Primary Adrenal Insufficiency (PAI)

 Al-Jurayyan NA
Background: Primary adrenal insufficiency (PAI) in children is an uncommon, but potentially fatal. The current symptoms include weakness, fatigue, anorexia, abdominal pain, weight loss, orthostatic hypotension, salt craving and characterized by hyperpigmentation.
Material and Methods: This is a retrospective, hospital based-study, conducted at King Khalid University Hospital (KKUH), during the period January 1989 and December 2014. Review of medical record of patient diagnosed with primary adrenal insufficiency. The diagnosis was based on medical history, physical examination and low levels of glucocorticoids and raised adrenocorticotropic hormone (ACTH). Appropriate laboratory and radiological investigations were also reviewed.
Results: During the period under review, January 1989 and December 2014, a total of 125 patients with the diagnosis of primary adrenal insufficiency were seen. Inherited disorders like congenital adrenal hyperplasia and hypoplasia were common, 85.5%. However, variable autoimmune mediated etiologic diagnosis accounted for, 13%, were also seen. The appropriate various laboratory and radiological investigations should be planned.
Conclusion: Although, congenital adrenal hyperplasia was the commonest etiology, however, congenital adrenal hypoplasia should not be over looked. The diagnosis of PAI can be challenging in some patients, and therefore appropriate serological and radiological investigations should be done.

Addison’s disease: Primary adrenal insufficiency

Abstract

Adrenal insufficiency, a rare disorder which is characterized by the inadequate production or absence of adrenal hormones, may be classified as primary adrenal insufficiency in case of direct affection of the adrenal glands or secondary adrenal insufficiency, which is mostly due to pituitary or hypothalamic disease.

Primary adrenal insufficiency affects 11 of 100,000 individuals. Clinical symptoms are mainly nonspecific and include fatigue, weight loss, and hypotension. The diagnostic test of choice is dynamic testing with synthetic ACTH.

Patients suffering from chronic adrenal insufficiency require lifelong hormone supplementation. Education in dose adaption during physical and mental stress or emergency situations is essential to prevent life-threatening adrenal crises.

Patients with adrenal insufficiency should carry an emergency card and emergency kit with them.

From http://www.ncbi.nlm.nih.gov/pubmed/27129928

Day 15, Cushing’s Awareness Challenge 2016

Today’s Cushing’s Awareness Challenge post is about kidney cancer (renal cell carcinoma). You might wonder how in the world this is related to Cushing’s. I think it is, either directly or indirectly.

I alluded to this a couple days ago when I said:

I finally started the Growth Hormone December 7, 2004.
Was the hassle and 3 year wait worth it?
Stay tuned for tomorrow, April 15, 2016 when all will be revealed.

So, as I said, I started Growth Hormone for my panhypopituitarism on December 7, 2004.  I took it for a while but never really felt any better, no more energy, no weight loss.  Sigh.

April 14 2006 I went back to the endo and found out that the argenine test that was done in 2004 was done incorrectly. The directions were written unclearly and the test run incorrectly, not just for me but for everyone who had this test done there for a couple years. My endo discovered this when he was writing up a research paper and went to the lab to check on something.

So, I went off GH again for 2 weeks, then was retested. The “good news” was that the argenine test is only 90 minutes now instead of 3 hours.

Wow, what a nightmare my argenine retest started! I went back for that Thursday, April 27, 2006. Although the test was shorter, I got back to my hotel and just slept and slept. I was so glad that I hadn’t decided to go right home after the test.

Friday I felt fine and drove back home, no problem. I picked up my husband for a biopsy he was having and took him to an outpatient surgical center. While I was there waiting for the biopsy to be completed, I started noticing blood in my urine and major abdominal cramps.

There were signs all over that no cellphones were allowed so I sat in the restroom (I had to be in there a lot, anyway!) and I left messages for several of my doctors on what I should do. It was Friday afternoon and most of them were gone 😦  I finally decided to see my PCP after I got my husband home.

When Tom was done with his testing, his doctor took one look at me and asked if I wanted an ambulance. I said no, that I thought I could make it to the emergency room ok – Tom couldn’t drive because of the anaesthetic they had given him. I barely made it to the ER and left the car with Tom to park. Tom’s doctor followed us to the ER and instantly became my new doctor.

