Study Examines Therapy Options for Post-adrenalectomy Low Glucocorticoid Levels

Hydrocortisone and prednisone have comparable safety and effectiveness when used as glucocorticoid replacement therapy in patients with adrenal adenoma or Cushing’s disease who underwent adrenalectomy, a new study shows.

The study, “Comparison of hydrocortisone and prednisone in the glucocorticoid replacement therapy post-adrenalectomy of Cushing’s Syndrome,” was published in the journal Oncotarget.

The symptoms of Cushing’s syndrome are related to excessive levels of glucocorticoids in our body. Glucocorticoids are a type of steroid hormones produced by the adrenal gland. Consequently, a procedure called adrenalectomy – removal of the adrenal glands – is usually conducted in patients with Cushing’s syndrome.

Unfortunately, adrenalectomy leads to a sharp drop in hormones that are necessary for our bodies. So, post-adrenalectomy glucocorticoid replacement therapy is required for patients.

Hydrocortisone and prednisone are synthetic glucocorticoids that most often are used for glucocorticoid replacement therapy.

Treatment with either hydrocortisone or prednisone has proven effective in patients with Cushing’s syndrome. However, few studies have compared the two treatments directly to determine if there are significant advantages of one therapy over another.

Chinese researchers set out to compare the effectiveness and safety of hydrocortisone and prednisone treatments in patients with Cushing’s syndrome, up to six months after undergoing adrenalectomy.

Patients were treated with either hydrocortisone or prednisone starting at day two post-adrenalectomy. The withdrawal schedule varied by individual patients.

At baseline, both groups had similar responses to the adrenalectomy, including the correction of hypertension (high blood pressure), hyperglycemia (high blood glucose levels), and hypokalemia (low potassium levels). Furthermore, most patients in both groups lost weight and showed significant improvement, as judged by a subjective evaluation questionnaire.

Hydrocortisone did show a significant advantage over prednisone in the improvement of liver function, but its use also was associated with significant swelling of the lower extremities, as compared to prednisone.

Patients in both groups went on to develop adrenal insufficiency (AI) during glucocorticoid withdrawal. However, there were no significant differences in the AI incidence rate – 35 percent in the hydrocortisone group versus 45 percent in the prednisone group. The severity of A also was not significantly different between the groups.

Furthermore, most of the AI symptoms were relieved by going back to the initial doses of the glucocorticoid replacement.

As there were no significant differences between the two treatments, the findings support “the use of both hydrocortisone and prednisone in the glucocorticoid replacement therapy post-adrenalectomy for patients of adrenal adenoma or Cushing’s disease,” researchers concluded.

From https://cushingsdiseasenews.com/2018/01/11/post-adrenalectomy-glucocorticoid-replacement-therapy/

Cushing Patients Could Be Diagnosed, Subtyped Using Plasma Steroid Levels

Patients with different subtypes of Cushing’s syndrome (CS) have distinct plasma steroid profiles. This could be used as a test for diagnosis and classification, a German study says.

The study, “Plasma Steroid Metabolome for Diagnosis and Subtyping Patients with Cushing Syndrome,” appeared in the journal Clinical Chemistry.

A quick diagnosis of CS is crucial so that doctors can promptly give therapy. However, diagnosing CS is often complicated by the multiple tests necessary not just to diagnose the disease but also to determine its particular subtype.

Cortisol, which leads to CS when produced at high levels, is a steroid hormone. But while earlier studies were conducted to determine whether patients with different subtypes of CS had distinct steroid profiles, the methods researchers used were cumbersome and have been discontinued for routine use.

Recently, a technique called LC-MS/MS has emerged for multi-steroid profiling in patients with adrenocortical dysfunction such as congenital adrenal hyperplasia, adrenal insufficiency and primary aldosteronism.

Researchers at Germany’s Technische Universität in Dresden used that method to determine whether patients with the three main subtypes of CS (pituitary, ectopic and adrenal) showed differences in plasma steroid profiles. They measured levels of 15 steroids produced by the adrenal glands in single plasma samples collected from 84 patients with confirmed CS and 227 age-matched controls.

