Diabetic Ketoacidosis as the First Manifestation of Ectopic Cushing’s Syndrome

Abstract

Diabetic ketoacidosis is an exceptionally rare initial manifestation of ectopic adrenocorticotropic hormone (ACTH) syndrome. A 42-year-old woman with multiple cardiovascular risk factors was admitted to the emergency room with diabetic ketoacidosis. During stabilization, florid Cushing’s syndrome was suspected and confirmed biochemically as ACTH-dependent. Further biochemical and imaging surveys led to the diagnosis of a 25×15 mm nodule in the lingula. Thoracic surgery was performed, and pathology revealed a neuroendocrine tumor positive for ACTH.

We reviewed eight additional cases of diabetic ketoacidosis associated with Cushing’s syndrome from PubMed. Clinicians should bear in mind this etiology of diabetic ketoacidosis based on clinical signs and younger patients with multiple, age-atypical comorbidities. This would permit the expedited targeted stabilization of Cushing’s syndrome and the suitable institution of the diagnostic approach and treatment for this challenging syndrome.

Introduction

Endogenous Cushing’s syndrome (CS) is a rare disease resulting from pathological glucocorticoid excess of neoplastic origin, with an annual incidence of two/three cases per 1.000.000 inhabitants [1]. The severity of CS varies widely from mild to severe and, if left untreated, can be fatal due to the increased risk of cardiovascular events and opportunistic infections. Endogenous CS is classified as adrenocorticotropic hormone (ACTH)-dependent (80%) and -independent (20%) forms. ACTH-dependent CS is further divided into Cushing’s disease (68%) when the pituitary is the source of excess ACTH, or ectopic ACTH syndrome (EAS; 12%) when the cause is a non-pituitary neoplasia of neuroendocrine origin. EAS has an annual incidence of one case per 1.250.000 inhabitants and is more frequent in men [1]. It can be secondary to an aggressive small-cell lung carcinoma (19%), but the majority of cases arise from indolent lesions such as bronchial and thymic (combined: 33%) or pancreatic (12%) neuroendocrine tumors (NET) [1-3]. These indolent lesions usually evolve clinically over 6 to 24 months, whereas carcinomas have a faster onset. Symptoms and signs of excess cortisol in EAS are usually indistinguishable from Cushing’s disease. The most discriminatory signs of CS are plethora, purplish striae, proximal myopathy, and spontaneous ecchymosis. Multiple vascular risk factors, namely, hypertension, diabetes mellitus (DM), dyslipidemia, and obesity (especially central adiposity), occurring in a young patient, should also raise suspicion for CS [2]. Diabetic ketoacidosis (DKA) as the inaugural presentation of CS is very rare [1-3]. We searched through PubMed and reviewed articles in English where this association was reported using keywords such as “Cushing’s syndrome”, “Diabetic ketoacidosis”, “hypercortisolism”, and “Ectopic ACTH syndrome”. CS presenting initially with DKA is, as to this day, limited to eight case reports [4-11]. The clinical recognition of this syndrome as a very rare etiology of DKA is of paramount importance, as it is usually severe and relates to sepsis and several biochemical, hematologic, and hemodynamic derangements that should be addressed expeditiously with targeted drugs [3].

Here, we describe a female patient with florid clinical EAS uncovered upon her admission to the Emergency Room (ER) due to DKA. We searched through PubMed and reviewed articles in English where this association was reported, using keywords such as “Cushing’s syndrome”, “Diabetic ketoacidosis”, “hypercortisolism”, and “Ectopic ACTH syndrome”.

This article was previously presented as a meeting abstract at the 2024 ENDO, The Endocrine Society Annual Meeting on June 3, 2024.

Case Presentation

A 42-year-old woman was admitted in June 2022 to the ER due to severe DKA and hypokalemia (Table 1) and mild coronavirus disease. Physical examination at initial presentation was also remarkable for grade 2 hypertension with hypertensive retinopathy. Florid Cushingoid features, including a “buffalo hump”, plethora, hirsutism, abdominal ecchymosis, and marked proximal limb sarcopenia were noted (Figure 1).

Patient's-Cushingoid-features
Figure 1: Patient’s Cushingoid features

The patient was transferred to the intensive care unit (ICU). A multimodal treatment plan was initiated, including intravenous insulin (total daily dose: 1.2U/Kg) as per the protocol for DKA, antihypertensives, and prophylactic doses of low-molecular-weight heparin. After resolution of DKA and hydroelectrolytic disturbances, a gasometric follow-up revealed metabolic alkalosis (pH 7.529). The patient was then able to report a six-month history of weight gain, secondary amenorrhea, impaired concentration and memory, ecchymoses, and proximal myopathy with frequent falls and dependency on relatives for daily life activities. No chronic diarrhea or flushing was reported. She also reported a fungal pneumonia, dyslipidemia, and hypertension in the last four months, and a diagnosis of DM treated with metformin two weeks before her admission to the ER. Family history was unremarkable. Biochemical surveys (Table 1) revealed ACTH-dependent hypercortisolism, low thyroid-stimulating hormone (TSH), and hypogonadotropic hypogonadism. High-dose dexamethasone suppression (HDDS) and corticotropin-releasing hormone (CRH) stimulation tests were not suggestive of a pituitary source of ACTH (Table 1). Pituitary magnetic resonance imaging was normal. While waiting for further investigations regarding the source of excess ACTH, the patient was started on 750 mg/day of metyrapone in three divided doses. The patient was started and discharged from the ward with hydrocortisone 10 mg in the morning and 5 mg at midday and in the afternoon. The dose of metyrapone was carefully adjusted during two months according to morning serum cortisol, but was rapidly decreased and stopped due to spontaneous clinical resolution of CS. In the postoperative follow-up (total: 23 months), Cushingoid features (plethora, dorsal fat pad, ecchymosis, central adiposity) continued to disappear, and she regained muscle mass and independence in her daily activities and remission from all glucocorticoid related-comorbidities was maintained (fasting glucose: 91 mg/dL; glycated hemoglobin (HbA1c): 5.8%; low-density lipoprotein (LDL) cholesterol: 138 mg/dL; triglycerides: 80 mg/dL). Twelve months after surgery, the patient was able to discontinue hydrocortisone upon biochemical evidence of restoration of adrenal function (cortisol peak at Synacthen test: 21.1 ug/dL; basal ACTH: 15.6 pg/mL). Her last (23 months after surgery) endocrine surveys (midnight salivary cortisol: 0.14 ug/dL; ACTH: 18 pg/mL) and thoracic CT showed no evidence of disease relapse.

Parameter Presentation 12-month follow-up Reference
Hemoglobin (g/dL) 12.8 12-15.5
White blood count (×103/uL) 11.3 4.0-11.5
Platelets (×103/uL) 331 150-400
Fasting blood glucose (mg/dL) 427 76 74-106
HbA1c (%) 9.6 5.6 <6.5
Serum sodium (mmol/L) 146 135-145
Serum potassium (mmol/L) 2.7 3.5-5.1
Serum creatinine (mg/dL) 0.32 0.59 0.67-1.17
pH 7.17 7.35-7.45
HCO3– (mmol/L) 4.4 21-26
Anion gap 35 7
IGF-1 (ng/mL) 89.8 77-234
FSH (mUI/mL) 0.9 ¥ 3.5-12.5
LH (mUI/mL) <0.1 ¥ 2.4-12.6
Prolactin (ng/mL) 8.8 4.0-24.3
TSH (UI/mL) 0.02 0.61 0.35-4.94
Free T4 (ng/dL) 1.26 1.02 0.7-1.48
Midnight salivary cortisol (ug/dL) 25.5 2.4* <7.5
UFC (ug/dL) 1072.5 74.5* <176
Cortisol at 1 mg overnight DST (ug/dL) 25.7 <1.8
Cortisol, baseline (ug/dL) 30.9 11.4* 5-18
Cortisol after HDDS test (ug/dL) 42.1 Refer to reference 2
ACTH, baseline (pg/mL) 93.4 22.1* 7.2- 63.3
ACTH, maximum after CRH (pg/mL) 101.8 Refer to reference 2
Table 1: Biochemical surveys of the patient at baseline and at the 12-month follow-up

* After metyrapone washout

¥ Gonadotropins not repeated due to resumption of regular menses

Abbreviations: ACTH, adrenocorticotropic hormone; CRH, corticotropin-releasing hormone; DST, dexamethasone suppression test; FSH, follicle-stimulating hormone; HbA1c, hemoglobin A1c; HDDS, high-dose dexamethasone suppression; IGF-1, insulin-like growth factor type 1; LH, luteinizing hormone; TSH, thyroid-stimulating hormone; UFC, urinary free cortisol

She was referred for inferior petrosal sinus sampling (IPSS) but it was postponed for several months due to healthcare strikes. While waiting for IPSS, she performed a thoracic computerized tomography (CT) scan to exclude EAS, which revealed thymic hyperplasia and a 25×15 mm, well-defined nodule in the lingula (Figure 2).

Thoracic-CT-scan-revealed-a-25x15-mm,-well-defined-nodule-in-the-lingula
Figure 2: Thoracic CT scan revealed a 25×15 mm, well-defined nodule in the lingula

68Ga-DOTANOC positron emission tomography-computed tomography (PET/CT) was then performed and showed a single uptake in the same lung region (Figure 3).

68Ga-DOTANOC-PET/CT-showing-a-single-uptake-in-the-lingula.
Figure 3: 68Ga-DOTANOC PET/CT showing a single uptake in the lingula.

Abbreviations: PET/CT, positron emission tomography-computed tomography

The patient was referred to thoracic surgery and underwent lingulectomy plus excisional biopsy of the interlobar lymph nodes. Pathology revealed a typical carcinoid/neuroendocrine tumor (NET), grade one (Ki67<2% and <2 mitosis per high-power field (HPF)) without involved lymph nodes, which showed positivity for ACTH (Figure 4).

Immunohistochemistry-findings
Figure 4: Immunohistochemistry findings

a- hematoxylin and eosin x400 magnification, b- synaptophysin x100 magnification, c- chromogranin A x400 magnification, d- ACTH x400 magnification, e- Ki-67 x100 magnification.

The patient was started on hydrocortisone 10 mg in the morning and 5 mg at midday and afternoon, which was discontinued 11 months later due to restoration of adrenal function (cortisol peak at Synacthen test: 21.1 ug/dL; basal ACTH: 15.6 pg/mL). In the postoperative follow-up, Cushingoid features continued to disappear, and she regained muscle mass and independence in her daily activities. Her last CT showed no evidence of disease.

Discussion

Severe CS (SCS) is defined by random serum cortisol above 41 ng/dL and/or a urinary free cortisol (UFC) more than fourfold the upper limit of normal and/or severe hypokalemia (<3.0 mmol/L), along with the recent onset of one or more of the following: sepsis, opportunistic infection, refractory hypokalemia, uncontrolled hypertension, edema, heart failure, gastrointestinal bleeding, glucocorticoid-induced acute psychosis, progressive debilitating myopathy, thromboembolism, uncontrolled hyperglycemia and ketoacidosis [3]. SCS results in high morbidity and mortality, requiring a rapid recognition and targeted therapy of the uncontrolled hypercortisolism [3]. Patients with SCS usually have florid signs, and straightforward clinical suspicion is possible, except in cases of ECS due to small-cell lung carcinoma, where the rapid onset of hypercortisolism and related morbidity precedes the development of clinical stigmata [2,3]. The gasometric parameters in DKA associated with SCS can also provide clues for the presence of CS. The mineralocorticoid effect of excess cortisol leads to metabolic alkalosis through increased hydrogen excretion in the distal nephron, which is masked by metabolic acidosis due to excess β-hydroxybutyrate and acetoacetate [6,12,13]. This mixed acid-basic disorder can be suspected by a ratio of ∆anion gap to ∆HCO3 of higher than one, which is not seen in pure metabolic acidosis. Additionally, after treating the DKA by decreasing ketones through the inhibition of its production by insulin and increased renal excretion with improved renal perfusion, metabolic alkalosis may supervene in gasometric monitoring, as seen in our report and others [6,9]. In rare cases, SCS can also lead to diabetic ketoalkalosis instead of DKA [1]. Several factors may contribute to the predominant alkalosis, namely, decreased hydrogen due to high renal excretion (excess mineralocorticoid effect), intracellular shift (due to severe hypokalemia), gastrointestinal losses (vomiting), and hyperventilation due to pulmonary diseases (as in heavy smokers) [13,14].

The main priorities in managing SCS are to control opportunistic infections, hypokalemia, DM, hypertension, and psychosis, and, importantly, investigations of the etiology of CS should be postponed until clinical stabilization [3]. The control of glucocorticoid-induced complications should encompass therapies to stabilize/reverse the CS induced morbidity (e.g., large-spectrum antibiotics for opportunistic infections; spironolactone for hypokalemia; insulin for DM) followed by targeted treatment of hypercortisolism [3]. Several oral adrenolytic agents are available and have proved their usefulness in SCS, namely, metyrapone (onset: hours; UFC normalization: 83%), ketoconazole/levoketoconazole (onset: days; UFC normalization: 70-81%), osilodrostat (onset: hours; UFC normalization: 82%), and mitotane (onset: days to weeks; UFC normalization: 72-82%). They can be used in monotherapy or in combination therapy, the latter strategy increasing the efficacy with lower doses of drugs and a lower risk of side effects [3,14]. Additionally, as first-line therapy for patients with an unavailable oral route (e.g., glucocorticoid-induced psychosis), or as second-line therapy when other adrenolytic agents have failed to control hypercortisolism, the anesthetic etomidate can be used under multidisciplinary supervision in an ICU, and it is highly effective (~100%) in controlling SCS within hours, in doses that do not induce anesthesia [3]. If medical therapy proves unsuccessful, bilateral adrenalectomy may be considered after careful clinical judgement, as it is highly effective in life-threatening SCS uncontrolled by medical therapy. Nevertheless, all attempts should be made to reduce hypercortisolemia with medical therapy before surgery [3].

DKA, as the inaugural presentation of CS, was previously published in eight case reports [4-11] (Table 2). Briefly, and including our case, almost all reports were severe (77.8%), mainly from EAS (55.6%) or pituitary adenomas (33.3%), and with a female preponderance (77.8%).

Reference Gender Age Florid CS signs Severe CS Etiology of CS Definitive treatment
Uecker JM, et al. [4] Female 43 Yes Yes EAS (duodenal NET) Pancreaticoduodenectomy
Kahara T, et al. [5] Male 53 No No ACTH-independent Adrenalectomy
Weng Y, et al. [6] Female 28 Yes Yes Cushing’s disease (macroadenoma) Transsphenoidal surgery
Catli G, et al. [7] Female 16 Yes Yes Cushing’s disease (microadenoma) Transsphenoidal surgery
Sakuma I, et al. [8] Female 56 Yes Yes EAS (pheochromocytoma) Adrenalectomy
Achary R, et al. [9] Female 48 Yes Yes Cushing’s disease (microadenoma) Transsphenoidal surgery
Cheong H, et al. [10]* Female 22 Unknown Unknown EAS (medullary thyroid carcinoma) None
Shangjian L, et al. [11] Male 46 Unknown Yes EAS (pheochromocytoma) Adrenalectomy
Our case Female 42 Yes Yes EAS (bronchial NET) Thoracic surgery
Table 2: Review of published cases of DKA as the inaugural presentation of CS

*Deceased

Abbreviations: ACTH, adrenocorticotropic hormone; CS, Cushing’s syndrome; EAS, ectopic ACTH syndrome; NET, neuroendocrine tumor

The etiology of CS should be investigated in diagnostic steps. After confirming hypercortisolism (low-dose dexamethasone suppression test, UFC, and/or late-night salivary cortisol) and its ACTH dependence (usually well above 20 pg/mL in EAS), the source of excess ACTH should be pursued. The CRH test is the most accurate dynamic test to distinguish between pituitary and ectopic sources of ACTH, followed by the desmopressin and HDDS tests. The combination of CRH and HDDS tests has an accuracy close to the IPSS, the gold standard to distinguish pituitary from ectopic sources of ACTH. If the investigation approach points to EAS, the most accurate exam to detect a lesion is 68Ga-DOTA-somatostatin analogue PET/CT, followed by 18F-FDG PET and conventional cross-sectional imaging [1-3].

After being discharged from the ward, our patient showed spontaneous resolution of hypercortisolism requiring the withdrawal of metyrapone and all medications to control glucocorticoid-induced morbidity, suggesting cyclic CS. This very rare variant of CS is present when periods of hypercortisolism alternate with periods of normal cortisol secretion, each phase lasting from days to years, which makes this type of CS very challenging to manage. The pituitary is the main source of cyclic CS, followed by EAS and, infrequently, the adrenal gland. The criteria of three peaks and two periods of normal or low cortisol levels needed to diagnose cyclic CS were not seen in the follow-up period of our patient, as after one peak and trough, we found and removed the source of EAS [1].

Conclusions

In the context of DKA, florid Cushing signs and multiple vascular risk factors occurring in a young patient should raise suspicion for Cushing’s Syndrome. The severity of this syndrome varies widely from mild to severe and, if left untreated, can be fatal due to the increased risk of cardiovascular events and opportunistic infections. Diabetic ketoacidosis precipitated by an endogenous excess of glucocorticoid is usually associated with severe Cushing’s syndrome and more frequently with EAS, which can have an abrupt onset. Prompt recognition and targeted stabilization of severe Cushing’s syndrome are crucial and should precede a definitive etiologic investigation.

References

  1. Nieman LK, Biller BM, Findling JW, Newell-Price J, Savage MO, Stewart PM, Montori VM: The diagnosis of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2008, 93:1526-40. 10.1210/jc.2008-0125
  2. Hayes AR, Grossman AB: Distinguishing Cushing’s disease from the ectopic ACTH syndrome: needles in a haystack or hiding in plain sight?. J Neuroendocrinol. 2022, 34:e13137. 10.1111/jne.13137
  3. Alexandraki KI, Grossman AB: Therapeutic strategies for the treatment of severe Cushing’s syndrome. Drugs. 2016, 76:447-58. 10.1007/s40265-016-0539-6
  4. Uecker JM, Janzow MT: A case of Cushing syndrome secondary to ectopic adrenocorticotropic hormone producing carcinoid of the duodenum. Am Surg. 2005, 71:445-6.
  5. Kahara T, Seto C, Uchiyama A, et al.: Preclinical Cushing’s syndrome resulting from adrenal black adenoma diagnosed with diabetic ketoacidosis. Endocr J. 2007, 54:543-51. 10.1507/endocrj.k06-071
  6. Weng YM, Chang MW, Weng CS: Pituitary apoplexy associated with cortisol-induced hyperglycemia and acute delirium. Am J Emerg Med. 2008, 26:1068.e1-3. 10.1016/j.ajem.2008.03.023
  7. Catli G, Abaci A, Tanrisever O, Kocyigit C, Sule Can P, Dundar BN: An unusual presentation of pediatric Cushing disease: diabetic ketoacidosis. AACE Clinical Case Reports. 2015, 1:53-8. 10.4158/EP14284.CR
  8. Sakuma I, Higuchi S, Fujimoto M, et al.: Cushing syndrome due to ACTH-secreting pheochromocytoma, aggravated by glucocorticoid-driven positive-feedback loop. J Clin Endocrinol Metab. 2016, 101:841-6. 10.1210/jc.2015-2855
  9. Acharya R, Kabadi UM: Case of diabetic ketoacidosis as an initial presentation of Cushing’s syndrome. Endocrinol Diabetes Metab Case Rep. 2017, 2017:10.1530/EDM-16-0123
  10. Cheong H, Koo HL: Medullary thyroid carcinoma with diabetic ketoacidosis: an autopsy case report and literature review. Forensic Sci Med Pathol. 2021, 17:711-4. 10.1007/s12024-021-00407-8
  11. Li S, Guo X, Wang H, Suo N, Mi X, Jiang S: Ectopic adrenocorticotropic hormone-secreting pheochromocytoma with severe metabolic disturbances: a case report. Int J Surg Case Rep. 2024, 116:109341. 10.1016/j.ijscr.2024.109341
  12. Kraut JA, Madias NE: Serum anion gap. Its uses and limitations in clinical medicine. Clin J Am Soc Nephrol. 2007, 2:162-74. 10.2215/CJN.03020906
  13. Uwaifo G, Varughese AG: ODP245 Syndrome of diabetic ketoalkalosis due to severe hypercortisolemia: a case series. J Endocr Soc. 2022, 6:A334. 10.1210/jendso/bvac150.693
  14. Nieman LK, Biller BM, Findling JW, Murad MH, Newell-Price J, Savage MO, Tabarin A: Treatment of Cushing’s syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2015, 100:2807-31. 10.1210/jc.2015-1818

From https://www.cureus.com/articles/426071-diabetic-ketoacidosis-as-the-first-manifestation-of-ectopic-cushings-syndrome#!/

Altered Microbiome Signature in Cushing’s Syndrome Persists Beyond Remission

German Rubinstein, Ilias Lagkouvardos, Evangelia Intze, Andrea Osswald, Stephanie Zopp, Leah Theresa Braun, Adriana Albani, Heike Künzel, Anna Riester, Felix Beuschlein, Martin Reincke, Katrin Ritzel
The Journal of Clinical Endocrinology & Metabolism, Volume 110, Issue 9, September 2025, Pages 2615–2622
https://doi.org/10.1210/clinem/dgae887

Abstract

Context

Patients with Cushing’s syndrome (CS) suffer from metabolic and cardiovascular comorbidities caused by hypercortisolism. The human gut microbiome responds to different pathological conditions.

Objective

The aim of our study was to analyze the effect of chronic endogenous cortisol excess on the gut microbiome.

Methods

We prospectively recruited 18 patients with endogenous CS of different etiologies (mainly pituitary CS, n = 13). Patients provided a stool sample during active CS and 1 to 2 years after successful surgical treatment being in biochemical remission. In addition, 36 patients, in whom CS was excluded, served as an obese control group and 108 samples from healthy lean students were used as a reference group. Amplicons of the V3/V4 region of the 16S ribosomal RNA gene, from every sample, were sequenced and clustered into operational taxonomic units. The microbial profiles of CS patients were then compared to the control and reference groups using R scripts.

Results

In comparison to lean references, the gut microbiome of patients with florid CS demonstrated a disturbed microbial profile. Microbial dysbiosis of patients with CS was maintained even after biochemical remission following curative surgery.

Conclusion

Patients with CS have a distinct and disturbed gut microbiome that persists even after surgery, indicating a possible target for additional probiotic interventions to accelerate convergence to a healthy microbiome.

Read the article

Myocardial Work Impairment in Patients With Cushing’s Syndrome

The following is a summary of “Impact Of Hypercortisolism Beyond Metabolic Syndrome On Left Ventricular Performance: A Myocardial Work Analysis,” published in the March 2025 issue of Cardiovascular Diabetology by Sahiti et al.


Endogenous Cushing’s Syndrome (CS) is associated with an increased cardiovascular (CV) and metabolic risk profile, yet the specific impact of hypercortisolism on myocardial function remains inadequately understood. Myocardial Work analysis, a novel echocardiographic technique utilizing left ventricular pressure-strain loops, allows for the assessment of cardiac performance independently of afterload, offering valuable insight into myocardial function in CS. This cross-sectional study aimed to evaluate left ventricular function across four distinct groups: patients with overt endogenous CS (n = 31; mean age 47 ± 12 years; 71% women), patients in long-term remission following successful medical treatment (CS-LTR; n = 49; mean age 53 ± 12 years; 78% women), a healthy control group (n = 439; mean age 49 ± 11 years; 57% women), and individuals with metabolic syndrome (n = 305; mean age 59 ± 10 years; 37% women).

Both CS groups exhibited a more unfavorable metabolic and CV risk profile than healthy controls, although they presented a relatively better profile compared to individuals with metabolic syndrome. Adjusted analyses accounting for sex and age demonstrated significantly increased Wasted Work in both the overt CS group (median: 105 mmHg%; interquartile range: 74–147) and CS-LTR group (97 mmHg%; 69–158) when compared to healthy individuals (75 mmHg%; 54–109; p < 0.01). Additionally, wasted work values in patients with CS were slightly elevated in comparison to those observed in patients with metabolic syndrome (95 mmHg%; 65–136; p < 0.05), indicating persistent myocardial dysfunction. This impairment in myocardial performance translated into a significant reduction in Work Efficiency (p < 0.05), even in patients with CS who had achieved biochemical remission.

The findings suggest that hypercortisolism contributes to persistent left ventricular dysfunction beyond the effects of traditional CV risk factors. Furthermore, despite the biochemical resolution of CS, patients in long-term remission continue to exhibit myocardial abnormalities, reinforcing the notion that prior exposure to excess cortisol may induce lasting structural and functional cardiac alterations. These findings underscore the utility of Myocardial Work analysis in detecting subclinical yet clinically relevant myocardial dysfunction in patients with CS, both in its active state and after remission. Given the persistence of myocardial impairment even following the resolution of hypercortisolism, long-term cardiovascular monitoring may be warranted in this patient population. This study highlights the need for further research to determine whether targeted interventions could mitigate residual myocardial dysfunction in patients with a history of CS, ultimately improving their cardiovascular outcomes.

Source: cardiab.biomedcentral.com/articles/10.1186/s12933-025-02680-1`

Etomidate in the Treatment Of Cushing Syndrome

Cushing syndrome is a metabolic disease caused by chronic exposure to high levels of glucocorticoids. It can present as an endocrine emergency due to a rapid increase in circulating cortisol leading to increased risk of cardiovascular disease and infection. Etomidate rapidly reduces plasma cortisol levels by inhibiting the action of 11β-hidroxilase. We report the case of a patient with severe hypercortisolaemia accompanied by metabolic and psychiatric disorders in whom administration of etomidate reduced preoperative levels of cortisol.

Introduction

Cushing’s syndrome is a metabolic disease caused by chronic exposure to high levels of glucocorticoids. The main causes are ectopic ACTH secretion, adrenal tumours (adenomas or carcinomas), adrenal hyperplasia, and administration of exognous glucocorticoids—the latter being the most common aetiology.1

In most cases, Cushing’s syndrome presents an indolent course for years before diagnosis is made, although it can sometime present as an endocrine emergency due to a rapid increase in circulating cortisol levels.2 In these cases, treatment to control hypercortisolaemia must be started quickly due to the high morbidity and mortality associated with the potentially life-threatening metabolic, infectious, and neuropsychiatric alterations that occur in this syndrome.1, 2, 3, 4

The options for treating Cushing’s syndrome include surgery, radiotherapy, and pharmacological treatment. The most commonly used drugs are adrenal steroidogenesis inhibitors (ketoconazole, metyrapone),3 but this treatment is not always well tolerated and its efficacy is limited.2 Etomidate is a drug from the imidazole family that inhibits the enzyme 11β-hydroxylase, and can reduce cortisol secretion within 48−72 h.2

Section snippets

Case report

Our patient was a 27-year-old woman with no known drug allergies or personal history of interest. She was studied in April 2021 for anxious-depressive symptoms with rapidly evolving paranoid ideation and hirsutism. A Nugent test was performed, which was positive (46.1 mcg/dl), and cortisol in urine was measured (2715 mcg/24 h), leading to a diagnosis of Cushing’s syndrome.

A CT scan showed a large mass on the right adrenal gland, compatible with a primary adrenal gland tumour (Fig. 1).

Discussion

Endogenous Cushing’s syndrome is characterized by over-production of cortisol. In patients such as ours, the syndrome presents in its most serious form, with very high hypercortisolaemia and metabolic, cardiovascular, and neuropsychiatric disorders. Cushing’s syndrome is a medical emergency due to its association with several comorbidities and its high rate of mortality.5 The first therapeutic option is surgical resection of the underlying tumour; however, the accompanying hypercortisolaemia

Conclusion

In its severe form, Cushing’s syndrome is a medical emergency that must be rapidly controlled.

Etomidate is both safe and effective, and has shown promising results in the treatment of severe hypercortisolaemia.

We believe that these patients should be admitted to the Anaesthesia Intensive Care Unit during etomidate therapy in order to monitor their level of consciousness, lung function, and haemodynamics, and to closely monitor cortisol and electrolyte levels.

Ethical considerations

Informed consent was obtained for the use of patient information for teaching and research purposes in accordance with our hospital protocol.

Conflict of interests

None.

Funding

The authors have not received any funding for this manuscript.

References (8)

  • A. Ferriere et al.

    Cushing’s syndrome: Treatment and new therapeutic approaches

    Best Pract Res Clin Endocrinol Metab

    (2020)
  • Juszczak A, Morris D, Grossman A. Cushing’s Syndrome [Internet]. South Dartmouth (MA): MDText.com, Inc; 2000 [revised…
  • T.B. Carroll et al.

    Continuous Etomidate Infusion for the Management of Severe Cushing Syndrome: Validation of a Standard Protocol

    J Endocr Soc

    (2018)
  • V.A. Preda et al.

    Etomidate in the management of hypercortisolaemia in Cushing’s syndrome: a review

    Eur J Endocrinol

    (2012)
There are more references available in the full text version of this article.

Cited by (0)

View full text

© 2023 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España, S.L.U. All rights reserved.

Unique Gene Expression Signature in Periadrenal Adipose Tissue Identifies a High Blood Pressure Group in Patients With Cushing Syndrome

Abstract

Background:

Cushing syndrome (CS) is a rare disease caused by excess cortisol levels with high cardiovascular morbidity and mortality. Hypertension in CS promotes hypercortisolism-associated cardiovascular events. Adipose tissue is a highly plastic tissue with most cell types strongly affected by the excess cortisol exposure. We hypothesized that the molecular and cellular changes of periadrenal adipose tissue in response to cortisol excess impact systemic blood pressure levels in patients with CS.

Methods:

We investigated gene expression signatures in periadrenal adipose tissue from patients with adrenal CS collected during adrenal surgery.

Results:

During active CS we observed a downregulation of gene programs associated with inflammation in periadrenal adipose tissue. In addition, we observed a clustering of the patients based on tissue gene expression profiles into 2 groups according to blood pressure levels (CS low blood pressure and CS high blood pressure). The 2 clusters showed significant differences in gene expression pattens of the renin-angiotensin-aldosterone-system. Renin was the strongest regulated gene compared with control patients and its expression correlated with increased blood pressure observed in our patients with CS. In the CS high blood pressure group, systemic renin plasma levels were suppressed indicative of an abnormal blood pressure associated with periadrenal adipose tissue renin-angiotensin-aldosterone-system activation.

Conclusions:

Here, we show for the first time a relevant association of the local renin-angiotensin-aldosterone-system and systemic blood pressure levels in patients with CS. Patients from the CS high blood pressure group still had increased blood pressure levels after 6 months in remission, highlighting the importance of local tissue effects on long-term systemic effects observed in CS.

Footnotes

*U. Stifel and F. Vogel contributed equally.

For Sources of Funding and Disclosures, see page xxx.

Supplemental Material is available at https://www.ahajournals.org/doi/suppl/10.1161/HYPERTENSIONAHA.123.21185.

Correspondence to: Martin Reincke, Department of Medicine IV, University Hospital, LMU Munich, GermanyEmail martin.reincke@med.uni-muenchen.de
Jan Tuckermann, Institute of Comparative Molecular Endocrinology (CME), Ulm University, GermanyEmail jan.tuckermann@uni-ulm.de

eLetters

eLetters should relate to an article recently published in the journal and are not a forum for providing unpublished data. Comments are reviewed for appropriate use of tone and language. Comments are not peer-reviewed. Acceptable comments are posted to the journal website only. Comments are not published in an issue and are not indexed in PubMed. Comments should be no longer than 500 words and will only be posted online. References are limited to 10. Authors of the article cited in the comment will be invited to reply, as appropriate.

Comments and feedback on AHA/ASA Scientific Statements and Guidelines should be directed to the AHA/ASA Manuscript Oversight Committee via its Correspondence page.

From https://www.ahajournals.org/doi/10.1161/HYPERTENSIONAHA.123.21185