They took me in pretty fast since I was in so much pain, and had the blood in my urine. At first, they thought it was a kidney stone. After a CT scan, my new doctor said that, yes, I had a kidney stone but it wasn’t the worst of my problems, that I had kidney cancer. Wow, what a surprise that was! I was admitted to that hospital, had more CT scans, MRIs, bone scans, they looked everywhere.

My new “instant doctor” felt that he wasn’t up to the challenge of my surgery, so he called in someone else.  My next new “instant doctor” came to see me in the ER in the middle of the night.  He patted my hand, like a loving grandfather might and said “At least you won’t have to do chemotherapy”.  And I felt so reassured.

It wasn’t until later, much after my surgery, that I found out that there was no chemo yet that worked for my cancer.  I was so thankful for the way he told me.  I would have really freaked out if he’d said that nothing they had was strong enough!

My open radical nephrectomy was May 9, 2006 in another hospital from the one where the initial diagnosis was made. My surgeon felt that he needed a specialist from that hospital because he believed preop that my tumor had invaded into the vena cava because of its appearance on the various scans. Luckily, that was not the case.

My entire left kidney and the encapsulated cancer (10 pounds worth!) were removed, along with my left adrenal gland and some lymph nodes. Although the cancer (renal cell carcinoma AKA RCC) was very close to hemorrhaging, the surgeon believed he got it all.

He said I was so lucky. If the surgery had been delayed any longer, the outcome would have been much different. I will be repeating the CT scans every 3 months, just to be sure that there is no cancer hiding anywhere. As it turns out, I can never say I’m cured, just NED (no evidence of disease). This thing can recur at any time, anywhere in my body.

I credit the argenine re-test with somehow aggravating my kidneys and revealing this cancer. Before the test, I had no clue that there was any problem. The argenine test showed that my IGF is still low but due to the kidney cancer I couldn’t take my growth hormone for another 5 years – so the test was useless anyway, except to hasten this newest diagnosis.

So… either Growth Hormone helped my cancer grow or testing for it revealed a cancer I might not have learned about until later.

My five years are up now.  In about 3 weeks I will be 10 years free of this cancer!  My kidney surgeon *thinks* it would be ok to try the growth hormone again.  I’m still a little leery about this, especially where I didn’t notice that much improvement.

What to do?

Roundup may cause potentially fatal ‘adrenal insufficiency’

IMPORTANT!  A new study finds that the Roundup herbicide disrupts the hormonal system of rats at low levels at which it’s meant to produce no adverse effects. By the same mechanism It may be causing the potentially fatal condition of ‘adrenal insufficiency’ in humans.

Monsanto’s glyphosate-based herbicide Roundup is an endocrine (hormone) disruptor in adult male rats, a new study shows.

The lowest dose tested of 10 mg/kg bw/d (bodyweight per day) was found to reduce levels of corticosterone, a steroid hormone produced in the adrenal glands. This was only one manifestation of a widespread disruption of adrenal function.

No other toxic effects were seen at that dose, so if endocrine disruption were not being specifically looked for, there would be no other signs that the dose was toxic. However a 2012 study detected a 35% testosterone down-regulation in rats at a concentration of 1 part per million.

In both studies endocrine disruption was detected at the lowest level tested for, so we don’t know if, when it comes to endocrine disruption, there are ‘safe’ lower doses of Roundup. In technical parlance, this means that no NOAEL (no observed adverse effect level), was found.

Significantly, the authors believe that the hormonal disruption could lead to the potentially fatal condition know as ‘adrenal insufficiency’ in humans, which causes fatigue, anorexia, sweating, anxiety, shaking, nausea, heart palpitations and weight loss.

“A progressive increase in its prevalence has been observed in humans, while a very few studies relating to xenobiotic exposure and adrenal insufficiency development have been reported”, they write. The increasing levels of Roundup in the environment and food could be “one of the possible mechanisms of adrenal insufficiency.”

How does this level relate to safety limits set by regulators?

One problem with trying to work out how the endocrine disruptive level of 10 mg/kg bw/d relates to how ‘safe’ levels are set by regulators.