They found that CS patients saw huge increases in the plasma steroid levels of 11-deoxycortisol (289%), 21-deoxycortisol (150%), 11-deoxycorticosterone (133%), corticosterone (124%) and cortisol (122%), compared to patients without the disease.

Patients with the ectopic subtype had the biggest jumps in levels of these steroids. However, plasma 18-oxocortisol levels were particularly low in ectopic disease. Other steroids demonstrated considerable variation.

Patients with the adrenal subtype had the lowest concentration of dehydroepiandrosterone (DHEA) and DHEA-SO4, which are androgens. Patients with the ectopic and pituitary subtype had the lowest concentration of aldosterone.

Through the use of 10 selected steroids, patients with different subtypes of CS could be identified almost as closely as with other tests, including the salivary and urinary free cortisol test, the dexamethasone-suppressed cortisol test, and plasma adrenocorticotropin levels. The misclassification rate using steroid levels was 9.5 percent, compared to 5.8 percent in other tests.

“This study using simultaneous LC-MS/MS measurements of 15 adrenal steroids in plasma establishes distinct steroid metabolome profiles that might be useful as a test for CS,” the team concluded, adding that using LC-MS/MS is advantageous, as specimen preparation is simple and the entire panel takes 12 minutes to run. This means it could be offered as a single test for both identification and subtype classification.

From https://cushingsdiseasenews.com/2018/01/02/plasma-steroid-levels-used-screen-diagnosis-subtyping-patients-cushing-syndrome/

Medic Alert Bracelets

Since the last topic was about Adrenal Insufficiency, it seemed that a great next topic would be about Medic Alert Bracelets.

Many doctors insist that everyone who has had pituitary or adrenal surgery have a bracelet – and some will even tell patients what they should say on them.

While I was still a patient at the NIH (National Institutes of Health) after my pituitary surgery, I was given my first bracelet along with my kit in care of adrenal crisis.  I had to learn to give myself a shot before I could go home.

Now, my endo checks mine at every visit to be sure I’m wearing my bracelet and reads it to be sure it’s still legible and checks to see what the text says.

He feels that the bracelets – and he insists that they LOOK like medic alert bracelets, not disguised as jewelry – are life savers.

I’m not so sure – I read stories on the message boards that people have gone into AI (adrenal insufficiency and no one has ever looked at their bracelet.  That was certainly the case for young Sam.  Her mom had instructions everywhere, none were heeded and the situation rapidly turned disastrous.

…We have dealt with Addison’s for 7 years; but I have handled everything. Apparently the vials of solu-cortef with step-by-step instructions hanging on the bulletin board in the kitchen, medicine cabinet and in every vehicle somehow missed his attention…  (read the whole story at survive the journey: Stars Go Blue)

A Paramedic wrote on the message boards:

I’d like to add a couple things from the perspective of a Paramedic…

A lot of us are not taught about adrenal insufficiency during our education….nor do many of us (if any at all) have a protocol to administer Injectable for AI unless we are able to contact the ER doctor for permission. So…if any of you should have an AI crisis please gently nudge your paramedic to contact the receiving physician for permission to administer the medication. I know this sounds like a lot of responsibility on the part of the patient…but you have to realize that we’re taught to recognize the most common life threats and endocrine disorders (other than diabetes) most usually do not present with life threats (we all know that as cushing’s is more recognized that this will change)…and our protocols cover the most common life threats….so while we may recognize that you are hypotensive and need fluids (IV) and are sweaty, nauseated, decreased level of responsiveness etc…we are not equipped to deal with the actual cause unless you help educate us….

Also…please don’t get angry with us….if we are having problems understanding…just gently insist that a call be made to your doctor or the receiving ED (usually not feasible for us to call your doctor since they do not come to the phone for just anybody but if you have access to them, as many cushies do, it would be great to talk to them)…

Paramedicine is evolving….someday soon, hopefully, our education will include more diagnostic skills…untill just in the past 5 years or so we were NEVER to make a diagnosis at all…just treat the symptoms!!!! So there is hope out there for futher understanding of such a critical problem for those without adrenal (or asleep adrenals) glands….

The medical alert jewerly is a life-saver and we do look for it….

So, the questions for discussion are:

  • Do you have a medical alert bracelet
  • Does your doctor check on it or suggest proper wording.
  • If you have one, has any medical staff read it during a crisis
  • And… what does yours say?

Adrenal Crisis

Robin wrote a great blog post about Jackie and Sam dealing with Adrenal Crisis.  This is a very important article that all should read.  Be your own advocate!

New PDF! Managing Adrenal Insufficiency

New Podcast! Podcast: Adrenal Crisis

If left untreated, adrenal insufficiency can cause serious illness or death. But by working with their doctors and nurses, patients can learn how to manage this condition.

A Paramedic wrote on the message boards:

I’d like to add a couple things from the perspective of a Paramedic…

A lot of us are not taught about adrenal insufficiency during our education….nor do many of us (if any at all) have a protocol to administer Injectable for AI unless we are able to contact the ER doctor for permission. So…if any of you should have an AI crisis please gently nudge your paramedic to contact the receiving physician for permission to administer the medication. I know this sounds like a lot of responsibility on the part of the patient…but you have to realize that we’re taught to recognize the most common life threats and endocrine disorders (other than diabetes) most usually do not present with life threats (we all know that as cushing’s is more recognized that this will change)…and our protocols cover the most common life threats….so while we may recognize that you are hypotensive and need fluids (IV) and are sweaty, nauseated, decreased level of responsiveness etc…we are not equipped to deal with the actual cause unless you help educate us….

Also…please don’t get angry with us….if we are having problems understanding…just gently insist that a call be made to your doctor or the receiving ED (usually not feasible for us to call your doctor since they do not come to the phone for just anybody but if you have access to them, as many cushies do, it would be great to talk to them)…

Paramedicine is evolving….someday soon, hopefully, our education will include more diagnostic skills…untill just in the past 5 years or so we were NEVER to make a diagnosis at all…just treat the symptoms!!!! So there is hope out there for futher understanding of such a critical problem for those without adrenal (or asleep adrenals) glands….

The medical alert jewerly is a life-saver and we do look for it….

Be sure to print this page to carry with you.

From the NIH. This information was developed by the patient care staff of the Clinical Center to help patients with adrenal insufficiency (AI) understand their condition and how to take care of it. It explains what causes adrenal insufficiency and how it can be controlled. If left untreated, adrenal insufficiency can cause serious illness or death. But by working with their doctors and nurses, patients can learn how to manage this condition.

National Endocrine and Metabolic Diseases Information Service

6 Information Way
Bethesda, MD 20892–3569
Phone: 1–888–828–0904
TTY: 1–866–569–1162
Fax: 1–703–738–4929
Email: // <![CDATA[
var prefix = 'ma' + 'il' + 'to';
var path = 'hr' + 'ef' + '=';
var addy41985 = 'endoandmeta' + '@';
addy41985 = addy41985 + 'info' + '.' + 'niddk' + '.' + 'nih' + '.' + 'gov';
var addy_text41985 = 'endoandmeta' + '@' + 'info' + '.' + 'niddk' + '.' + 'nih' + '.' + 'gov';
document.write( '‘ );
document.write( addy_text41985 );
document.write( ‘
‘ );
//n
// –>
// ]]>endoandmeta@info.niddk.nih.gov // <![CDATA[
document.write( '‘ );
// ]]>This e-mail address is being protected from spambots. You need JavaScript enabled to view it // <![CDATA[
document.write( '’ );
// ]]>

Internet: http://endocrine.niddk.nih.gov/

The National Endocrine and Metabolic Diseases Information Service is an information dissemination service of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). The NIDDK is part of the National Institutes of Health (NIH), which is part of the U.S. Department of Health and Human Services.

The NIDDK conducts and supports biomedical research. As a public service the NIDDK has established information services to increase knowledge and understanding about health and disease among patients, health professionals and the public.

Publications produced by the NIDDK are carefully reviewed by both NIDDK scientists and outside experts.

This publication is not copyrighted. The NIDDK encourages users of this publication to duplicate and distribute as many copies as desired.

From http://endocrine.niddk.nih.gov/pubs/creutz/alert.htm


DebMV suggested that you should have a Medic Alert bracelet from medicalert.org

Toll free number in the USA is: by phone 7 days a week, 24 hours a day: 888-633-4298
209-668-3333 from outside the U.S.


Lorrie got this important info for us.

Alternative names:

adrenal crisis; Addisonian crisis; acute adrenal insufficiency

Definition:

An abrupt, life-threatening state caused by insufficient cortisol, a hormone produced and released by the adrenal gland.

Causes, incidence, and risk factors:

The two adrenal glands are located on top of the kidneys. They consist of the outer portion, called the cortex, and the inner portion, called the medulla. The cortex produces three types of hormones, which are called corticosteroids. The androgens and estrogens affect sexual development and reproduction. The glucocorticoids maintain glucose regulation, suppress the immune response, and provide for the response to stress (cortisol). The mineralocorticoids regulate sodium and potassium balance. These hormones are essential for life.

Acute adrenal crisis is an emergency caused by decreased cortisol. The crisis may occur in a person with Addison’s disease, or as the first sign of adrenal insufficiency. More uncommonly, it may be caused by a pituitary gland disorder. It may also be caused by sudden withdrawal of corticosteroids, removal or injury of the adrenal glands, or destruction of the pituitary gland. Risk factors are stress, trauma, surgery, or infection in a person with Addison’s disease, or injury or trauma to the adrenal glands or the pituitary gland. The incidence is 4 out of 100,000 people.

Prevention:

People who have Addison’s disease should be taught to recognize signs of potential stress that may precipitate an acute adrenal crisis (cause it to occur suddenly and unexpectedly). Most people with Addison’s disease are taught to give themselves an emergency injection of hydrocortisone in times of stress. It is important for the individual with Addison’s disease to always carry a medical identification card that states the type of medication and the proper dose needed in case of an emergency. Never omit medication. If unable to retain medication due to vomiting, notify the health care provider.

Symptoms:

  • headache
  • profound weakness
  • fatigue
  • slow, sluggish, lethargic movement
  • nausea
  • vomiting
  • low blood pressure
  • dehydration
  • high fever
  • chills shaking
  • confusion or coma
  • darkening of the skin
  • rapid heart rate
  • joint pain
  • abdominal pain
  • unintentional weight loss
  • rapid respiratory rate
  • unusual and excessive sweating on face and/or palms
  • skin rash or lesion may be present
  • flank pain
  • appetite, loss

Signs and tests:

  • An ACTH (cortrosyn) stimulation test shows low cortisol.
  • The cortisol level is low.
  • The fasting blood sugar may be low.
  • The serum potassium is elevated.
  • The serum sodium is decreased.
  • This disease may also alter the results of the following tests:
    • sodium, urine
    • 17-hydroxycorticosteroids

Treatment:

In adrenal crisis, an intravenous or intramuscular injection of hydrocortisone (an injectable corticosteroid) must be given immediately. Supportive treatment of low blood pressure is usually necessary. Hospitalization is required for adequate treatment and monitoring. Low blood pressure may be treated with intravenous fluids. If infection is the cause of the crisis, antibiotic therapy is indicated.

Expectations (prognosis):

Death may occur due to overwhelming shock if early treatment is not provided.

Complications:

  • shock
  • coma
  • seizures

Delirium Induced by Rapid Titration of Osilodrostat in a Patient With Cushing’s Disease

Abstract

Cushing’s disease frequently presents with psychiatric symptoms such as depression, anxiety, and cognitive impairment. Osilodrostat, an 11β-hydroxylase inhibitor, is used for persistent or recurrent cases, but rapid titration may precipitate adrenal insufficiency and psychiatric complications.

We report a woman in her early 40s with a history of major depressive disorder treated with clomipramine. After transsphenoidal surgery for Cushing’s disease, she remained hypercortisolemic, and hydrocortisone replacement was continued postoperatively for safety due to unstable cortisol secretion. Cortisol secretion was unstable, with day-to-day fluctuations. Osilodrostat was initiated at 2 mg/day. Shortly thereafter, urinary free cortisol (UFC) increased, and between days 3 and 5, she developed depressive symptoms, depersonalization, and suicidal ideation. These were judged to be related to cortisol elevation, and osilodrostat was rapidly titrated, reaching 40 mg/day by day 9. Depressive symptoms improved as UFC decreased. However, from day 9, she developed delirium with fluctuating consciousness, disorientation, purposeless hyperactivity, and stereotyped speech, peaking on days 10-12. During this period, blood pressure decreased, accompanied by tachycardia and fever. Infection and metabolic abnormalities were clinically excluded. Symptoms resolved spontaneously by day 14, with amnesia for the episode, and she was discharged on day 20 without recurrence.

This case illustrates a rare clinical course where depressive symptoms during cortisol elevation and delirium during cortisol reduction occurred sequentially in the same patient following rapid osilodrostat titration. The episode suggests that abrupt cortisol fluctuations may induce psychiatric symptoms even under hydrocortisone supplementation. Clinicians should avoid rapid titration and ensure close collaboration between endocrinology and psychiatry when psychiatric symptoms arise during treatment.

Introduction

Cushing’s disease is caused by an adrenocorticotropic hormone (ACTH) secreting pituitary adenoma, leading to chronic hypercortisolism. In addition to physical features such as central obesity, moon face, and hypertension, psychiatric symptoms including depression, anxiety, and cognitive impairment are frequently observed [1-3]. Depression occurs in 40-60% of patients and is associated with increased suicide risk. Anxiety and cognitive impairment are also common, and psychiatric symptoms may even precede the physical manifestations. Thus, psychiatrists may encounter such patients at an early stage, and it is clinically important to consider underlying endocrine disorders [1,3]. The first-line treatment is transsphenoidal surgery, but remission is not always achieved [4].

Osilodrostat, an oral 11β-hydroxylase inhibitor, is primarily used for the treatment of persistent or recurrent Cushing’s disease. By inhibiting cortisol synthesis, it effectively lowers circulating cortisol levels, thereby improving the clinical manifestations of hypercortisolism. The phase III LINC 3 trial demonstrated its efficacy [5], but adverse events such as adrenal insufficiency and psychiatric symptoms have been reported [6-8]. Acute adrenal insufficiency can present with hypotension, tachycardia, fever, and gastrointestinal symptoms, and in severe cases with impaired consciousness or delirium [9]. To minimize these risks, gradual titration in 2-mg increments at intervals of at least two weeks is recommended [6].

For monitoring treatment efficacy, urinary free cortisol (UFC) is widely used as a reliable marker reflecting total cortisol secretion over 24 hours and serves as a standard index of disease activity and treatment response [1,2].

Case Presentation

The patient was a 43-year-old woman with a history of major depressive disorder since her early twenties, treated mainly with clomipramine. Although she experienced recurrent episodes, she was able to continue working as a clinical psychologist, with occasional sick leave. Her past history included papillary thyroid carcinoma treated surgically, followed by hypothyroidism managed with levothyroxine 75 µg/day.

In her thirties, she developed treatment-resistant hypertension. In March 2024, inferior petrosal sinus sampling confirmed Cushing’s disease. In April 2024, she underwent transsphenoidal surgery and started hydrocortisone replacement at 30 mg/day. However, hypercortisolism and elevated ACTH persisted. Cortisol levels showed marked day-to-day fluctuations rather than being consistently elevated, and replacement therapy was continued for safety.

In June 2024, she was admitted to our endocrinology department because of persistent disease activity. Psychiatry was consulted due to her psychiatric history. At admission, she was alert, cooperative, and exhibited neither depressive nor psychotic symptoms. Clomipramine was continued. Physical examination revealed a BMI of 27.5, central obesity, moon face, and violaceous striae. Blood pressure was 155/105 mmHg. Routine chemistry and thyroid function were within normal limits. Endocrinological work-up confirmed persistent hypercortisolism: the 24-hour UFC was markedly elevated (409.2 µg/day; normal < 50 µg/day), midnight serum cortisol was inappropriately high (14.3 µg/dL; normally suppressed at night), and dexamethasone suppression testing failed to suppress morning cortisol (9.7 µg/dL after 0.5 mg dexamethasone). Corticotropin-releasing hormone stimulation testing demonstrated an exaggerated ACTH response (63.6 → 105.0 pg/mL), consistent with pituitary-dependent Cushing’s disease. Postoperative brain MRI showed only expected surgical changes without new lesions.

Figure 1 illustrates the clinical course in this case. Osilodrostat was initiated at 2 mg/day on day 1. UFC unexpectedly rose thereafter, and between days 3 and 5, she developed depressed mood, depersonalization, and suicidal ideation. These psychiatric symptoms were judged to be associated with increased cortisol secretion. Antidepressant adjustment was not attempted. Instead, priority was given to endocrine control, and osilodrostat was rapidly up-titrated. Although the risk of adrenal insufficiency was considered, treatment was deemed safe under hydrocortisone supplementation. By day 9, the dose of osilodrostat reached 40 mg/day, UFC decreased, and depressive symptoms improved.

Timeline-of-clinical-events-and-interventions-in-the-present-case.
Figure 1: Timeline of clinical events and interventions in the present case.

Panel (A) shows the osilodrostat dosage and 24-hour urinary free cortisol (UFC) levels; panel (B) depicts vital signs (sBP, systolic blood pressure; BT, body temperature); and panel (C) illustrates psychiatric symptoms and the dosages of antipsychotic medications, all plotted against treatment days.

However, from day 9 onward, delirium and psychomotor agitation emerged, peaking on days 10-12. She displayed fluctuating consciousness, global disorientation, impaired attention, purposeless hyperactivity, stereotyped behaviors, and repetitive utterances of meaningless numbers. She wandered barefoot and occasionally shouted fragmented phrases such as “Say you love me.” Anxiety and insomnia were prominent, but hallucinations and self-disturbances were absent.

At that time, her vital signs showed a decline in blood pressure from 155/105 mmHg to 125/59 mmHg, a pulse rate of 110/min, and a temperature of 38.3°C. Electrolytes and glucose were normal, and no inflammatory response or other signs of infection were detected. Because of marked psychomotor agitation, imaging and EEG were not performed. Risperidone and haloperidol were given but were ineffective.

At onset, the delirium was interpreted as a manifestation of hypercortisolism, partly because it occurred during a holiday when comprehensive evaluation was not feasible. Osilodrostat was therefore not reduced. As her symptoms improved spontaneously and she remained stable under hydrocortisone supplementation, the dose was maintained. Since the delirium resolved completely and did not recur, additional imaging or EEG was not performed.

By day 14, delirium had resolved, and the patient reported amnesia for the episode. No recurrence occurred, and she was discharged on day 20 at her and her family’s request. Outpatient follow-up confirmed stable status without recurrence of delirium.

Discussion

This case illustrates an unusual clinical course in which qualitatively distinct psychiatric symptoms appeared sequentially during rapid titration of osilodrostat. The initial depressive phase coincided with a transient rise in UFC and may have been related to unstable cortisol secretion that had already been observed prior to admission. Although not sufficient for a formal diagnosis, such variability is reminiscent of cyclical Cushing’s disease [10], which has also been associated with mood fluctuations [1,3]. Previous studies have demonstrated the link between hypercortisolism and depression [1,3], and our case is consistent with these findings during the early phase of treatment.

In contrast, the subsequent delirium phase was accompanied by hypotension, tachycardia, and fever, resembling adrenal insufficiency. Similar neuropsychiatric manifestations, including delirium and psychosis, have been described in previous reports of adrenal insufficiency [8,9]. However, unlike those cases, where symptoms typically emerged after drug withdrawal, delirium in our patient developed rapidly following dose escalation. This temporal pattern suggests that even transient cortisol reductions may precipitate acute neuropsychiatric symptoms.

Taken together, these observations both align with and extend prior findings linking cortisol dysregulation to psychiatric manifestations. Our case supports previous evidence that hypercortisolism is associated with depressive symptoms [1,3], whereas hypocortisolism predisposes to delirium or psychosis [8,9]. Importantly, it also highlights a dynamic aspect of this relationship: abrupt cortisol fluctuations themselves, regardless of direction, may transiently disrupt neuroendocrine homeostasis and trigger psychiatric symptoms. This interpretation is consistent with reports of cyclical Cushing’s disease showing alternating mood states [10], but it differs in that the fluctuation here was iatrogenic and temporally linked to rapid pharmacologic titration.

Pharmacological factors may have further amplified these effects. Clomipramine and antipsychotics such as haloperidol and risperidone are known to cause confusion or agitation, particularly under hormonal stress. It is therefore plausible that psychotropic drug interactions and cortisol fluctuations acted synergistically to produce the observed neuropsychiatric manifestations.

This report has several limitations. The onset of delirium occurred during a holiday, and severe agitation precluded blood sampling for serum cortisol, ACTH testing, or therapeutic steroid administration. Thus, strict diagnostic criteria for adrenal insufficiency could not be fulfilled. Nonetheless, the clinical presentation, with hypotension, tachycardia, fever, and altered consciousness, was consistent with an adrenal insufficiency-like state. Electrolytes, glucose, and inflammatory markers remained within normal limits, making infection or metabolic causes unlikely. However, structural or neurological contributors could not be completely excluded because imaging and EEG were not performed. Although the clinical picture resembled adrenal insufficiency, true adrenal crisis was unlikely given the normal electrolyte levels, spontaneous recovery, and maintained oral intake. Therefore, this episode may be better characterized as a state of functional adrenal dysregulation rather than frank adrenal insufficiency.

Conclusions

This case highlights a rare course in which depressive symptoms during cortisol elevation and delirium during cortisol reduction occurred sequentially in the same patient following rapid titration of osilodrostat. The episode suggests that even under hydrocortisone supplementation, abrupt cortisol fluctuations can induce psychiatric symptoms. However, because some observations were paradoxical and certain assessments could not be performed during the acute phase, these interpretations should be made with caution. The episode may represent a state of functional adrenal dysregulation rather than distinct phases of hyper- or hypocortisolism.

This case offers two clinical lessons. First, osilodrostat should be titrated gradually according to established guidelines. Second, if psychiatric symptoms arise during treatment, they are best managed through close collaboration between endocrinology and psychiatry.

References

  1. Pivonello R, Simeoli C, De Martino MC, et al.: Neuropsychiatric disorders in Cushing’s syndrome. Front Neurosci. 2015, 9:129. 10.3389/fnins.2015.00129
  2. Sharma ST, Nieman LK, Feelders RA: Cushing’s syndrome: epidemiology and developments in disease management. Clin Epidemiol. 2015, 7:281-93. 10.2147/CLEP.S44336
  3. Sonino N, Fava GA, Raffi AR, Boscaro M, Fallo F: Clinical correlates of major depression in Cushing’s disease. Psychopathology. 1998, 31:302-6. 10.1159/000029054
  4. Fleseriu M, Auchus R, Bancos I, et al.: Consensus on diagnosis and management of Cushing’s disease: a guideline update. Lancet Diabetes Endocrinol. 2021, 9:847-75. 10.1016/S2213-8587(21)00235-7
  5. Pivonello R, Fleseriy M, Newell-Price J, et al.: Efficacy and safety of osilodrostat in patients with Cushing’s disease (LINC 3): a multicentre phase 3 study with a double-blind, randomised withdrawal phase. Lancet Diabetes Endocrinol. 2020, 8:748-61. 10.1016/S2213-8587(20)30240-0
  6. U.S. Food and Drug Administration. Osilodrostat prescribing information. (2020). Accessed: October 18, 2025: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/212801s000lbl.pdf.
  7. Gadelha M, Bex M, Feelders RA, et al.: Randomized trial of osilodrostat for the treatment of Cushing disease. J Clin Endocrinol Metab. 2022, 107:e2882-95. 10.1210/clinem/dgac178
  8. Ekladios C, Khoury J, Mehr S, Feghali K: Osilodrostat-induced adrenal insufficiency in a patient with Cushing’s disease. Clin Case Rep. 2022, 10:e6607. 10.1002/ccr3.6607
  9. Arlt W: Society for Endocrinology endocrine emergency guidance: Emergency management of acute adrenal insufficiency (adrenal crisis) in adult patients. Endocr Connect. 2016, 5:G1-3. 10.1530/EC-16-0054
  10. Meinardi JR, Wolffenbuttel BH, Dullaart RP: Cyclic Cushing’s syndrome: a clinical challenge. Eur J Endocrinol. 2007, 157:245-54. 10.1530/EJE-07-0262