First-Episode Psychosis and Cushing Syndrome

Cushing syndrome, a state of hypercortisolism, has multiple etiologies, including ectopic adrenocorticotropic hormone (ACTH) syndrome (EAS). EAS is a frequently severe emergency related to the degree of hypercortisolism. Neuropsychiatric symptoms of Cushing syndrome are well documented, including irritability, anxiety, depressed mood, and cognitive impairment.1 A few prior case reports have described first episode psychosis associated with Cushing syndrome,2 sometimes leading to delayed or misdiagnosis of Cushing syndrome.

Here, we report a case of a 72-year old man diagnosed with EAS caused by excessive ACTH secretion by a metastatic neuroendocrine tumor. Our report aims to add to the body of evidence indicating that Cushing associated psychosis can cause acutely severe paranoia and delusions that significantly impact management.

Case Report

Mr A, a 72-year-old retired physician with no prior psychiatric history, was diagnosed with new-onset psychosis in the setting of hypercortisolism. He initially presented with weakness secondary to hypokalemia and was found to have Cushing syndrome. On psychiatric evaluation, he demonstrated paranoia and delusions as well as illogical, concrete, and limited thought content. Laboratory workup, neurocognitive examination, and collateral history ruled out delirium or dementias. His morning cortisol levels were up to 162 μg/dL, and ACTH levels were greater than 2,000 pg/mL.

Mr A’s cortisol levels were not suppressed with a high-dose dexamethasone test, supporting ectopic ACTH production. He was found to have a metastatic ACTH secreting large cell neuroendocrine tumor, responsible for his hypercortisolism. Magnetic resonance imaging of his brain demonstrated a pituitary mass, and a bilateral adrenalectomy revealed a small focus of neuroendocrine carcinoma on his left adrenal gland.

Mr A was treated with haloperidol for hallucinations, delusional features, and paranoia; ramelteon for delirium prophylaxis; and suvorexant for sleep initiation. His endocrinology team ultimately started him on osilodrostat (decreases cortisol synthesis via 11 β-hydroxylase inhibition), which led to improvements in his cortisol levels, and his psychotic features subsequently diminished and resolved by the fourth day. All medications for psychiatric symptoms were successfully discontinued without symptom recurrence.

Discussion

Hypothalamic-pituitary-adrenal axis abnormalities, including hypercortisolism, have been well documented in first-episode psychosis cases.3 This includes increased morning cortisol levels in the blood in individuals with first-episode psychosis and increased baseline cortisol levels in the saliva for individuals at a clinical high risk of psychosis.4 There are multiple proposed mechanisms for how excess exposure to cortisol leads to psychosis. Theories include structural and chemical changes such as abnormal regulation of neurotransmitters, impaired neurogenesis, decreased brain volume in the hippocampus, abnormal loss of synapses, and dendritic atrophy. However, these changes are typically in the setting of prolonged exposure to high levels of cortisol.

There are a limited number of case reports regarding Cushing syndrome and acute psychosis.2 Past case reports that have described Cushing syndrome and acute onset of psychosis endorse severely high levels of cortisol, which may be a driving factor, and patients presented with less profound delusional and paranoid content.2 In this case, the patient presented with severe paranoia and delusions in the setting of excess cortisol and metastatic malignancy. Similar cases have been reported and focus on reducing cortisol levels to help manage the psychiatric symptoms.2,5,6 Psychotropic management can assist with symptoms; however, the ultimate treatment remains to address the endocrinologic abnormality. While most cases have reported improvement of neuropsychiatric symptoms with resolution of hypercortisolism, others have described persisting or even exacerbation of psychiatric symptoms even after resolution of the high cortisol levels.5–7 Most importantly, we must recognize Cushing syndrome and its hormonal derangements as a possible underlying etiology of psychosis to guide effective diagnostics and therapeutic management.

Article Information

Published Online: March 25, 2025. https://doi.org/10.4088/PCC.24cr03886
© 2025 Physicians Postgraduate Press, Inc.
Prim Care Companion CNS Disord 2025;27(2):24cr03886
Submitted: November 4, 2024; accepted January 3, 2025.
To Cite: Gunther M, Jiang S. First-episode psychosis and Cushing syndrome. Prim Care Companion CNS Disord 2025;27(2):24cr03886.
Author Affiliations: Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California (Gunther); Department of Psychiatry, University of Florida, Gainesville, Florida (Jiang).
Corresponding Author: Matthew Gunther, MD, MA, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd, Palo Alto, CA 94304 (guntherm@stanford.edu).
Relevant Financial Relationships: None.
Funding/Support: None.
Patient Consent: Consent was received from the patient to publish the case report, and information has been de-identified to protect anonymity.

References:

  1. Santos A, Resmini E, Pascual JC, et al. Psychiatric symptoms in patients with Cushing’s syndrome: prevalence, diagnosis and management. Drugs. 2017;77(8):829–842. CrossRef
  2. Okumura T, Takayama S, Nishio S, et al. ACTH producing thymic neuroendocrine tumor initially presenting as psychosis: a case report and literature review. Thorac Cancer. 2019;10(7):1648–1653. CrossRef
  3. Misiak B, Pruessner M, Samochowiec J, et al. A meta-analysis of blood and salivary cortisol levels in first-episode psychosis and high-risk individuals. Front Neuroendocrinol. 2021;62:100930. CrossRef
  4. Chaumette B, Kebir O, Mam-Lam-Fook C, et al. Salivary cortisol in early psychosis: new findings and meta-analysis. Psychoneuroendocrinology. 2016;63:262–270. CrossRef
  5. Al-Harbi SD, Mashi AH, AlJohani NJ. A case of Cushing’s disease presenting with isolated suicidal attempt. Clin Med Insights Case Rep. 2021;14:11795476211027668.
  6. Mokta J, Sharma R, Mokta K, et al. Cushing’s disease presenting as suicidal depression. J Assoc Physicians India. 2016;64(11):82–83.
  7. Pivonello R, Simeoli C, De Martino MC, et al. Neuropsychiatric disorders in Cushing’s syndrome. Front Neurosci. 2015;9:129.

From https://www.psychiatrist.com/pcc/first-episode-psychosis-cushing-syndrome/

Leukocytosis in Cushing’s Syndrome Persists Post-Surgical Remission and Could Predict a Lower Remission Prognosis in Patients with Cushing’s Disease

Abstract

Context

Leukocytosis frequently noted in Cushing’s syndrome (CS), along with other blood cell changes caused by direct and indirect cortisol effects.

Objective

Assess baseline white blood cell (WBC) profile in CS patients compared to controls and WBC changes pre- and post-remission after surgical treatment for CS.

Design

A comparative nationwide retrospective cohort study.

Setting

Data from Clalit Health Services database.

Patients

297 patients (mean age 51 ± 16.1 years, 73.0% women) with CS and 997 age-, sex-, body mass index-, and socioeconomic status-individually matched controls. Ectopic CS or adrenal cancer patients were excluded.

Main outcome measure

Mean WBC, neutrophils, and neutrophil-to-lymphocyte ratio (NLR) two-years before and after pituitary or adrenal surgery. WBC and neutrophils are expressed as Kcells/µl.

Results

At baseline, leukocytosis was observed in 21.5% of patients with CS vs. 8.9% of controls (P < 0.001). Patients with CS had significantly higher WBC (8.8 ± 2.88 vs. 7.54 ± 2.45, p < 0.0001), neutrophils (5.82 ± 2.38 vs. 4.48 ± 1.97, p < 0.0001), and NLR (3.37 ± 2.63 vs. 2.27 ± 1.86, p < 0.0001) compared to controls, regardless of pituitary or adrenal source of hypercortisolemia. Post-surgery, patients with CS experienced significant decreases in mean WBC (-0.57 ± 2.56, p < 0.0001), neutrophils (-0.84 ± 2.55, p < 0.0001), and NLR (-0.63 ± 2.7, p < 0.0001). Despite achieving disease remission, patients with CS still had higher WBC (8.11 ± 2.4 vs. 7.46 ± 2.17, p = 0.0004) and neutrophils (4.71 ± 2.10 vs. 4.41 ± 1.87, p = 0.03) compared to controls. Patients with CD and baseline leukocytosis had lower remission rate than those with normal WBC (36.7% vs. 63.9%, p = 0.01).

Conclusions

At diagnosis, CS patients have elevated WBC, neutrophils, and NLR compared to controls. Remission does not normalize WBC levels in all patients, and baseline leukocytosis predicts a poorer remission prognosis in CD.

From https://link.springer.com/article/10.1007/s40618-025-02535-2

A Rare Case of PRKACA Duplication–Associated Childhood-Onset Primary Pigmented Nodular Adrenocortical Disease

Abstract

Primary pigmented nodular adrenocortical disease (PPNAD) is a rare but important cause of adrenocorticotropic hormone (ACTH)-independent Cushing syndrome (CS). It usually presents as cyclical CS in young adults. Childhood onset of PPNAD is exceedingly rare. About 90% of cases of PPNAD are associated with Carney complex (CNC). Both PPNAD and CNC are linked to diverse pathogenic variants of the PRKAR1A gene, which encodes the regulatory subunit type 1 alpha of protein kinase A (PKA). Pathogenic variants of PRKACA gene, which encodes the catalytic subunit alpha of PKA, are extremely rare in PPNAD. We report a case of a female child, aged 8 years and 3 months, who presented with features suggestive of CS, including obesity, short stature, hypertension, moon facies, acne, and facial plethora but without classical striae or signs of CNC. Hormonal evaluation confirmed ACTH-independent CS. However, abdominal imaging revealed normal adrenal morphology. Genetic analysis identified a duplication of the PRKACA gene on chromosome 19p, which is linked to PPNAD. The patient underwent bilateral laparoscopic adrenalectomy, and histopathological study confirmed the PPNAD diagnosis. Postoperative follow-up showed resolution of cushingoid features and hypertension. To our knowledge, this is the first reported case of a female child with PRKACA duplication presenting as CS due to PPNAD.

Introduction

Endogenous Cushing syndrome (CS) is a multisystem disorder caused by excessive production of cortisol. It can result from either adrenocorticotropic hormone (ACTH)-dependent or ACTH-independent etiologies. The incidence of endogenous CS is estimated to be 0.7 to 2.4 cases per million annually, with 10% of cases occurring in children [1]. Adrenal causes account for 65% of endogenous CS in children and 2% of these are due to primary pigmented nodular adrenocortical disease (PPNAD) [2]. PPNAD is associated with Carney complex (CNC) in 90% of patients, while the remaining 10% occur as isolated cases [3]. CNC is an autosomal dominant disorder characterized by spotty skin pigmentation, mesenchymal tumors, peripheral nerve tumors, and various other neoplasms [2].

The PRKAR1A gene on chromosome 17 is most commonly implicated in CNC and PPNAD. It encodes the regulatory subunit type 1 alpha of protein kinase A (PKA) [4]. Pathogenic variants in the PDE11A gene, encoding phosphodiesterase 11A, are the second most common genetic abnormality in PPNAD [4]. PRKACA gene on chromosome 19 encodes the catalytic subunit alpha of PKA. Pathogenic variants in the PRKACA gene are rarely reported in PPNAD [5]. To date, only 3 cases of pathogenic variants in PRKACA have been reported as a cause of PPNAD, with 1 case occurring in childhood [6‐8]. We report a rare case of PPNAD in a female child, caused by a duplication of the PRKACA gene.

Case Presentation

A female child aged 8 years and 3 months presented with a 1-year history of acne, poor linear growth, and a weight gain of 9 kg over the past 6 months. She was the first-born child of non-consanguineous parents and had an uneventful perinatal and postnatal history until the age of 7 years. There were no episodes of vomiting, seizures, headache, visual disturbances, flushing, or abdominal pain. The family history was unremarkable with no similar symptoms reported in either siblings or parents. Auxological evaluation was carried out at the age of 8 years and 3 months, and it revealed a height of 114.5 cm, which was 2 SD below the mean for her age. The parental target height was 148.56 cm, which was 1.6 SD below the mean for adult height (Fig. 1). Her weight was 37 kg and body mass index (BMI) was 28.22 kg/m2, which was above the 95th percentile, categorizing her as obese. Tanner pubertal staging showed breast stage B1 bilaterally, pubic hair stage P1, and absent axillary hair. Physical examination revealed grade 3 acanthosis nigricans, moon facies, facial plethora, acne on the face, and a dorsocervical fat pad (Fig. 2). However, there were no characteristic wide purple striae, easy bruisability, or hyperpigmentation of the skin. Signs of hyperandrogenism, such as hirsutism or clitoromegaly were absent, except for facial acne. Cutaneous examination showed no features of CNC, such as spotty skin pigmentation, blue nevi, or cutaneous myxomas. Her blood pressure was 160/100 mm of Hg, exceeding the 99th percentile for her age and height, without a postural drop. Systemic examination was unremarkable, with no breast masses, nerve thickening, or other stigmata of CNC.

Growth chart by the Indian Academy of Pediatrics [9] illustrating the patient's progression. At baseline, the patient's height was 114.5 cm, placing her below the 3rd percentile for her age, while her weight was 37 kg, corresponding to the 75th to 90th percentile range. Five months after bilateral adrenalectomy, she exhibited a 9-cm increase in height and a 10-kg reduction in weight.

Figure 1.

Growth chart by the Indian Academy of Pediatrics [9] illustrating the patient’s progression. At baseline, the patient’s height was 114.5 cm, placing her below the 3rd percentile for her age, while her weight was 37 kg, corresponding to the 75th to 90th percentile range. Five months after bilateral adrenalectomy, she exhibited a 9-cm increase in height and a 10-kg reduction in weight.

A and B, clinical signs of Cushing syndrome observed during physical examination: moon facies, dorsocervical fat pad, generalized obesity, short stature, and facial acne. C, Follow-up photograph taken 5 months after bilateral adrenalectomy, showing a reduction in weight, resolution of facial acne and acanthosis, and an increase in height.

Figure 2.

A and B, clinical signs of Cushing syndrome observed during physical examination: moon facies, dorsocervical fat pad, generalized obesity, short stature, and facial acne. C, Follow-up photograph taken 5 months after bilateral adrenalectomy, showing a reduction in weight, resolution of facial acne and acanthosis, and an increase in height.

Diagnostic Assessment

Biochemical investigations revealed dyslipidemia, while fasting plasma glucose, 2-hour post-glucose plasma glucose, liver function tests, and renal function tests were within normal limits. Hematological evaluation showed neutrophilic leukocytosis. Fasting serum insulin levels and homeostatic model assessment of insulin resistance (HOMA-IR) were elevated, signifying marked insulin resistance (Table 1). Serum cortisol levels measured at 08:00 hours, 16:00 hours, and midnight were elevated, indicating a loss of the normal diurnal cortisol rhythm (Table 2). Serum cortisol levels following the overnight dexamethasone suppression test (ONDST), low-dose dexamethasone suppression test (LDDST), and high-dose dexamethasone suppression test (HDDST) were non-suppressible, confirming the presence of endogenous CS. There was no paradoxical rise in serum cortisol following HDDST. Serum ACTH levels were suppressed both at 08:00 hours and at midnight, indicating an ACTH-independent etiology of hypercortisolism (Table 2). The levels of androgens such as serum testosterone and dehydroepiandrosterone sulfate were within normal limits. Plasma aldosterone concentration (PAC), plasma renin activity (PRA) and PAC to PRA ratio were all within the normal range as shown in Table 2.

Table 1.

Results of biochemical and hematological testing

Parameter (reference range) Value (baseline) Value (5 months postsurgery)
Fasting plasma glucose
(70-100 mg/dL; 3.9-5.6 mmol/L)
81 mg/dL(4.4 mmol/L) 63 mg/dL (3.5 mmol/L)
2-hour post-glucose plasma glucose
(70-100 mg/dL (3.9-7.8 mmol/L)
110 mg/dL (6 mmol/L) 79 mg/dL (4.4 mmol/L)
Serum insulin (3-35 mU/L; 21.5-251 pmol/L) 44.6 mU/L (319.6 pmol/L) 14 mU/L (100.3 pmol/L)
HbA1c
(4-5.6%; 20-38 mmol/mol)
5.5% (37 mmol/mol) 5.5% (37 mmol/mol)
HOMA-IR
(0.5-1.4)
8.9 2.2
Serum total cholesterol
(<200 mg/dL; <5.2 mmol/L)
Age 0-19 years:
(<170 mg/dL; 4.3 mmol/L)
188 mg/dL (4.9 mmol/L) 130 mg/dL (3.4 mmol/L)
Serum LDL
(<100 mg/dL; <2.6 mmol/L)
123 mg/dL (3.2 mmol/L) 85 mg/dL (2.2 mmol/L)
Serum HDL
Males: (>40 mg/dL; >1 mmol/L)
Females: (>50 mg/dL; >1.3 mmol/L)
Age 0-19 years:
(>45 mg/dL; >1.2 mmol/L)
46 mg/dL (1.2 mmol/L) 23 mg/dL (0.6 mmol/L)
Serum triglyceride
(<150 mg/dL; <1.7 mmol/L)
Age 0-9 years:
(<75 mg/dL; <1.0 mmol/L)
93 mg/dL (1.0 mmol/L) 85 mg/dL (0.9 mmol/L)
Hemoglobin
(11-16 g/dL; 6.8-9.9 mmol/L)
13.6 g/dL (8.4 mmol/L) 12.7 g/dL (7.8 mmol/L)
Total leukocyte count
(4000-11 000 cells/µL)
16 170 cells/µL 6550 cells/µL
Total platelet count
(1.54×105 cells/µL)
4.79×105 cells/µL 2.00×105 cells/µL
Differential count
Neutrophils
(40%-75%)
Lymphocytes
(20%-45%)
Eosinophils
(1%-6%)
Monocytes
(2%-10%)
Basophils
(0%-0.5%)
71.8%
24%
1.2%
3%
0%
41%
52%
5%
2%
0%

Abbreviations: HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; HOMA-IR, homeostatic model assessment of insulin resistance; LDL, low-density lipoprotein.

Table 2.

Results of dynamic testing of serum cortisol, serum ACTH, and other hormonal assessment

Parameter (reference range) Value
Serum cortisol
0800 Am (5-25 µg/dL; 138-690 nmol/L) 28.5 µg/dL (786.6 nmol/L)
0400 Pm (3-10 µg/dL; 82.8-276 nmol/L) 24.9 µg/dL (686.1 nmol/L)
Midnight (awake) (<7.5 µg/dL; <207 nmol/L) 25.9 µg/dL (714.6 nmol/L)
Post ONDST (<1.8 µg/dL; <50 nmol/L) 31.9 µg/dL (879.8 nmol/L)
Post LDDST (<1.8 µg/dL; <50 nmol/L) 24.7 µg/dL (680.6 nmol/L)
Post HDDST (<1.8 µg/dL; <50 nmol/L) 25 µg/dL (690 nmol/L)
Serum ACTH
Midnight (5-22 pg/mL; 1.1-4.8 pmol/L) 1.5 pg/mL (0.34 pmol/L)
0800 Am (10-60 pg/mL; 2.3-13.6 pmol/L) 1.2 pg/mL (0.27 pmol/L)
Androgens
Serum DHEAS (10-193 µg/dL; 0.27-5.23 µmol/L) 13.6 µg/dL(0.37 µmol/L)
Serum testosterone (5-13 ng/dL; 0.17-0.45 nmol/L) 11.41 ng/dL(0.39 nmol/L)
Renin-aldosterone axis
PAC (<40 ng/dL; <1100 pmol/L) 8 ng/dL (220 nmol/L)
PRA (0.8-2.0 ng/mL/h; 10.24-25.6 pmol/L/min) 1.2 ng/mL/h (15.36 pmol/L/min)
PAC to PRA ratio (<30 ng/dL per ng/mL/h; <60 pmol/L per pmol/L/min) 6.67 ng/dL per ng/mL/h (14.3 pmol/L per pmol/L/min)

Abbreviations: ACTH, adrenocorticotropic hormone; DHEAS, dehydroepiandrosterone sulfate; HDDST, high-dose dexamethasone suppression test; LDDST, low-dose dexamethasone suppression test; ONDST, overnight dexamethasone suppression test; PAC, plasma aldosterone concentration; PRA, plasma renin activity.

Adrenal imaging with both computed tomography (CT) and magnetic resonance imaging (MRI) showed no abnormalities in either adrenal gland (Fig. 3). Based on these clinical findings, hormonal profile, and normal imaging results, PPNAD was suspected.

Adrenal computed tomography (CT) showing normal adrenals bilaterally (white arrows).

Figure 3.

Adrenal computed tomography (CT) showing normal adrenals bilaterally (white arrows).

Blood was collected in an EDTA vial, and DNA was extracted for targeted gene capture using a custom kit. Sequences were aligned to the human reference genome (GRCh38) using BWA aligner (Sentieon, PMID: 20080505). Variants were identified with Sentieon haplotype caller, and copy number variants were detected using ExomeDepth (PMID: 22942019) method. This identified a heterozygous exonic duplication ∼24.97 Kb at genomic location chr19:g.(? 14092580)(14117547_? )dup on chromosome 19p13, which comprises the PRKACA gene. This was a heterozygous autosomal dominant variant and confirmed the diagnosis of PPNAD.

Treatment

The child was started on antihypertensive therapy, requiring a combination of 3 medications; amlodipine, enalapril, and spironolactone to achieve adequate blood pressure control. She subsequently underwent bilateral laparoscopic adrenalectomy at our institute. During the procedure, she received steroid coverage with a continuous infusion of hydrocortisone at 4 mg per hour, which was maintained for 48 hours postoperatively. This was followed by oral hydrocortisone replacement therapy at a dose of 15 mg/m²/day in 3 divided doses along with oral fludrocortisone at 100 µg/day. The intraoperative and postoperative periods were uneventful.

On gross examination, the excised adrenal glands appeared unremarkable (Fig. 4A). However, histopathological examination using hematoxylin and eosin (H&E) staining revealed multiple round-to-oval nodules within the adrenal cortex of both glands (Fig. 4B and 4C). Nodules were well-defined but unencapsulated. These nodules were composed of large polygonal lipid-poor cells with abundant eosinophilic granular cytoplasm containing lipofuscin granules. The peri-nodular cortex showed compression atrophy. These findings were consistent with a diagnosis of PPNAD [10].

A, Gross image of the excised adrenal glands B, Histopathological findings of adrenal tissue stained with hematoxylin and eosin (H&E) stain, showing nonencapsulated micronodules (green arrows) with internodular cortical atrophy. C, Magnified image of a single cortical nodule showing an unencapsulated nodule composed of large polygonal lipid-poor cells with abundant eosinophilic granular cytoplasm with lipofuscin granules. Nuclei show prominent nucleoli. Peri-nodular cortex shows compression atrophy (H&E stain, 400X).

Figure 4.

A, Gross image of the excised adrenal glands B, Histopathological findings of adrenal tissue stained with hematoxylin and eosin (H&E) stain, showing nonencapsulated micronodules (green arrows) with internodular cortical atrophy. C, Magnified image of a single cortical nodule showing an unencapsulated nodule composed of large polygonal lipid-poor cells with abundant eosinophilic granular cytoplasm with lipofuscin granules. Nuclei show prominent nucleoli. Peri-nodular cortex shows compression atrophy (H&E stain, 400X).

Outcome and Follow-Up

By postoperative day 7, the patient’s blood pressure had normalized, allowing discontinuation of antihypertensive medications. She was initially started on hydrocortisone in 3 divided doses which was later converted to 2 divided doses. She was stable and reported no adrenal crises during the follow-up period of 5 months. Throughout this period, she demonstrated consistent clinical improvement, with resolution of acne, improvement in cushingoid facies, and sustained normotension without the need for antihypertensive medications. At 5 months after surgery, she showed significant clinical recovery, evidenced by a weight loss of 10 kg, a height gain of 9 cm, and a reduction in BMI from 28.22 to 16 kg/m², as shown in Figs. 1 and 2. Biochemical analysis at this stage revealed normalization of serum insulin levels, a reduction in HOMA-IR, and a normalized lipid profile.

Discussion

The diagnosis of PPNAD is often challenging in the absence of characteristic features of CNC. Approximately 90% of PPNAD cases occur as part of CNC. CNC is associated with typical manifestations such as spotty skin pigmentation, blue cutaneous nevi, cardiac myxomas, and tumors at various sites [23]. PPNAD typically presents in young adults, often as cyclical CS and less frequently as classical CS [11]. Childhood onset of PPNAD is exceedingly rare [12]. In the absence of CNC, certain diagnostic indicators, such as a paradoxical rise in serum cortisol following a HDDST, may serve as important clues for diagnosing PPNAD. However, no paradoxical rise was observed in our case. The utility of imaging in diagnosing PPNAD is limited, as adrenal CT scans are often unremarkable [13]. A case series of 88 patients with confirmed PPNAD reported normal-appearing adrenals in 45% of cases, while bilateral adrenal nodularity or enlargement was identified in only 12% and 27% of cases, respectively [14]. MRI adds minimal diagnostic value. Given these limitations, a high index of clinical suspicion and genetic analysis are crucial for establishing a definitive diagnosis of PPNAD. Genetic confirmation is particularly important, as bilateral adrenalectomy, which is curative, requires lifelong steroid replacement therapy. Pathogenic variants in the PRKAR1A gene are the most common genetic abnormality in PPNAD, found in 79.5% of cases. Pathogenic variants in the PDE11A gene are the second most common and are found in 26.5% cases [15].

PKA is a heterotetramer composed of 2 regulatory subunits and 2 catalytic subunits. Four regulatory subunits (RIα, RIβ, RIIα, and RIIβ) and 4 catalytic subunits (Cα, Cβ, Cγ and Prkx) have been identified [15]. In its inactive state, the regulatory subunits are bound to the catalytic subunits, maintaining the complex in an inhibited configuration. Under normal physiological conditions, ACTH binds to the melanocortin-2 receptor (MC2R) on zona fasciculata cells of the adrenal cortex, activating adenylate cyclase. Adenylate cyclase enhances the conversion of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP) [15]. Increased intracellular cAMP induces a conformational change in PKA, resulting in the release of the catalytic subunits. The liberated catalytic subunits phosphorylate downstream targets, such as cAMP–response element-binding protein (CREB), which in turn drives the transcription of genes involved in cortisol synthesis and adrenocortical cell proliferation. Duplication of PRKACA gene results in constitutive activation of the catalytic subunit alpha of PKA [16]. This aberrant activation enhances downstream signaling pathways of PKA, leading to increased cortisol biosynthesis and adrenocortical cell proliferation, ultimately culminating in PPNAD.

Pathogenic variants of the PRKACA gene causing PPNAD are exceedingly rare, with only 3 cases reported in the literature to date (Table 3) [6‐8]. To the best of our knowledge, the present case is the first reported female patient with PPNAD caused by a pathogenic variant of PRKACA gene, presenting in the first decade of life. This case highlights that PPNAD caused by pathogenic PRKACA variants can manifest as an isolated condition in childhood without other features of CNC.

Table 3.

Previously reported cases of PPNAD with pathogenic variants of PRKACA

S. No. Age (years) Gender PRKACA defect Clinical features Authors (year of reporting)
1. 22 Female Copy number gain variation of size 431 kb spanning genomic region 19p13.13p13.12, which contains the PRKACA gene PPNAD with Cushing syndrome and features of CNC Wang-Rong Yang et al (2024) [6]
2. 8 Male Copy number duplication in PRKACA gene PPNAD with Cushing syndrome, without any features of CNC Xu Yuying et al (2023) [8]
3. 21 Female Point mutation in PRKACA gene at 95th nucleotide, substituting Adenine with Thymine (c.95 A > T) PPNAD with Cushing syndrome, without any features of CNC Wan Shuang et al (2022) [7]
4.
(current case)
8 Female Heterozygous duplication of size 24.9 kb, spanning genomic location chr19:g.(?_14092580)_(14117547_?)dup, comprising the PRKACA gene PPNAD with Cushing syndrome, without any features of CNC

Abbreviations: CNC, Carney complex; PPNAD, primary pigmented nodular adrenocortical disease; PRKACA, catalytic subunit alpha of protein kinase A.

Learning Points

  • PRKACA duplication is a rare but important cause of PPNAD and should be considered during genetic testing, especially in the absence of pathogenic variants of PRKAR1A gene and classical CNC features.

  • Normal adrenal imaging and absence of CNC manifestations do not exclude the diagnosis of PPNAD, emphasizing the importance of comprehensive clinical evaluation and genetic testing.

  • The potential genotypic correlation between pathogenic variants of the PRKACA gene and CNC remains uncertain and requires further research.

Acknowledgments

We acknowledge the contributions of the Departments of Urology, Paediatric Surgery, Anaesthesiology and Paediatrics at our institute for surgical management and postoperative care of the reported case. We extend our sincere gratitude to Dr. Manoj Kumar Patro for his significant contributions to the histopathological evaluation of the case.

Contributors

All authors made individual contributions to authorship. P.R.K., D.K.D., D.P., B.D., J.K.M., and B.S.D. were involved in the diagnosis, management, and manuscript submission. All authors reviewed and approved the final draft.

Funding

No public or commercial funding.

Disclosures

None declared

Informed Patient Consent for Publication

Signed informed consent obtained directly from the patient’s relatives or guardians.

Data Availability Statement

Some or all datasets generated during and/or analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

Abbreviations

 

    • ACTH

      adrenocorticotropic hormone

 

    • BMI

      body mass index

 

    • cAMP

      cyclic adenosine monophosphate

 

    • CNC

      Carney complex

 

    • CS

      Cushing syndrome

 

    • CT

      computed tomography

 

    • HOMA-IR

      homeostatic model assessment of insulin resistance

 

    • HDDST

      high-dose dexamethasone suppression test

 

    • LDDST

      low-dose dexamethasone suppression test

 

    • MRI

      magnetic resonance imaging

 

    • ONDST

      overnight dexamethasone suppression test

 

    • PAC

      plasma aldosterone concentration

 

    • PKA

      protein kinase A

 

    • PPNAD

      primary pigmented nodular adrenocortical disease

 

  • PRA

    plasma renin activity

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com. See the journal About page for additional terms.

From Weight Gain To Diabetes

Cushing’s syndrome happens when the body has too much cortisol, the stress hormone. It can cause weight gain, high blood pressure, and diabetes. So how to keep your health in check and what are the treatment options available? In an exclusive interview with Times Now, an Endocrinologist explains its symptoms, causes, and treatments.
We often blame stress for everything—from sleepless nights to stubborn weight gain. But did you know your body’s stress hormone, cortisol, could be at the root of more serious health issues like high blood pressure and diabetes? Yes, you read that right! But how? We got in touch with Dr Pranav A Ghody, Endocrinologist at Wockhardt Hospital, Mumbai Central, who explains how excessive cortisol levels can lead to a condition known as Cushing’s Syndrome.
What Exactly is Cortisol, and Why is it Important?
Hormones are the body’s chemical messengers, travelling through the bloodstream to regulate essential functions. Among them, cortisol, produced by the adrenal glands (tiny glands sitting above the kidneys), plays a crucial role in controlling blood pressure, blood sugar, energy metabolism, and inflammation. The pituitary gland, located at the base of the brain, regulates cortisol through another hormone called Adrenocorticotropic Hormone (ACTH).
Often referred to as the “stress hormone,” cortisol spikes when we’re under stress. However, when levels remain high for too long, it can lead to Cushing’s Syndrome, a disorder first identified in 1912 by Dr Harvey Cushing.

What Causes Cushing’s Syndrome?

Dr Ghody explains that Cushing’s Syndrome occurs when the body is exposed to excessive cortisol, which can happen in two ways:

1. Exogenous (External) Cushing’s Syndrome
This is the most common form and results from prolonged use of steroid medications (such as prednisone) to treat conditions like asthma, rheumatoid arthritis, and lupus, or to prevent transplant rejection. Since steroids mimic cortisol, long-term use can disrupt the body’s hormone balance.
2. Endogenous (Internal) Cushing’s Syndrome
This occurs when the body produces too much cortisol due to a tumour in the pituitary gland, adrenal glands, or other organs (lungs, pancreas, thymus). While rare—affecting about 10 to 15 people per million annually—it’s more common in women between 20 and 50 years old. When caused by a pituitary tumour, it’s specifically called Cushing’s Disease.

Symptoms: How To Recognize Signs Of Cushing’s Syndrome

Excess cortisol affects multiple organs, leading to a variety of symptoms. This includes:

– Weight gain around the belly (central obesity)
– Rounded, puffy face (moon face)
– Excess facial and body hair (hirsutism)
– Fat accumulation on the upper back (buffalo hump)
– Thin arms and legs
– Dark red-purple stretch marks on the chest and abdomen
– Extreme fatigue and muscle weakness
– Depression or anxiety
– Easily bruising with minimal trauma
– Irregular menstrual cycles in women
– Reduced fertility or low sex drive
– Difficulty sleeping
High blood pressure and newly diagnosed or worsening diabetes are also common red flags.

Why is Cushing’s Syndrome Often Misdiagnosed?

Dr Ghody explains that while severe cases of Cushing’s Syndrome are easier to identify, milder forms can often be missed or mistaken for conditions like obesity, diabetes, or polycystic ovary syndrome (PCOS).

Diagnosing Cushing’s Syndrome involves:
1. Measuring cortisol levels in the blood, urine, or saliva.
2. Identifying the source through ACTH hormone testing, MRI/CT scans, and advanced techniques like Inferior Petrosal Sinus Sampling (IPSS) or nuclear medicine scans
Treatment Options: How is Cushing’s Syndrome Managed?
Once diagnosed, the treatment depends on the cause:
– If due to steroid medication, the dosage is gradually reduced under medical supervision.
– If caused by a tumour, surgery is the primary treatment. Some patients, especially those with pituitary tumours, may require repeat surgery, gamma knife radiosurgery, or medications to control cortisol levels.

Can You Prevent Cushing’s Syndrome?

While complete prevention isn’t always possible, Dr Ghody shares some key strategies to reduce risk:

– Use steroids cautiously – If prescribed, take the lowest effective dose for the shortest time. Never stop abruptly without consulting a doctor.
– Genetic screening for people at risk – If you have a family history of pituitary or adrenal tumours, regular monitoring can help with early detection.
– Maintain a healthy lifestyle – A diet rich in fresh vegetables, and fruits, low sodium intake, adequate calcium, and vitamin D can help manage the metabolic effects of excess cortisol.
– Avoid alcohol and tobacco – These can further disrupt hormone balance and overall health.
“Cushing’s Syndrome can be life-threatening if left untreated, but early diagnosis and proper management can significantly improve quality of life. So if you experience unexplained weight gain, blood pressure spikes, or other symptoms, consult an endocrinologist to manage hormonal imbalances,” he said.

Iatrogenic Cushing Syndrome and Adrenal Suppression Presenting as Perimenopause

JCEM Case Reports, Volume 2, Issue 11, November 2024, luae183, https://doi.org/10.1210/jcemcr/luae183

Abstract

Secondary adrenal insufficiency is a life-threatening condition that may arise in the setting of iatrogenic Cushing syndrome. Intra-articular corticosteroid injections (IACs) are a standard treatment for osteoarthritis, and they carry a high risk of secondary central adrenal suppression (SAI). We present the case of a 43-year-old woman who was referred to reproductive endocrinology for evaluation of abnormal uterine bleeding with a provisional diagnosis of perimenopause. She reported new-onset type 2 diabetes mellitus, abdominal striae, hot flashes, and irregular menses. Laboratory evaluation revealed iatrogenic Cushing syndrome and SAI attributable to prolonged use of therapeutic IACs for osteoarthritis. Treatment included hydrocortisone replacement and discontinuation of IACs followed by hydrocortisone taper over the following 16 months that resulted in the return of endogenous ovarian and adrenal function. This case demonstrates the many hazards of prolonged IAC use, including suppression of ovarian and adrenal function and iatrogenic SAI.

Introduction

Intra-articular corticosteroid injections (IACs) are commonly used for the treatment of symptomatic osteoarthritis [1]. Synovial injections carry the highest risk of secondary central adrenal suppression (SAI) [2-5]. Further, exogenous glucocorticoid administration may also result in secondary Cushing syndrome. Symptoms associated with exogenous glucocorticoid administration vary significantly, and misdiagnosis is common [67]. Here, we present a case of exogenous IAC use resulting in SAI and Cushing syndrome in a 43-year-old woman who was referred for evaluation and treatment of abnormal uterine bleeding with a provisional diagnosis of perimenopause.

Case Presentation

A 43-year-old woman with a past medical history of fibromyalgia, osteoarthritis, bursitis, asthma, gastroesophageal reflux, and diabetes was referred to reproductive endocrinology with a chief complaint of hot flashes for over 2 years and a presumptive diagnosis of perimenopause. Approximately 2 years before the onset of her symptoms, she reported irregular menses, followed by 11 months of amenorrhea, then 3 menstrual intervals with prolonged bleeding lasting 45, 34, and 65 days, respectively. She reported menarche at 11 years old, regular menstrual cycles until the last 2 years, and 4 pregnancies that were spontaneously conceived. She delivered 3 liveborn term children and had one spontaneous miscarriage. Her only complication of pregnancy was gestational hypertension during her last pregnancy that occurred 9 years prior when she was 34 years old.

In addition to menstrual irregularity, she also reported hot flashes, increasing truncal weight gain over the last 5 years, new-onset diabetes mellitus, and hypertension. Eighteen months prior to referral, she had an endometrial biopsy, which demonstrated secretory endometrium without hyperplasia, and cervical cancer screening was negative.

She initially reported the following medications: inhaled fluticasone/propionate + salmeterol 232 mcg + 14 mcg as needed and albuterol 108 mcg as needed. Her daily medications were glimepiride 1 mg, furosemide 20 mg, omeprazole 20 mg, montelukast 10 mg, azelastine hydrochloride 137 mcg, ertugliflozin 5 mg, and tiotropium bromide 2.5 mg. Importantly, she did not report IAC treatments.

Diagnostic Assessment

Initial physical examination showed height of 160 cm, weight of 103.4 kg, body mass index (BMI) of 46 kg/m2, and blood pressure (BP) of 128/80. Physical exam was significant for round facies with plethora, bilateral dorsocervical neck fat pads, and violaceous striae on her abdomen and upper arms (Fig. 1). The patient ambulated with a cane and reported severe bilateral proximal leg atrophy and weakness.

 

Abdominal and upper extremity striae prior to treatment with truncal obesity immediately before (A) and 1 year after initial diagnosis (B).

Figure 1.

Abdominal and upper extremity striae prior to treatment with truncal obesity immediately before (A) and 1 year after initial diagnosis (B).

A laboratory evaluation was recommended but was not initially completed. She was scheduled for a transvaginal ultrasound that required prior authorization; the pelvic ultrasound showed a heterogeneous and thickened anterior uterine wall, suggestive of adenomyosis, with a posterior intramural fibroid measuring 15 × 15 mm and an anterior intramural fibroid measuring 15 × 8 mm. Endometrial lining was thin at 5 mm. Both ovaries were small, without masses or antral follicles. Three-dimensional reconstruction showed a normal uterine cavity with some heterogeneity of the endometrial lining but no discrete masses suggestive of polyps or intracavitary fibroids as the cause of irregular bleeding. Upon additional questioning, she acknowledged receiving bilateral shoulder, hip, and knee injections of triamcinolone 80 mg every 2 to 3 months to each joint for about 5 years. Table 1 shows the initial laboratory evaluation and includes age-appropriate low ovarian reserve as evidenced by anti-Müllerian hormone (AMH), secondary hypothalamic hypogonadism, diabetes mellitus, and central adrenal suppression. Of note, the diabetes mellitus developed after 3 years of IAC use. Additional diagnostic assessment for adrenal insufficiency by synacthen testing was scheduled, however, the patient declined further investigation.

Initial laboratory values at presentation

Result Reference range
Basic metabolic panel
 Sodium 141 mEq/L; 141 mmol/L 135 to 145 mEq/L; 135 to 145 mmol/L
 Potassium 3.7 mEq/L; 3.7 mmol/L 3.7 to 5.2 mEq/L; 3.7 to 5.20 mmol/L
 Chloride 104 mEq/L; 104 mmol/L 96 to 106 mEq/L; 96 to 106 mmol/L
 Carbon dioxide 25 mEq/L; 25 mmol/L 23 to 29 mEq/L; 23 to 29 mmol/L
 Creatinine 0.42 mg/dL; 37.14 µmol/L 0.6 to 1.3 mg/dL; 53 to 114.9 µmol/L
 Urea nitrogen 14 mg/dL; 5 mmol/L 6 to 20 mg/dL; 2.14 to 7.14 mmol/L
Adrenal function
 Cortisol 0.8 µg/dL; 22.07 nmol/L 4-22 µg/dL; 138-635 nmol/L
 ACTH <5 pg/mL; <1 pmol/L 6-50 pg/mL; 5.5-22 pmol/L
 DHEAS 8 mcg/dL; 0.02 µmol/L 15-205 mcg/dL; 1.36-6.78 µmol/L
Endocrine function
 HbA1c 8.5% <5.7%
 Random glucose 124 mg/dL; 6.9 mmol/L 80-100 mg/dL; 4.4-5.5 mmol/L
 TSH 1.74 mIU/L 0.5-5 mIU/L
 tT4 10.5 µg/dL; 135.2 nmol/L 5.0-12.0 µg/dL; 57-148 nmol/L
 Free T4 index 2.6 ng/dL; 33.4 pmol/L 0.7-1.9 ng/dL; 12-30 pmol/L
 tT3 165 ng/dL; 2.5 nmol/L 60-180 ng/dL; 0.9-2.8 nmol/L
 TPO antibody Negative n/a
Ovarian function
 FSH 5.6 IU/L 4.5-21.5 IU/L
 LH 2.9 IU/L 5-25 IU/L
 Progesterone <0.5 ng/mL; 1.6 nmol/L Varies
 Estradiol 21 pg/mL; 77.1 pmol/L Varies
 AMH 1.1 ng/mL; 7.9 pmol/L 1.0-3.0 ng/mL; 2.15-48.91 pmol/L

Abbreviations: ACTH, adrenocorticotropic hormone; AMH, anti-Müllerian hormone; DHEAS, dehydroepiandrosterone sulfate; eGFR, estimated glomerular filtration rate; FSH, follicle-stimulating hormone; HbA1c, hemoglobin A1C; LH, luteinizing hormone; TPO antibody, thyroid peroxidase antibody; TSH, thyroid stimulating hormone; tT4, total thyroxine.

Treatment

The patient was immediately started on hydrocortisone 10 mg twice daily for glucocorticoid replacement, which was gradually reduced to 5 mg daily each morning at 16 months. Endocrine function testing was trended over the following months as replacement cortisone therapy was tapered.

Outcome and Follow-Up

Within 6 months of replacement and cessation of IACs, hot flashes ceased, and she reported regular menses. She lost 6.8 kg, her truncal obesity and striae significantly improved (Fig. 1), and she could now ambulate without assistance. Her glycated hemoglobin (HbA1c) level decreased from 8.5% to 6.8%. Fourteen months after her initial diagnosis and cessation of IAC, laboratory studies demonstrated partial recovery of adrenal and ovarian function and improved metabolism, as evidenced by increases in morning cortisol, adrenocorticotropic hormone (ACTH), and dehydroepiandrosterone sulfate (DHEAS), and decreased HbA1c. At 16 months, she had a return of ovulatory ovarian function.

Discussion

Cortisol is the main glucocorticoid secreted by human adrenal glands. The secretion pattern is precisely regulated by an integrated limbic-hypothalamic-pituitary (LHP) drive with the physiologic goal of homeostasis [1]. Conditions that result in deviations in glucocorticoid concentrations carry a variety of consequences. Our patient was referred because of a provisional diagnosis of abnormal uterine bleeding and perimenopause, which distracted from recognition of iatrogenic Cushing syndrome and secondary central adrenal suppression. This patient vignette underscores the importance of explicitly asking patients about nonoral medications, as patients may not report their use.

Exogenous administration of long-acting synthetic glucocorticoids may suppress adrenal function via negative feedback at the limbic and hypothalamic levels, which was reflected in this patient by undetectable ACTH and low cortisol levels (Table 1). In addition, excess glucocorticoid levels result in other neuroendocrine concomitants, including suppression of gonadotropin-releasing hormone (GnRH) drive that results in hypothalamic hypogonadism [89], decreased luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels, and anovulation despite AMH levels indicating residual ovarian reserve [10]. The clinical phenotype is variable and reflects individual glucocorticoid receptor sensitivities [9].

Regardless of cause, Cushing syndrome often presents with hallmark features of central obesity, violaceous striae, easy bruising, round facies, and nuchal adiposity with lower limb muscle atrophy and loss of strength [11]. Additionally, glucocorticoid excess causes insulin resistance and metabolic syndrome [8]. Truncal obesity is a common presenting symptom of excess cortisol. Cortisol inhibits metabolic response to insulin centrally and peripherally and increases gluconeogenesis, which together predispose to and cause diabetes [10].

Exogenous use of injectable glucocorticoids carries the highest risk of adrenal suppression when compared to other routes of exogenous steroids [5]. Patients typically report fatigue, malaise, and gastrointestinal complaints. Oligomenorrhea is a common presenting complaint in women, as was the case in our patient. Hyponatremia, water retention, and hypotension may occur in SAI because of endogenous glucocorticoid deficiency. A thorough laboratory evaluation in this patient revealed low LH, FSH, estradiol, and progesterone levels, indicating hypothalamic hypogonadism and not perimenopause/menopause [12] and low levels of cortisol, ACTH, and DHEAS confirmed SIA [10].

Adrenal insufficiency can be a life-threatening condition that requires supplementation with glucocorticoids [101314]. A review of patients diagnosed with SAI suggested tapering of hydrocortisone before discontinuing all replacement therapy and revealed most patients recover without the need for exogenous steroids after 2 years from diagnosis [14]. ACTH stimulation testing may indicate the return of adrenal function [1415]. Our patient showed increased ACTH, cortisol, and DHEAS at 14 months. Ovulatory ovarian function, indicated by progesterone < 5 ng/mL (< 1.59 nmol/L) (Table 2), returned at 16 months after cessation of IACs. The improvement in adrenal and ovarian function following cessation of IACs and tapering of hydrocortisone replacement therapy was accompanied by decreased HbA1c, weight loss, truncal obesity, and stria, and increased muscle strength scalp hair.

 

Table 2.

Endocrine lab results 7 years prior, at presentation (T0), and over the next 16 months

Analyte Reference range 7 years prior T0 1 month 7 months 13 months 14 months 16 months
DHEAS 15-205 µg/dL; 1.36-6.78 nmol/L 8 µg/dL; 0.22 nmol/L 5 µg/dL;
0.14 nmol/L
6 µg/dL;
0.16 nmol/L
22 µg/dL; 0.59 nmol/L 28 µg/dL; 0.76 nmol/L 24 µg/dL; 0.65 nmol/L
Cortisol 4-22 µg/dL; 138-635 nmol/L 0.9 µg/dL;
24.83 nmol/L
5.8 µg/dL;
160.01 nmol/L
3.0 µg/dL;
82.76 nmol/L
3.9 µg/dL;
107.59 nmol/L
11.2 µg/dL;
308.99 nmol/L
12.6 µg/dL;
347.61 nmol/L
ACTH 6-50 pg/mL; 5.5-22 pmol/L <5 pg/mL;<1.10 pmol/L <5 pg/mL;<1.10 pmol/L <5 pg/mL;<1.10 pmol/L <5 pg/mL;<1.10 pmol/L 11 pg/mL;
2.42 pmol/L
10 pg/mL;
2.20 pmol/L
HbA1c <5.7% 5.0% 8.5% 8.5% 7.8% 5.8% 5.7% 5.7%
LH 5-25 IU/L 5.8 IU/L 2.9 IU/L 3.3 IU/L 5.2 IU/L 5.7 IU/L
FSH 4.5-21.5 IU/L 6.2 IU/L 5.6 IU/L 2.0 IU/L 3.5 IU/L 1.3 IU/L
Estradiol Varies 21 pg/mL;
77.09 pmol/L
74 pg/mL;
271.65 pmol/L
101 pg/mL;
370.77 pmol/L
121 pg/mL;
444.19 pmol/L
Progesterone Varies <0.5 ng/mL;<1.59 nmol/L <0.5 ng/mL;<1.59 nmol/L <0.5 ng/mL;<1.59 nmol/L 6.6 ng/mL;
20.99 nmol/L

Abbreviations: ACTH, adrenocorticotropic hormone, DHEAS, dehydroepiandrosterone sulfate, FSH, follicle-stimulating hormone, LH, luteinizing hormone, T0, time at presentation.

In conclusion, exogenous glucocorticoids, specifically intra-articular injections, carry the highest potential for iatrogenic Cushing syndrome and secondary adrenal insufficiency. Glucocorticoid excess has a variable presentation that often obscures diagnosis. As this scenario demonstrates, careful physical and laboratory assessment and tapering of hydrocortisone replacement eventually can lead to restoration of adrenal, ovarian, and metabolic function and improved associated symptoms.

Learning Points

  • Exogenous intra-articular glucocorticoid use may suppress adrenal and ovarian function via central suppression of ACTH and GnRH.
  • Cushing syndrome presents with a broad spectrum of signs and symptoms that may be mistaken for individual conditions, such as perimenopause and isolated diabetes mellitus.
  • Exogenous steroid use may lead to Cushing syndrome and subsequent adrenal insufficiency, which is life-threatening.
  • Treatment of adrenal insufficiency with a long-term exogenous glucocorticoid taper allows for subsequent return of adrenal and ovarian function.

Contributors

All authors contributed to authorship. S.L.B. was involved in the diagnosis and management of the patient, and manuscript editing. S.A. was involved in patient follow-up and manuscript development. J.M.G. was responsible for manuscript development and editing. All authors reviewed and approved the final draft.

Funding

None declared.

Disclosures

S.L.B. reports ClearBlue Medical Advisory Board, 2019—present

Emblem Medical Advisory Board, Amazon Services, 2022—present

Medscape, 2023

Myovant, May 2023

Omnicuris, 2023

Sage Therapeutics and Biogen Global Medical, Zuranolone OB/GYN Providers Advisory Board, Dec 2022, March 2023

Member, Board of Trustees, Salem Academy and College, Salem, NC: 2018-present (Gratis)

Informed Patient Consent for Publication

Signed informed consent obtained directly from the patient.

Data Availability Statement

Originally data generated and analyzed in this case are reported and included in this article.

References

1

Johnston
PC

,

Lansang
MC

,

Chatterjee
S

,

Kennedy
L

.

Intra-articular glucocorticoid injections and their effect on hypothalamic-pituitary-adrenal (HPA)-axis function

.

Endocrine

.

2015

;

48

(

2

):

410

416

.

2

Stout
A

,

Friedly
J

,

Standaert
CJ

.

Systemic absorption and side effects of locally injected glucocorticoids

.

PM R

.

2019

;

11

(

4

):

409

419

.

3

Prete
A

,

Bancos
I

.

Glucocorticoid induced adrenal insufficiency

.

BMJ

.

2021

;

374

:

n1380

.

4

Herman
JP

,

McKlveen
JM

,

Ghosal
S

, et al.

Regulation of the hypothalamic-pituitary-adrenocortical stress response

.

Compr Physiol

.

2016

;

6

(

2

):

603

621

.

5

Broersen
LH

,

Pereira
AM

,

Jørgensen
JO

,

Dekkers
OM

.

Adrenal insufficiency in corticosteroids use: systematic review and meta-analysis

.

J Clin Endocrinol Metab

.

2015

;

100

(

6

):

2171

2180

.

6

Tan
JW

,

Majumdar
SK

.

Development and resolution of secondary adrenal insufficiency after an intra-articular steroid injection

.

Case Rep Endocrinol

.

2022

;

2022

:

4798466

.

7

Colpitts
L

,

Murray
TB

,

Tahhan
SG

,

Boggs
JP

.

Iatrogenic cushing syndrome in a 47-year-old HIV-positive woman on ritonavir and inhaled budesonide

.

J Int Assoc Provid AIDS Care

.

2017

;

16

(

6

):

531

534

.

8

Lee
SM

,

Hahm
JR

,

Jung
TS

, et al.

A case of Cushing’s syndrome presenting as endometrial hyperplasia

.

Korean J Intern Med

.

2008

;

23

(

1

):

49

52

.

9

Yesiladali
M

,

Yazici
MGK

,

Attar
E

,

Kelestimur
F

.

Differentiating polycystic ovary syndrome from adrenal disorders

.

Diagnostics (Basel)

.

2022

;

12

(

9

):

2045

.

10

Raff
H

,

Sharma
ST

,

Nieman
LK

.

Physiological basis for the etiology, diagnosis, and treatment of adrenal disorders: Cushing’s syndrome, adrenal insufficiency, and congenital adrenal hyperplasia

.

Compr Physiol

.

2014

;

4

(

2

):

739

769

.

11

Unuane
D

,

Tournaye
H

,

Velkeniers
B

,

Poppe
K

.

Endocrine disorders & female infertility

.

Best Pract Res Clin Endocrinol Metab

.

2011

;

25

(

6

):

861

873

.

12

Peacock
K

,

Carlson
K

,

Ketvertis
KM.

Menopause.

StatPearls

.

StatPearls Publishing, Copyright © 2024, StatPearls Publishing LLC.

,

2024

.

13

Foisy
MM

,

Yakiwchuk
EM

,

Chiu
I

,

Singh
AE

.

Adrenal suppression and Cushing’s syndrome secondary to an interaction between ritonavir and fluticasone: a review of the literature

.

HIV Med

.

2008

;

9

(

6

):

389

396

.

14

Draoui
N

,

Alla
A

,

Derkaoui
N

, et al.

Assessing recovery of adrenal function in glucocorticoid-treated patients: our strategy for screening and management

.

Ann Med Surg (Lond)

.

2022

;

78

:

103710

.

15

Joseph
RM

,

Hunter
AL

,

Ray
DW

,

Dixon
WG

.

Systemic glucocorticoid therapy and adrenal insufficiency in adults: a systematic review

.

Semin Arthritis Rheum

.

2016

;

46

(

1

):

133

141

.

Abbreviations

 

  • ACTH

    adrenocorticotropic hormone

  • AMH

    anti-Müllerian hormone

  • DHEAS

    dehydroepiandrosterone sulfate

  • FSH

    follicle-stimulating hormone

  • HbA1c

    glycated hemoglobin

  • IAC

    intra-articular corticosteroid

  • LH

    luteinizing hormone

  • SAI

    secondary central adrenal suppression

Published by Oxford University Press on behalf of the Endocrine Society 2024.
This work is written by (a) US Government employee(s) and is in the public domain in the US. See the journal About page for additional terms.