Novel Predictive Model for Adrenal Insufficiency in Dermatological Patients with Topical Corticosteroids Use: A Cross-Sectional Study

Purpose: This study aimed to identify predictive factors and to develop a predictive model for adrenal insufficiency (AI) related to topical corticosteroids use.
Methods: The research was conducted using a cross-sectional design. Adult patients with dermatological conditions who had been prescribed topical steroids for at least 12 months by the dermatology outpatient departments of the Faculty of Medicine, Chiang Mai University from June through October 2020 were included. Data on potential predictors, including baseline characteristics and laboratory investigations, were collected. The diagnoses of AI were based on serum 8AM cortisol and low-dose ACTH stimulation tests. Multivariable logistic regression was used for the derivation of the diagnostic score.
Results: Of the 42 patients, 17 (40.5%) had AI. The statistically significant predictive factors for AI were greater body surface area of corticosteroids use, age < 60 years, and basal serum cortisol < 7 μg/dL. In the final predictive model, duration of treatment was added as a factor based on its clinical significance for AI. The four predictive factors with their assigned scores were: body surface area involvement 10– 30% (20), > 30% (25); age < 60 years old (15); basal serum cortisol of < 7 μg/dL (30); and duration of treatment in years. Risk of AI was categorized into three groups, low, intermediate and high risk, with total scores of < 25, 25– 49 and ≥ 50, respectively. The predictive performance for the model was 0.92 based on area under the curve.
Conclusion: The predictive model for AI in patients using topical corticosteroids provides guidance on the risk of AI to determine which patients should have dynamic ACTH stimulation tests (high risk) and which need only close follow-up (intermediate and low risk). Future validation of the model is warranted.

Keywords: adrenal insufficiency, topical corticosteroids, predictive model, skin diseases

Introduction

Topical corticosteroids are frequently used for inflammatory skin diseases owing to their anti-inflammatory and immunosuppressive effects. Common indications for use include diseases such as psoriasis, eczema, atopic dermatitis, and vitiligo.1 In clinical practice, a variety of delivery vehicles and potencies of topical corticosteroids are used.1 Prolonged and/or inappropriate use of topical corticosteroids can lead to adverse side effects.2 These adverse side effects can be categorized as cutaneous and systemic side effects. The most common cutaneous side effect is skin atrophy. Systemic side effects include hypothalamic-pituitary-adrenal (HPA) axis suppression, glaucoma, hyperglycemia and hypertension.3

One of the most worrisome adverse side effects from the use of topical corticosteroids is adrenal insufficiency (AI) resulting from HPA axis suppression. Topically applied corticosteroids can be absorbed systemically through the skin and can suppress the HPA axis.4–8 This adverse outcome, the inability to increase cortisol production after stress, can lead to adrenal crisis, which is potentially life-threatening. Tests that are normally used to diagnose or exclude AI include serum morning cortisol and the dynamic ACTH stimulation test.9

Secondary AI from percutaneous absorption of topical corticosteroids is less common than with parenteral or oral administration. The cumulative doses and the durations of oral corticosteroid therapy associated with HPA axis suppression have been well documented.10 Data regarding the dose and duration of oral corticosteroids and HPA axis suppression have similarly been well established. A study by Curtis et al reported that the use of oral prednisolone >7.5 mg/day for an extended period (>3 weeks) was linked to this adverse event, and that the incidence increased with duration.10 However, corresponding data for topical corticosteroids has been limited. The degree of risk of HPA axis suppression from topical corticosteroids use is associated with the level of percutaneous absorption which, in turn, depends on numerous factors including the age of the patient (younger patients are more susceptible), body surface area treated, quantity of topical corticosteroids used, potency of the drug, duration of therapy, body region of application, the associated compounds used, eg, urea or salicylic acid, the characteristics of the diseased skin, the degree of impairment of skin integrity, and the coexistence of hepatic and/or renal disease.11–13 One study reported that HPA axis suppression occurs when high potency steroids are administered at a cumulative dose per week of >50 g.2

Presently, there is a lack of data on predictive factors for AI and no predicative model of the relationship between secondary AI resulting from HPA axis suppression and topical corticosteroids use. A simple predictive model which could help preclude and predict the risk of AI which incorporates both demographic and biochemical data could potentially reduce the number of dynamic ACTH stimulation tests performed. This study aimed to identify potential predictive factors and to design an easy-to-use model for predicting the risk of AI following topical corticosteroids use in dermatological patients.

Materials and Methods

This cross-sectional study was conducted with 42 patients who were seen at the dermatology outpatient departments at the Faculty of Medicine, Chiang Mai University Hospital over a 5-month period (June – October 2020). The study protocol was approved by the Faculty of Medicine, Chiang Mai University, Ethical Committee (Ethical number: MED-2563-07037). Recruited participants were adult dermatological patients (≥18 years) who had used topical corticosteroids for at least 12 months. Patients with pituitary or adrenal diseases, pregnant women and patients who had been treated with either systemic corticosteroids or other local corticosteroids were excluded. Those who meet all the inclusion criteria gave their informed consent prior to the study. This study was conducted in accordance with the Declaration of Helsinki.

Adrenal Function Evaluation

Adrenal function was evaluated by serum morning (8 AM) cortisol and the low-dose ACTH stimulation test. Patients were instructed to suspend use of topical corticosteroids for at least 24 hours before serum morning cortisol measurement and ACTH stimulation tests. In those with serum morning cortisol between 3 and 17.9 µg/dL, ACTH stimulation tests were performed on the same day between 9–11AM to either exclude or diagnose AI. Serum cortisol concentrations were measured at 8 AM 0 (basal cortisol) as well as 20 and 40 minutes after 5 µg ACTH was administered intravenously.

Data Collection

Epidemiological data collected included gender, age, blood pressure, underlying dermatologic diseases, other underlying diseases, body surface area involvement, sensitive area involvement, topical corticosteroid potency, amount and duration of topical corticosteroids use, symptoms of AI and the presence of Cushingoid features. Biochemical data included serum cortisol at 8 AM, 0 (basal cortisol) and at 20 and 40 minutes after ACTH intravenous injection, serum creatinine, electrolytes and albumin. Serum cortisol levels were measured by electrochemiluminescence assay (ECLIA) (Elecsys® Cortisol II assay, Roche Diagnostics GmbH, Mannheim, Germany).

Definitions

An 8AM cortisol level of ❤ µg/dL or a peak serum cortisol level of <18 µg/dL at 20 or 40 minutes after an ACTH stimulation test was defined as having AI.14 Sensitive area involvement included the axilla, groin, face and genitalia. Topical corticosteroids are classified by potency based on a skin vasoconstriction assay, and range from ultra-high potency (class I) to low potency (class VII).15 Since some patients had concurrently used more than one class of corticosteroids in one treatment period, the new variable potency·dose·time (summary of corticosteroids potency (I–VII)16 multiplied by total doses (mg) of corticosteroids use and multiplied by duration (months) of corticosteroids use) was created. Symptoms of AI included lethargy, nausea and vomiting, orthostatic hypotension and significant weight loss. Significant weight loss was defined as a loss of 5% of body weight in one month or a loss of 10% over a period of six months.17 Having Cushingoid features was defined as at least one of the excess glucocorticoid features, eg, easy bruising, facial plethora, proximal myopathy, striae, dorsocervical fat pad, facial fullness, obesity, supraclavicular fullness, hirsutism, decreased libido and menstrual abnormalities.

Statistical Analysis

All statistical analyses were performed using Stata 16 (StataCorp, College Station, Texas, USA). Categorical variables are reported as frequency and percentage, while continuous variables are reported as mean ± standard deviation or median and interquartile range (IQR), according to their distribution. For univariable comparison, Fisher’s exact probability test was used for categorical variables, and the independent t-test or the Mann–Whitney U-test was used for continuous variables. p-values less than 0.05 were considered statistically significant.

Multivariable logistic regression was used in the derivation of the prediction model for AI. Predictors with significant p-values in the univariable analysis were included in the multivariable model. We also included age and treatment duration in the model due to the clinical significance of those factors.4,18 The clinical collinearity among the predictors was also evaluated before the selection of the predictors. We generated a weighted score for each predictor by dividing the logit coefficient of the predictor by the lowest coefficient in the model. The discriminative ability of the final multivariable model was assessed using the area under the receiver operating characteristics (ROC) curve. The calibration of the scores was evaluated using the Hosmer-Lemeshow goodness-of-fit test, where a p-value >0.01 was considered a good fit. For clinical applicability, the appropriate cut-off points for the scores were identified based on sensitivity and specificity. We identified one cut-off point with high sensitivity for ruling out AI and another cut-off point with high specificity for ruling in AI. The positive predictive value for each score category with its corresponding confidence interval were presented. A sample size of at least 25 patients with at least 5 patients with AI was estimated to give 80% power at the 5% significance level.4 There was no missing data in this study.

Results

Baseline characteristics and biochemical investigations are shown in Table 1. Forty-two patients with dermatological diseases were included in this study. Of these, 17 patients (40.5%) had AI of whom 5 (29.4%) were female. The mean age of the group was 56.5 ±15.4 years, the mean duration of treatment was 10.1 ± 6 years, and the majority of patients had psoriasis (n = 14, 82.4%). There was no significant difference in sex, age, duration of treatment, potency dose-time, comorbidities, or underlying skin disease between the AI and non-AI groups. The average body surface area of corticosteroids use was significantly higher in patients with AI than in the non-AI group (27.5 ±18.7 m2 and 10.7 ±11.7 m2, p < 0.001, respectively). Basal serum cortisol levels were significantly lower in the AI group (6.52 ± 4.04 µg/dL) than in the non-AI group (10.48 ± 3.45 µg/dL, p 0.003). Although lower serum morning cortisol levels were observed in the AI group, the difference was not statistically significant (5.24 ± 4.65 µg/dL vs 13.39 ± 15.68 µg/dL, p = 0.069). Three patients were identified as having Cushingoid features. All patients with Cushingoid features had AI.

Table 1 Comparison of Clinical Characteristics Between Patients with a History of Topical Corticosteroids Use for at Least 12 Months Who Were Diagnosed with Adrenal Insufficiency and Those without Adrenal Insufficiency (n = 42)

 

Based on the multivariate logistic regression analysis (shown in Table 2), the significant predictive factors for AI in patients who used topical corticosteroids for more than 12 months were body surface area of corticosteroids use of 10–30% and >30% (POR 18.9, p =0.042, and POR 59.2, p = 0.035, respectively), age less than 60 years (POR 13.8, p = 0.04), and basal serum cortisol of <7 µg/dL (POR 131.5, p = 0.003). Only serum basal cortisol was included in the final multivariable model as there was clinical collinearity among serum morning cortisol and basal cortisol as well as 20- and 40-minute cortisol measurements.

Table 2 Multivariable Model for Prediction of Adrenal Insufficiency in Patients with a History of Topical Corticosteroids Use for at Least 12 Months (n = 38)

 

Predictive risk score was created to determine the probability of patients having AI using the aforementioned three significant predictive factors from the multivariable analysis (Table 2). As previous studies have demonstrated that duration of treatment is a strong predictive factor for AI in corticosteroid users,4,18 this factor was also incorporated in the model. The transformed score for body surface area, age and basal serum cortisol had a range of 0 to 30. For treatment duration, the transformed score was based on cumulative years of treatment. The total score was categorized into three groups: low, intermediate, and high risk (Table 3).

Table 3 Accuracy of the Score to Rule in and Rule Out Adrenal Insufficiency in Patients with a History of Topical Corticosteroids Use for at Least 12 Months (n = 38)

 

The cut-off point of ≥50 suggests high risk for developing AI with a sensitivity of 46.2% and a specificity of 100%, a score of <25 suggests a low risk with a sensitivity of 100% and a specificity of 52%, and a score between 25 and 49 indicates an intermediate risk of having AI. The ROC curve for the model assessing predictive performance which included all significant factors had an AuROC of 0.92 (Figure 1). The Hosmer-Lemeshow goodness-of-fit test revealed non-statistically significant results (p = 0.599), indicating that our newly derived scoring system fits the data well.

Figure 1 Model discrimination via receiver operating characteristic curve in patients with a history of topical corticosteroids use for at least 12 months (n = 42).

 

Discussion

The present study proposes an easy-to-use predictive model for AI following topical corticosteroids use in dermatological patients based on demographic and biochemical factors. The accuracy of the model shows an excellent diagnostic accuracy of 92% based on AuROC. Currently, the diagnosis of AI in dermatological patients with topical corticosteroids use involves multiple steps including screening for serum morning cortisol followed by dynamic ACTH stimulation testing. The proposed simple predictive model, which requires only three demographic data items (age, body surface area of corticosteroids use, duration of use) and one biochemical test (serum basal cortisol), could potentially reduce the number of dynamic ACTH stimulation tests performed, resulting in cost- and time-saving for both patients and health-care facilities.

Based on the proposed cut-off points, we suggest screening of individuals at high risk for having AI, including serum morning cortisol and the ACTH stimulation tests to confirm a diagnosis of AI. If there is evidence of AI, the patient should begin to receive treatment for AI to reduce future complications. For those in the low-risk group, only clinical follow-up should be carried out. In the intermediate-risk group, we recommend regular and close biochemical follow-up including serum morning cortisol and clinical follow-up for signs and symptoms of AI. Signs and symptoms that should raise a high index of suspicion for AI include significant weight loss, nausea and/or vomiting, orthostatic hypotension and lethargy. However, this proposed predictive model was studied in adults and cannot simply be generalized and extrapolated to children or infants.

In our study, 40.5% of the patients were determined to have AI. A previous meta-analysis by Broersen et al reported the percentage of patients with AI secondary to all potencies of topical corticosteroids based on a review of 15 studies was 4.7%, 95% CI (1.1–18.5%).19 The higher prevalence of AI in our study could be a result of differences in patients’ baseline characteristics, eg, duration of treatment, corticosteroids potency and body surface area involvement.

In the predictive model, we incorporated both clinical and biochemical factors which are easy to obtain in actual clinical practice. Some of those predictive factors have been previously reported to be linked to AI. Body surface area of corticosteroids use larger than 10% found to be significantly related to AI, especially in patients with a lesion area of over 30%. This finding is consistent with a study by Kerner et al which suggests the extent of surface area to which the corticosteroids are applied may influence absorption of the drug.20 Regarding the age of the patients, our study found that individuals over 60 years old tended to be at high risk of AI following topical corticosteroids therapy. The underlying explanation is that the stratum corneum acts as a rate-limiting barrier to percutaneous absorption as the stratum corneum in younger individuals is thinner than in older people. Diminished effectiveness of topical corticosteroid treatment in older people was demonstrated in a study by Malzfeldt et al.21 Even though serum basal cortisol is not recommended as a standard test to diagnose AI, a prior study reported that it can be considered as an alternative choice to diagnose AI when serum morning cortisol results are not available. In fact, it has been reported that there is no difference in diagnostic accuracy between serum morning cortisol and basal cortisol22 which supports our finding that serum basal cortisol <7 µg/dL is one of the significant factors related to AI.

The final model found no statistically significant relationship between the incidence of AI and the duration of corticosteroids treatment. However, we decided to include this factor in the final model since previous publications have reported that the duration of treatment is a relevant risk factor for developing AI following continuous topical corticosteroids use. The duration of AI events has been reported to vary between 2 weeks to 18 months.4,18 Additionally, a case report of AI demonstrated that 5 years of topical corticosteroids use can cause AI.6 Together, this suggests that patients with a longer duration of topical corticosteroids use are at increased risk of AI, especially those who also have other risk factors. Although both potency and dosage of topical corticosteroids have been reported to be significantly linked to HPA axis suppression, the present study found only a non-significance link. This could be the result of the small sample size as well as of other factors, eg, body surface area involvement and serum cortisol levels, which could have masked the association between potency and dosage of topical corticosteroids with HPA suppression.

To the best of our knowledge, this study is the first to use these novel predictive factors to develop a predictive model for AI in patients using topical corticosteroids. This model has multiple potential implications. First, the model uses clinical and biochemical factors which are obtainable in many institutes. Second, the model’s risk score provides good diagnostic accuracy in terms of both sensitivity and specificity. Finally, each of the predictive factors in the model has an underlying pathophysiological explanation and is not due simply to chance.

There are some limitations in this study. First, the sample size is relatively small, although it does offer sufficient statistical power for each of the predictive factors. Second, further external validation is needed to validate the predictive performance of the model. Third, the cut-off level of serum cortisol after ACTH stimulation test was based on the older generation of ECLIA assay. There was a study proposed that the cut-off for serum cortisol in the newer generation of cortisol assay should be lower (~14–15 µg/dL) than the previous one (18 µg/dL).23 However, this proposed cut-off has not yet been established in the current guideline for AI. In the future, if the newer cut-off for serum cortisol will have been employed in the standard guideline, our predictive model may lead to overdiagnosis of AI.

Conclusions

The proposed predictive model uses both demographic and biochemical factors to determine the risk of AI in dermatological patients following topical corticosteroids use with a high level of diagnostic accuracy. This model has advantages in terms of a reduction in the number of dynamic ACTH stimulation tests needed, thus saving time and resources. Additionally, it can provide guidance to clinical practitioners regarding which patients should be closely followed up for development of AI. Future external validation of this predictive model is warranted.

Acknowledgments

The authors are grateful to Lamar G. Robert, PhD and Chongchit S. Robert, PhD for editing the manuscript.

Disclosure

The authors report no conflict of interest in this work.

References

1. Ference JD, Last AR. Choosing topical corticosteroids. Am Fam Physician. 2009;79(2):135–140.

2. Hengge UR, Ruzicka T, Schwartz RA, Cork MJ. Adverse effects of topical glucocorticosteroids. J Am Acad Dermatol. 2006;54(1):1–15;quiz 16–8. doi:10.1016/j.jaad.2005.01.010

3. Rathi SK, D’Souza P. Rational and ethical use of topical corticosteroids based on safety and efficacy. Indian J Dermatol. 2012;57(4):251–259. doi:10.4103/0019-5154.97655

4. Carruthers JA, August PJ, Staughton RC. Observations on the systemic effect of topical clobetasol propionate (Dermovate). Br Med J. 1975;4(5990):203–204. doi:10.1136/bmj.4.5990.203

5. Staughton RC, August PJ. Cushing’s syndrome and pituitary-adrenal suppression due to clobetasol propionate. Br Med J. 1975;2(5968):419–421. doi:10.1136/bmj.2.5968.419

6. Young CA, Williams IR, MacFarlane IA. Unrecognised Cushing’s syndrome and adrenal suppression due to topical clobetasol propionate. Br J Clin Pract. 1991;45(1):61–62.

7. Abma EM, Blanken R, De Heide LJ. Cushing’s syndrome caused by topical steroid therapy for psoriasis. Neth J Med. 2002;60(3):148–150.

8. Böckle BC, Jara D, Nindl W, Aberer W, Sepp NT. Adrenal insufficiency as a result of long-term misuse of topical corticosteroids. Dermatology. 2014;228(4):289–293. doi:10.1159/000358427

9. Ospina NS, Al Nofal A, Bancos I, et al. ACTH stimulation tests for the diagnosis of adrenal insufficiency: systematic review and meta-analysis. J Clin Endocrinol Metab. 2016;101(2):427–434. doi:10.1210/jc.2015-1700

10. Curtis JR, Westfall AO, Allison J, et al. Population-based assessment of adverse events associated with long-term glucocorticoid use. Arthritis Rheum. 2006;55(3):420–426. doi:10.1002/art.21984

11. Brazzini B, Pimpinelli N. New and established topical corticosteroids in dermatology: clinical pharmacology and therapeutic use. Am J Clin Dermatol. 2002;3(1):47–58. doi:10.2165/00128071-200203010-00005

12. Dhar S, Seth J, Parikh D. Systemic side-effects of topical corticosteroids. Indian J Dermatol. 2014;59(5):460–464. doi:10.4103/0019-5154.139874

13. Levin C, Maibach HI. Topical corticosteroid-induced adrenocortical insufficiency: clinical implications. Am J Clin Dermatol. 2002;3(3):141–147. doi:10.2165/00128071-200203030-00001

14. Bornstein SR, Allolio B, Arlt W, et al. Diagnosis and treatment of primary adrenal insufficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2016;101(2):364–389. doi:10.1210/jc.2015-1710

15. Goa KL. Clinical pharmacology and pharmacokinetic properties of topically applied corticosteroids. A review. Drugs. 1988;36(Suppl 5):51–61. doi:10.2165/00003495-198800365-00011

16. Davallow Ghajar L, Wood Heickman LK, Conaway M, Rogol AD. Low risk of adrenal insufficiency after use of low- to moderate-potency topical corticosteroids for children with atopic dermatitis. Clin Pediatr. 2019;58(4):406–412. doi:10.1177/0009922818825154

17. Gaddey HL, Holder K. Unintentional weight loss in older adults. Am Fam Physician. 2014;89(9):718–722.

18. Melian EB, Spencer CM, Jarvis B. Clobetasol propionate foam, 0.05%. Am J Clin Dermatol. 2001;2(2):89–92;discussion 93. doi:10.2165/00128071-200102020-00005

19. Broersen LH, Pereira AM, Jørgensen JO, Dekkers OM. Adrenal insufficiency in corticosteroids use: systematic review and meta-analysis. J Clin Endocrinol Metab. 2015;100(6):2171–2180. doi:10.1210/jc.2015-1218

20. Kerner M, Ishay A, Ziv M, Rozenman D, Luboshitzky R. Evaluation of the pituitary-adrenal axis function in patients on topical steroid therapy. J Am Acad Dermatol. 2011;65(1):215–216. doi:10.1016/j.jaad.2010.12.033

21. Malzfeldt E, Lehmann P, Goerz G, Lippold BC. Influence of drug solubility in the vehicle on clinical efficacy of ointments. Arch Dermatol Res. 1989;281(3):193–197. doi:10.1007/bf00456392

22. Manosroi W, Phimphilai M, Khorana J, Atthakomol P. Diagnostic performance of basal cortisol level at 0900-1300h in adrenal insufficiency. PLoS One. 2019;14(11):e0225255. doi:10.1371/journal.pone.0225255

23. Vogeser M, Kratzsch J, Ju Bae Y, et al. Multicenter performance evaluation of a second generation cortisol assay. Clin Chem Lab Med. 2017;55(6):826–835. doi:10.1515/cclm-2016-0400

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]

 

From https://www.dovepress.com/novel-predictive-model-for-adrenal-insufficiency-in-dermatological-pat-peer-reviewed-fulltext-article-IJGM

Updated Cushing’s disease guideline highlights new diagnosis, treatment ‘roadmap’

An updated guideline for the treatment of Cushing’s disease focuses on new therapeutic options and an algorithm for screening and diagnosis, along with best practices for managing disease recurrence.

Despite the recent approval of novel therapies, management of Cushing’s disease remains challenging. The disorder is associated with significant comorbidities and has high mortality if left uncontrolled.

Adrenal transparent _Adobe
Source: Adobe Stock

“As the disease is inexorable and chronic, patients often experience recurrence after surgery or are not responsive to medications,” Shlomo Melmed, MB, ChB, MACP, dean, executive vice president and professor of medicine at Cedars-Sinai Medical Center in Los Angeles, and an Endocrine Today Editorial Board Member, told Healio. “These guidelines enable navigation of optimal therapeutic options now available for physicians and patients. Especially helpful are the evidence-based patient flow charts [that] guide the physician along a complex management path, which usually entails years or decades of follow-up.”

Shlomo Melmed

The Pituitary Society convened a consensus workshop with more than 50 academic researchers and clinical experts across five continents to discuss the application of recent evidence to clinical practice. In advance of the virtual meeting, participants reviewed data from January 2015 to April 2021 on screening and diagnosis; surgery, medical and radiation therapy; and disease-related and treatment-related complications of Cushing’s disease, all summarized in recorded lectures. The guideline includes recommendations regarding use of laboratory tests, imaging and treatment options, along with algorithms for diagnosis of Cushing’s syndrome and management of Cushing’s disease.

Updates in laboratory, testing guidance

If Cushing’s syndrome is suspected, any of the available diagnostic tests could be useful, according to the guideline. The authors recommend starting with urinary free cortisol, late-night salivary cortisol, overnight 1 mg dexamethasone suppression, or a combination, depending on local availability.

If an adrenal tumor is suspected, the guideline recommends overnight dexamethasone suppression and using late-night salivary cortisol only if cortisone concentrations can also be reported.

The guideline includes several new recommendations in the diagnosis arena, particularly on the role of salivary cortisol assays, according to Maria Fleseriu, MD, FACE, a Healio | Endocrine Today Co-editor, professor of medicine and neurological surgery and director of the Pituitary Center at Oregon Health & Science University in Portland.

Maria Fleseriu

“Salivary cortisol assays are not available in all countries, thus other screening tests can also be used,” Fleseriu told Healio. “We also highlighted the sequence of testing for recurrence, as many patients’ urinary free cortisol becomes abnormal later in the course, sometimes up to 1 year later.”

The guideline states combined biochemical and imaging for select patients could potentially replace petrosal sinus sampling, a very specialized procedure that cannot be performed in all hospitals, but more data are needed.

“With the corticotropin-releasing hormone stimulation test becoming unavailable in the U.S. and other countries, the focus is now on desmopressin to replace corticotropin-releasing hormone in some of the dynamic testing, both for diagnosis of pseudo-Cushing’s as well as localization of adrenocorticotropic hormone excess,” Fleseriu said.

The guideline also has a new recommendation for anticoagulation for high-risk patients; however, the exact duration and which patients are at higher risk remains unknown.

“We always have to balance risk for clotting with risk for bleeding postop,” Fleseriu said. “Similarly, recommended workups for bone disease and growth hormone deficiency have been further structured based on pitfalls specifically related to hypercortisolemia influencing these complications, as well as improvement after Cushing’s remission in some patients, but not all.”

New treatment options

The guideline authors recommended individualizing medical therapy for all patients with Cushing’s disease based on the clinical scenario, including severity of hypercortisolism. “Regulatory approvals, treatment availability and drug costs vary between countries and often influence treatment selection,” the authors wrote. “However, where possible, it is important to consider balancing cost of treatment with the cost and the adverse consequences of ineffective or insufficient treatment. In patients with severe disease, the primary goal is to treat aggressively to normalize cortisol concentrations.”

Fleseriu said the authors reviewed outcomes data as well as pros and cons of surgery, repeat surgery, medical treatments, radiation and bilateral adrenalectomy, highlighting the importance of individualized treatment in Cushing’s disease.

“As shown over the last few years, recurrence rates are much higher than previously thought and patients need to be followed lifelong,” Fleseriu said. “The role of adjuvant therapy after either failed pituitary surgery or recurrence is becoming more important, but preoperative or even primary medical treatment has been also used more, too, especially in the COVID-19 era.”

The guideline summarized data on all medical treatments available, either approved by regulatory agencies or used off-label, as well as drugs studied in phase 3 clinical trials.

“Based on great discussions at the meeting and subsequent emails to reach consensus, we highlighted and graded recommendations on several practical points,” Fleseriu said. “These include which factors are helpful in selection of a medical therapy, which factors are used in selecting an adrenal steroidogenesis inhibitor, how is tumor growth monitored when using an adrenal steroidogenesis inhibitor or glucocorticoid receptor blocker, and how treatment response is monitored for each therapy. We also outline which factors are considered in deciding whether to use combination therapy or to switch to another therapy and which agents are used for optimal combination therapy.”

Future research needed

The guideline authors noted more research is needed regarding screening and diagnosis of Cushing’s syndrome; researchers must optimize pituitary MRI and PET imaging using improved data acquisition and processing to improve microadenoma detection. New diagnostic algorithms are also needed for the differential diagnosis using invasive vs. noninvasive strategies. Additionally, the researchers said the use of anticoagulant prophylaxis and therapy in different populations and settings must be further studied, as well as determining the clinical benefit of restoring the circadian rhythm, potentially with a higher nighttime medication dose, as well as identifying better markers of disease activity and control.

“Hopefully, our patients will now experience a higher quality of life and fewer comorbidities if their endocrinologist and care teams are equipped with this informative roadmap for integrated management, employing a consolidation of surgery, radiation and medical treatments,” Melmed told Healio.

Sparrow Pharmaceuticals Hopes To Change The Future Of Endocrinology

By Ed Miseta, Chief Editor, Clinical Leader
Follow Me On Twitter @EdClinical

Go ahead and continuously improvement iStock-1295289697

Sparrow Pharmaceuticals is an emerging biopharma company on a mission to help patients suffering from an excess of corticosteroids, with a focus on Cushing’s syndrome, autonomous cortisol secretion (ACS), and polymyalgia rheumatica (PMR).

Cushing’s and ACS are both caused by an excess of cortisol produced by tumors. Patients with Cushing’s can present physically with a fatty hump between their shoulders, a rounded face, and pink or purple stretch marks on their skin. Cushing’s syndrome and ACS can both result in high blood pressure, bone loss, type 2 diabetes, weight gain, and mood, cognition, and sleep disorders. Any of those symptoms may be side effects for patients with conditions such as PMR who rely on long-term treatment with corticosteroid medications such as prednisone.

“Cushing’s syndrome impacts around 20,000 patients in the U.S. alone,” says David Katz, Chief Scientific Officer for Sparrow. “Approximately 50% of those patients can be cured by surgery, but some will develop another tumor years later. ACS is an under-recognized condition, but it may affect up to 3 million patients in the U.S. There are also around 2 million people in the U.S. who rely on long-term use of corticosteroid medications to control autoimmune diseases and other conditions.”

The treatments being developed by Sparrow are based on recognition that cortisol and corticosteroid medications are activated in certain tissues such as the liver, bone, fat, and brain, where in excess they act to cause toxicity. The company’s investigational drugs inhibit HSD-1, the enzyme responsible for that activation.

Sparrow is about to launch a Phase 2 trial for Cushing’s syndrome. In early 2022 the company will also begin two additional Phase 2 trials for ACS and PMR, a common autoimmune disease in elderly patients. PMR is an arthritic syndrome characterized by a phenomenon known as claudication, which means the more you use a limb, the more it hurts and the harder it is to use. “For example, the more a PMR patient walks, the more painful and stiff their legs will become,” says Katz. “If they’re trying to do anything with their arms, the arms will get stiffer and more painful. The disease is pretty debilitating in terms of physical function. The only approved treatment for PMR is steroids, which have side effects such as diabetes, hypertension, osteoporosis, and fractures.”

Unknown Clinical Challenges

Katz is excited about the clinical trials for ACS and PMR because no sizable interventional trials have been reported in either of those conditions.

“We’re going into a completely new area, and we don’t know what we’re going to encounter in terms of patient recruitment and retention,” says Katz. “There is also no strong precedent for how to get approval for a drug in these conditions. The only treatment indicated for PMR is steroids, and that came without any efficacy clinical trials. There are no drugs approved for ACS. It’s hard to anticipate the challenges we will face when we are in an area that is very new.”

Patient centricity is a topic that is very important to Katz, and he spends a lot of time thinking about how to make trials a more pleasant experience for patients by limiting the burden placed on them. He notes that can sometimes be a difficult trade-off because of the procedures that must be performed to meet regulatory standards.

“In Cushing’s syndrome clinical care and clinical trials, the standard way for someone’s cortisol level to be measured is a 24-hour urine collection,” states Katz. “That involves looking at the amount of cortisol in the urine over a 24-hour period. That collection is inconvenient and burdensome, and the patient must then carry it somewhere to be analyzed.”

Sparrow hopes to shift that collection to a spot urine sample, like what patients would experience during a physical. The patient would urinate into a cup and hand it off to a clinic employee for analysis. The process would be much simpler and less burdensome for the patient. Sparrow will first need to prove that in a clinical trial the spot sample will work as well or better than the 24-hour collection. Subjects in the initial clinical trials will have to contribute the 24-hour collections so that Sparrow can demonstrate that future patients will not need to do so.

The Future of Endocrinology

Katz has a positive outlook on the future of endocrinology. Sparrow’s leading drug candidate, SPI-62, is an oral, small-molecule HSD-1 inhibitor. In four clinical trials, it demonstrated potent targeting of HSD-1 in both the brain and liver, and significantly lowered cortisol levels in the liver. The studies also showed a favorable safety and tolerability profile.

“If we are successful at developing SPI-62, I believe it will change the field of endocrinology,” says Katz. “We aim to shift the focus in Cushing’s syndrome to intracellular cortisol as the main driver of symptoms. What I mean by that is if we find that SPI-62 substantially reduces symptoms and that the degree of inhibition of our target HSD-1 correlates well with clinical improvement, then we can get to a new standard of care. We can potentially get rid of the 24-hour urine collections, which will be a big relief to patients. Additionally, many of today’s drugs have a side effect called adrenal insufficiency, which results when the drugs either reduce cortisol too much or completely block activity. Many of today’s drugs also require frequent monitoring and dose titration to prevent adrenal insufficiency. We believe that with HSD-1 inhibition we might avoid adrenal insufficiency as well.”

Katz is hopeful patients treated with SPI-62 will not require monitoring and dose titration. That proof will take years and lots of clinical trials. Sparrow may also produce the first targeted therapy for ACS. That could improve the recognition of ACS as a prevalent form of hypercortisolism and a substantial cause of morbidity and mortality.

“ACS is probably the most under-recognized condition in endocrinology based on recent epidemiological studies,” adds Katz. “It’s possible that as few as 3% of patients who have ACS actually have a diagnosis.  That is shocking for a condition that is associated with a lot of cardiometabolic and bone morbidity, negative effects on mood and cognition, sleep, and muscle strength, and is associated with excess mortality. We want to bring attention to this condition by bringing out a targeted therapy to treat a spectrum of symptoms by getting to the root cause of them.”

From https://www.clinicalleader.com/doc/sparrow-pharmaceuticals-hopes-to-change-the-future-of-endocrinology-0001

Diagnostic pitfalls in Cushing’s disease impacting surgical remission rates; test thresholds and lessons learned in 105 patients

This article was originally published here

J Clin Endocrinol Metab. 2021 Sep 3:dgab659. doi: 10.1210/clinem/dgab659. Online ahead of print.

ABSTRACT

CONTEXT: Confirming a diagnosis of Cushing’s disease (CD) remains challenging yet is critically important before recommending transsphenoidal surgery for adenoma resection.

OBJECTIVE: To describe predictive performance of preoperative biochemical and imaging data relative to post-operative remission and clinical characteristics in patients with presumed CD.

DESIGN, SETTING, PATIENTS, INTERVENTIONS: Patients (n=105; 86% female) who underwent surgery from 2007-2020 were classified into 3 groups: Group A (n=84) pathology-proven ACTH adenoma; Group B (n=6) pathology-unproven but with postoperative hypocortisolemia consistent with CD, and Group C (n=15) pathology-unproven, without postoperative hypocortisolemia. Group A+B were combined as Confirmed CD and Group C as Unconfirmed CD.

MAIN OUTCOMES: Group A+B was compared to Group C regarding predictive performance of preoperative 24-hour urinary free cortisol (UFC), late night salivary cortisol (LNSC), 1mg dexamethasone suppression test (DST), plasma ACTH, and pituitary MRI.

RESULTS: All groups had a similar clinical phenotype. Compared to Group C, Group A+B had higher mean UFC (p<0.001), LNSC(p=0.003), DST(p=0.06), ACTH(p=0.03) and larger MRI-defined lesions (p<0.001). The highest accuracy thresholds were: UFC 72 µg/24hrs; LNSC 0.122 µg/dl, DST 2.70 µg/dl, and ACTH 39.1 pg/ml. Early (3-month) biochemical remission was achieved in 76/105 (72%) patients: 76/90(84%) and 0/15(0%) of Group A+B versus Group C, respectively, p<0.0001. In Group A+B non-remission was strongly associated with adenoma cavernous sinus invasion.

CONCLUSIONS: Use of strict biochemical thresholds may help avoid offering transsphenoidal surgery to presumed CD patients with equivocal data and improve surgical remission rates. Patients with Cushingoid phenotype but equivocal biochemical data warrant additional rigorous testing.

PMID:34478542 | DOI:10.1210/clinem/dgab659

Home cortisol tests: 3 of the best

Please note that if you buy through links in this article, Medical News Today may earn a small commission. Here’s their process.

Cortisol is a hormone with various functions throughout the body. However, if a person’s body cannot regulate their cortisol levels, it could lead to a serious health condition. In these cases, home cortisol tests may be useful to indicate when someone might need medical attention.

A person sitting at a desk, holding an at-home cortisol test tube, typing on a laptop.

This article discusses:

  • what cortisol is
  • what a home cortisol test is
  • why a person might buy a home cortisol test
  • some home cortisol tests to purchase online
  • when to see a doctor

What is cortisol?

Cortisol is the stress hormone that affects several systems in the body, including the:

The adrenal glands produce cortisol. Most human body cells have cortisol receptors, and the hormone can help in several ways, including:

  • reducing inflammation
  • regulating metabolism
  • assisting with memory formation
  • controlling blood pressure
  • developing the fetus during pregnancy
  • maintaining salt and water balance in the body
  • controlling blood sugar levels

All these functions make cortisol a vital part of maintaining overall health. If the body can no longer regulate cortisol levels, it can lead to several health disorders, such as Cushing’s syndrome and Addison’s disease. Without treatment, these conditions could cause life threatening complications.

The body requires certain cortisol levels during times of stress, such as:

  • in the event of an injury
  • during illness
  • during a surgical procedure

What are home cortisol tests? 

A cortisol test usually involves a blood test. However, some may require saliva and urine samples instead.

There are several home cortisol tests available to purchase over the counter or online. These allow a person to take a sample of blood, urine, or saliva before sending it off for analysis.

After taking a home cortisol test, people can usually receive their results within 2–5 days online or via a telephone call with a healthcare professional.

However, there are currently no studies investigating the reliability of these home cortisol tests. Therefore, people should follow up on their test results with a healthcare professional.

Why and when do people need them? 

A person should take a home cortisol test if they feel they may have a cortisol imbalance.

If cortisol levels are too high, a person may notice the following:

  • rapid weight gain in the face, chest, and abdomen
  • high blood pressure
  • osteoporosis
  • bruises and purple stretch marks
  • mood swings
  • muscle weakness
  • an increase in thirst and need to urinate

If cortisol levels are too low, a person may experience the following symptoms:

  • fatigue
  • loss of appetite
  • unintentional weight loss
  • muscle weakness
  • abdominal pain

Additionally, low cortisol levels may lead to:

A test can help individuals check their cortisol levels. If the test results show these levels are too high or too low, people should seek medical advice.

A cortisol imbalance may be a sign of an underlying condition, which can lead to serious complications without treatment.

If a person cannot carry out a home cortisol test, they should speak to a medical professional who can arrange a cortisol test at a healthcare facility.

What to look for in a home cortisol test

At a clinic or hospital setting, a medical professional will usually take a blood sample and analyze it for an individual’s cortisol levels.

Home cortisol tests involve a person taking a sample of blood, urine, or saliva. There are currently no studies investigating the accuracy of these results.

However, home cortisol tests may be faster and more convenient than making an appointment with a doctor to take a sample.

People may consider several factors when deciding to purchase a home cortisol test, including:

  • Sample type: Some tests require a blood sample, while others need a sample of urine or saliva. With this in mind, a person may wish to buy a product that uses a testing method they are comfortable providing.
  • Test analysis: A person may wish to purchase a product from a company that sends tests to Clinical Laboratory Improvement Amendments (CLIA)-certified labs for analysis. The Food and Drug Administration (FDA), Center for Medicaid Services, and the Centers for Disease Control and Prevention (CDC) regulate these labs to help ensure safety and accuracy.
  • Accuracy: Individuals may wish to speak to a pharmacist or other healthcare professional before purchasing to ensure the test is reliable and accurate.

Products

Several online retailers offer home cortisol tests. It is important to follow all test instructions to ensure a valid result.

Please note, the writer has not tested these products. All information is research-based.

LetsGetChecked – Cortisol Test

This cortisol test uses the finger prick method to draw blood for the sample.

Here are the steps to take and send off a blood sample:

  1. Individuals fill in their details on the collection box and activate their testing kit online at the LetsGetChecked website.
  2. People need to wash their hands with warm soapy water before using an alcohol swab to clean the finger that they will prick.
  3. Once the finger is completely dry, individuals pierce the skin using the lancet in the test kit. A person must wipe away the first drop of blood before squeezing some into the blood collection tube.
  4. After closing the tube, individuals must invert it 5–10 times before placing it in the included biohazard bag, which they then place in the box.

After following these steps, people can send the sample back to LetsGetChecked using the kit’s prepaid envelope. Test results usually come back within 2–5 days.

LetsGetChecked tests samples in the same labs that primary care providers, hospitals, and government schemes use. These labs are CLIA-certified and CAP-accredited.

The company also has a team of nurses and doctors available 24 hours a day, 7 days a week, to offer ongoing support. These healthcare professionals are on hand to discuss a person’s results with them over the phone.

Everlywell At-Home Cortisol Levels Test Kit – Sleep & Stress Test

This Everlywell product uses a urine sample to test a person’s cortisol levels.

The test measures the levels of three hormones in a person’s body: cortisol, cortisone, and melatonin. It also measures a person’s creatinine levels.

There are three steps with this test:

  1. Individuals register their testing kit on Everlywell’s website.
  2. A person follows the instructions carefully to take their urine sample.
  3. Once they have their urine sample, they place it in the prepaid package and send it off to Everlywell’s labs.

Within a few days, individuals will receive their results digitally via the Everlywell website. Medical professionals can also offer helpful insights via their secure platform.

As well as sending a personalized report of each marker, Everlywell also sends detailed information about what the results mean.

The labs where Everlywell tests samples all carry certification with CLIA. The company also ensures that all results are reviewed and certified by independent board-certified physicians within the person’s specific state.SHOP NOW

Healthlabs Cortisol, AM & PM Test

Healthlabs offers a cortisol test that tests a person’s cortisol levels twice — once in the morning and once in the evening.

The company says they do this because a person’s cortisol levels fluctuate throughout the day. Therefore, by testing twice, they can gather information on this fluctuation.

This test uses a blood sample, which a person takes once in the morning and once in the afternoon. They must follow the instructions clearly to ensure they take suitable samples.

The manufacturer says that people should collect a morning sample between 7–9 a.m. and an evening sample between 3–5 p.m.

They then need to send off their sample for analysis. After testing is complete at a CLIA-certified lab, a person will receive their results, which usually takes between 1–2 days. SHOP NOW

When to speak with a doctor

A person should undergo a cortisol test if they believe they may have high or low cortisol levels.

They can do this at home or speak with a medical professional who can carry out the test for them.

People may also wish to seek medical help if they show signs of too much or too little cortisol. This could indicate a potentially serious underlying health issue.

Summary

Cortisol is an important hormone that affects almost all parts of the body. It has many functions, including reducing inflammation, regulating metabolism, and controlling blood pressure.

If a person believes they have high or low cortisol levels, they may wish to take a cortisol test. Usually, these tests take place at a medical practice. However, several home cortisol tests are available to purchase.

A person can take these tests at home by providing a urine, blood, or saliva sample. Once a lab analyzes the test, people usually receive their results within a few days. Individuals should follow up any test results with a healthcare professional. No clinics, no stress. Test your cortisol levels from home

Test your cortisol level from home with LetsGetChecked. Get free shipping, medical support, and results from accredited labs within 2–5 days. Order today for 30% off. LEARN MORE

Last medically reviewed on April 29, 2021 at https://www.medicalnewstoday.com/articles/3-of-the-best-home-cortisol-tests