The experiment looked at Roundup, the complete herbicide formulation as sold and used, but regulators only look at the long-term safety of glyphosate alone, the supposed active ingredient of Roundup.

Safe levels for chronic exposure to the Roundup herbicide product have never been tested or assessed for regulatory processes. This is a serious omission because Roundup has been shown in many tests to be more disruptive to hormones than glyphosate alone, thanks to the numerous other ingredients it contains to enhance its weed-killing properties.

Given this yawning data gap, let’s for a moment assume that the regulatory limits set for glyphosate alone can be used as a guide for the safe level of Roundup.

The endocrine disruptive level of Roundup found in the experiment, of 10 mg/kg bw/d, is is well above the acceptable daily intake (ADI) set for glyphosate in Europe (0.3 mg/kg bw/d) and the US (1.75 mg/kg bw/d). But this isn’t a reason to feel reassured, since with endocrine effects, low doses can be more disruptive than higher doses.

Another worrying factor is that 10 mg/kg bw/d is well below the NOAEL (no observed adverse effect level) for chronic toxicity of glyphosate: 500 mg/kg bw/d for chronic toxicity, according to the US EPA.

In other words, the level of 500 mg/kg bw/d – a massive 50 times higher than the level of Roundup found to be endocrine disruptive in the experiment – is deemed by US regulators not to cause chronic toxicity.

This experiment shows they are wrong by a long shot. They failed to see toxicity below that level because they failed to take endocrine disruptive effects from low doses into account and industry does not test for them.

Hormone disruption take place at or below ‘no adverse effects’ levels

Interestingly, the NOAEL for glyphosate in industry’s three-generation reproductive studies in rats was much lower than that for chronic toxicity – 30 mg/kg bw/day for adults and 10 mg/kg bw/day for offspring.

However the latter figures – at which no adverse effects should be apparent from glyphosate – are at the same as or higher level than the level of Roundup found to be endocrine disruptive in the new study.

These results therefore show that the reproductive processes of the rats are sensitive to low doses that are apparently not overtly toxic. This in turn suggests that the reproductive toxicity findings are due to endocrine disruptive effects.

Regulatory tests still do not include tests for endocrine disruption from low doses, in spite of the fact that scientists have known about the syndrome since the 1990s.

In the final section of the new study, the researchers discuss its implications. They note that the effects seen in the Roundup-treated rats to the Adrenocorticotropic hormone receptor (ACTH) were similar to adrenal insufficiency in humans:

“The findings that Roundup treatment down regulates endogenous ACTH, is similar to the condition known as adrenal insufficiency in humans. This condition manifests as fatigue, anorexia, sweating, anxiety, shaking, nausea, heart palpitations and weight loss. Chronic adrenal insufficiency could be fatal, if untreated.

“A progressive increase in its prevalence has been observed in humans, while a very few studies relating to xenobiotic exposure and adrenal insufficiency development have been reported. The present study describes one of the possible mechanisms of adrenal insufficiency due to Roundup and suggests more systematic studies, to investigate the area further. “

Claire Robinson of GMWatch commented: “Since no safe dose has been established for Roundup with regard to endocrine disrupting effects, it should be banned.”

 


 

The study:Analysis of endocrine disruption effect of Roundup in adrenal gland of male rats‘ is by Aparamita Pandey and Medhamurthy Rudraiah, and published in Toxicology Reports 2 (2015) pp.1075-1085 on open access.

This article was originally published by GMWatch. This version has been subject to some edits and additions by The Ecologist.

From http://www.theecologist.org/News/news_round_up/2985058/roundup_may_cause_potentially_fatal_adrenal_insufficiency.html

Adrenal insufficiency – how to spot this rare disease and how to treat it

adrenal-glandsAddison’s disease, or adrenal insufficiency, is a rare hormonal disorder of the adrenal glands that affects around 8,400 people in the UK.

The adrenal glands are about the size of a pea and perched on top of the kidneys, and affect the body’s production of the hormones cortisol and sometimes aldosterone.

When someone suffers from adrenal insufficiency, those glands aren’t producing a sufficient amount of these hormones. This can have a detrimental effect on someone’s health and well-being. But because the symptoms are similar to a host of other conditions, Addison’s disease can prove tough to isolate.

What to look out for

According to advice provided by the NHS, the symptoms in the early stages of Addison’s disease, which affects both men and women, are gradual and easy to misread as they’re similar to many other conditions.

People can experience severe fatigue, muscle weakness, low moods, loss of appetite, unintentional weight loss, low blood pressure, nausea, vomiting and salt craving.

“Symptoms are often misread or ignored until a relatively minor infection leads to an abnormally long convalescence, which prompts an investigation,” says Professor Wiebke Arlt from the Centre for Endocrinology, Diabetes & Metabolism at the University of Birmingham.

Life-threatening condition

If Addison’s disease is left untreated, the level of hormones produced by the adrenal gland will gradually decrease in the body. This will cause symptoms to get progressively worse and eventually lead to a potentially life-threatening situation called an adrenal, or Addisonian, crisis. Signs include severe dehydration; pale, cold, clammy skin; rapid, shallow breathing; extreme sleepiness; severe vomiting and diarrhoea. If left untreated, it can prove fatal, so the patient should be admitted to hospital as an emergency.

Back to basics

To understand the disorder, it’s important to get to grips with the basics and that means understanding what the adrenal glands are – and so to the science.

“Adrenal glands have an inner core (known as the medulla) surrounded by an outer shell (known as the cortex) ,” explains Arlt.
The inner medulla produces adrenaline, the ‘fight or flight’ stress hormone. While the absence of this does not cause the disease, the cortex is more critical.

“It produces the steroid hormones that are essential for life: cortisol and aldosterone,” he adds.

“Cortisol mobilises nutrients, enables the body to fight inflammation, stimulates the liver to produce blood sugar and also helps control the amount of water in the body. Aldosterone, meanwhile, regulates the salt and water levels, which can affect blood volume and pressure.”

Why does it happen?

The disorder occurs if the adrenal glands are destroyed, absent or unable to function and failure of the glands themselves is known as primary adrenal insufficiency.

“It’s most often caused by autoimmune disease where the body’s immune system mounts an attack against its own adrenal glands,” explains Arlt.

“However it can also be caused by infection, most importantly by tuberculosis and sometimes by both adrenal glands being surgically removed.”

The pituitary effect

Another important cause is any disease affecting the pituitary gland, which is located behind the nose at the bottom of the brain.
“The pituitary is the master gland that tells the other glands in the body what to do,” continues Arlt.

“The pituitary gland produces a hormone called ACTH (adrenocorticotropic hormone to give it its full name), which travels in the blood stream to the adrenal glands.

“Here it acts as a signal, causing the adrenal glands to produce more cortisol. If the pituitary gland stops making ACTH, [then] cortisol production by the adrenals is no longer controlled properly and a condition called secondary adrenal insufficiency arises.”

But in most cases, aldosterone is still produced, which means that people suffering from secondary adrenal insufficiency have fewer problems than those with primary adrenal insufficiency.

Determining a diagnosis

Due to the ambiguous nature of the symptoms, a Short Synacthen Test (SST) needs to be performed in order to diagnose adrenal insufficiency.

“This measures the ability of the adrenal glands to produce cortisol in response to (the pituitary hormone) ACTH,” says Arlt. “When carrying out this test, a baseline blood sample is drawn before injecting a dose of ACTH, followed by drawing a second blood sample 30 to 60 minutes later. Failing adrenal glands will not be able to produce a certain level of cortisol.”

Getting treatment

If someone has been conclusively diagnosed with adrenal insufficiency, they should receive adrenal hormone replacement therapy as advised by an endocrinologist, a doctor specialising in hormone-related diseases.

“A normal adrenal gland does not need supplements to function properly and there is no recognised medical condition called ‘adrenal fatigue’,” warns Arlt.

“Either the adrenal gland is fine and needs no treatment or there is adrenal insufficiency due to adrenal or pituitary failure.”

So if in doubt, don’t self-diagnose but book an appointment with your GP.

For more information, visit Addison’s Disease Self-Help Group (www.addisons.org.uk) or Pituitary Foundation.

From https://home.bt.com/lifestyle/wellbeing/adrenal-insufficiency-how-to-spot-this-rare-disease-and-how-to-treat-it-11363985141306

%d bloggers like this: