the upper limit of normal. At month 12, patients considered to be receiving clinical benefit from the therapy (mean urinary free cortisol concentration at or less than the upper limit of normal) could continue to receive it during an open-ended extension phase. The primary outcome was to assess the proportion of patients achieving mean urinary free cortisol concentration less than or equal to the upper limit of normal by month 7, regardless of dose.

Within the cohort, 41.9% of patients in the 10-mg group and 40.8% of patients in the 40-mg group met the primary endpoint at month 7, whereas 5% of patients in the 10-mg group and 13% of patients in the 40-mg group achieved partial control. Researchers did not observe between-sex differences or differences in response among those who did or did not undergo previous surgery.

The number of patients who achieved the primary endpoint at month 7 without an up-titration in dose was smaller, but not significantly different between the 10-mg and 40-mg dose groups (28.4% and 31.6%, respectively), according to researchers. Among those who received an up-titration in dose in the 10-mg and 40-mg groups (42% and 37%, respectively), 32% and 25%, respectively, were considered responders at month 7.

Researchers also observed improvements in several metabolic parameters during the 12-month course of treatment with both doses, including improvements in systolic and diastolic blood pressure; reductions in waist circumference, BMI and body weight; and improvement in scores for the Cushing’s Quality of Life questionnaire. The most common adverse events were hyperglycemia, diarrhea, cholelithiasis, diabetes and nausea.

The researchers noted that, in both dose groups, the reductions in mean urinary free cortisol concentration were observed within 1 month, with concentrations remaining below baseline levels for the 12-month study period.

“This large phase 3 trial showed that long-acting pasireotide administered for 12 months can reduce [median urinary free cortisol] concentrations, is associated with improvements in clinical signs and [health-related quality of life] and has a similar safety profile to that of twice-daily pasireotide,” the researchers wrote, adding that the long-acting formulation provides a convenient monthly administration schedule. – by Regina Schaffer

Disclosures: Novartis funded this study. Lacroix reports he has received grants and personal fees as a clinical investigator, study steering committee member and advisory board member for Novartis, Stonebridge and UpToDate. Please see the study for all other authors’ relevant financial disclosures.

From https://www.healio.com/endocrinology/adrenal/news/in-the-journals/%7B55988079-312b-478d-8788-036a465b1881%7D/long-acting-pasireotide-safe-effective-for-recurrent-cushings-disease

%d bloggers like this: