Prospective Assessment of Mood and Quality of Life in Cushing Syndrome Before and After Biochemical Control

Abstract

Context

Cushing’s syndrome (CS) impairs quality of life (QoL) and mood. Prospective real-life data on posttreatment recovery and predictors of improvement are limited.

Objectives

Evaluate changes in QoL, depression, and anxiety in patients with CS, before and after biochemical control, and identify predictors of clinically meaningful improvement.

Design and Setting

Prospective observational study at a tertiary center.

Patients

Sixty-seven patients with endogenous CS (60 pituitary, 7 adrenal) were assessed with active disease and again after achieving biochemical control through surgery and/or medication.

Outcomes

Patient-reported outcomes included CushingQoL, Beck Depression Inventory-II (BDI-II), and State-Trait Anxiety Inventory (STAI).

Results

Mean and longest follow-up was 2.3 and 11.5 years, respectively. Treatment led to improvements in mean scores across all domains (QoL: +18.2 ± 20.9, BDI-II: −6.8 ± 8.6, STAI-State: −9.6 ± 12.5, STAI-Trait: −8.6 ± 12.6; all P < .001). However, a minimal important difference was achieved in 64.6% for QoL, 67.9% for BDI-II, and 53.2% and 52.8% for STAI subscales. After multivariable analysis, QoL improvements were predicted by lower baseline body mass index, pretreatment symptoms ❤ years, postoperative hydrocortisone replacement >6 months, and normal follow-up late-night salivary cortisol (LNSC). Depression improvements were predicted by symptoms ❤ years, normal follow-up LNSC, and surgical treatment. Anxiety improvements were predicted by younger age and >6 months postoperative hydrocortisone. Depression improved more gradually than QoL and anxiety.

Conclusion

Although effective treatment improves mood and QoL in CS, clinically meaningful recovery is variable and incomplete for some patients. Our findings highlight the need to limit diagnostic delay and provide comprehensive posttreatment care that includes normalization of cortisol circadian rhythm.

Endogenous Cushing’s syndrome (CS) is a rare disorder characterized by chronic cortisol excess, most commonly due to an ACTH-secreting pituitary tumor [Cushing disease (CD)], followed by a cortisol-secreting adrenal adenoma and ectopic ACTH production due to a nonpituitary tumor (1). CS is associated with multiple comorbidities including diabetes, obesity, hypertension, immune suppression, osteoporosis, and cardiovascular disease, among others (2). Apart from these, patients face a spectrum of neuropsychiatric disturbances including depression, anxiety, mania, sleep disorders, and even psychosis. These comorbidities significantly disturb quality of life (QoL) and may persist long after treatment (3-7).

As with many rare diseases, CS remains incompletely understood, and patients experience impaired disease perception, information gaps, and isolation. In this context, patient-reported outcomes (PROs) have become useful instruments to clarify these gaps and guide patient-centered care. Disease-specific tools (CushingQoL, Tuebingen CD-25) and generic mood scales (Beck Depression Inventory, State-Trait Anxiety Inventory [STAI; including State (STAI-S) and Trait (STAI-T), Hospital Anxiety and Depression Scale] have established impairments in QoL and mood both during active disease and in remission (48-11).

Although improvements are noted with treatment, recovery does not seem to be complete. Studies have reported persistently reduced QoL compared to the general population and the presence of depressive symptoms even 12 months postoperatively (49). Findings regarding anxiety are less consistent: while some studies did not support the increased prevalence of anxiety in patients with active CS compared to the general population (12), others reported higher anxiety traits among patients with CS (during active disease and in remission) (1314) with steady improvement at 6- and 12-month follow-up (15). Clinical trials with adrenal steroidogenesis inhibitors or pasireotide demonstrated that effective biochemical control can improve QoL and depression (16-18). However, it is unclear whether these improvements are clinically significant and if patients achieve normal QoL and depression scores.

The role of PROs in assessing recovery during the treatment journey of patients with CS has not been clearly established, and QoL and mood trajectories remain unclear, largely due to small samples, limited follow-up, and cross-sectional designs. Among available prospective studies using PROs in CS, only 3 (2 evaluating pasireotide and 1 osilodrostat) reported the proportion of patients who met the minimal important difference (MID), which is the score change reflecting a clinically meaningful improvement (17-19), while others have only reported statistically significant changes in mean score, an important but possibly less clinically relevant outcome (20-22). Real-world clinical management adds further complexity: postoperative glucocorticoid replacement, potential glucocorticoid-withdrawal symptoms, and 20% to 30% recurrence rates after initial surgical “cure” all suggest that, for many patients, recovery may follow a nonlinear course. To date, no clinical practice prospective study has systematically assessed QoL and mood across multiple timepoints, compared surgical and medical strategies within a single cohort, and limited inclusion to patients who achieved biochemical remission or control for at least 6 months. Therefore, the aims of this study were to evaluate changes in QoL, depression, and anxiety in a clinical practice cohort of patients with CS before and over time after biochemical control, report achievement rates of MID, and identify predictors of clinically meaningful improvement.

Methods

Study Design

This study includes prospective data from patients enrolled in an ongoing observational cohort study, which since 2017 enrolls patients with endogenous CS at Memorial Sloan Kettering Cancer Center (MSKCC) [prior to 2017, enrollment took place at Mount Sinai (2012-2017)]. In this protocol, CS patients being treated at the MSKCC Pituitary and Skull Base Tumor Center are enrolled at any point in their treatment journey and prospectively followed over time after surgical, medical, and/or radiation treatment. At each study visit, a detailed medical history and biochemical and clinical data are collected according to standard of care. Patients also complete validated psychological and QoL assessments.

The current analysis includes a cohort of 67 patients with CS: 60 with pituitary and 7 with adrenal CS. Each patient completed a baseline (active disease) visit and at least 1 follow-up visit after achieving surgical remission or endocrine control due to medical therapy.

From the total of 67 patients, we analyzed 73 distinct baseline-to-follow-up case pairs. Six patients experienced recurrence after surgery or were inadequately controlled while on medical therapy after their initial follow-up visit and underwent a subsequent change in treatment strategy. These instances were treated as separate case pairs when needed, enabling comparison of different treatment approaches. When analyzing for a single follow-up, visits were grouped by time: group 1 (G1): 6 months, group 2 (G2): 12-18 months, and group 3 (G3): 24 or more months posttreatment. Each patient contributed to 1 or multiple groups based on the number of their study visits. For patients with multiple visits receiving different treatments throughout the current study, each follow-up visit was categorized based on time since the most recent intervention to ensure that we assessed outcomes according to the duration of biochemical control. For patients who underwent surgery, the follow-up interval was calculated from the date of surgery; for those on medical therapy, it was calculated from the start of medication. In the subanalysis comparing treatment- or demographic-related score changes, the most recent available follow-up was used in each case. At each visit patients completed at least 1 of the following: Cushing QoL, Beck Depression Inventory-II (BDI-II), or STAI-S and STAI-T.

For multiple follow-up visits during remission or treatment, 28 patients were evaluated. For this subgroup, we examined their whole trajectory over time. We then stratified this subgroup by total follow-up duration (<2 years vs ≥2 years) and assessed for significant differences between these 2 categories where applicable.

For the baseline visit, ACTH-dependent pituitary and ACTH-independent adrenal Cushing’s was confirmed according to Endocrine Society guidelines (23). Surgical remission was defined as postoperative serum cortisol <5 μg/dL (<138 nmol/L) and requirement of glucocorticoid replacement, according to the Endocrine Society’s guidelines and the Pituitary Society’s recent consensus statement (2425). For patients managed medically, endocrine control was defined as normalization of 24-hour urinary free cortisol (UFC) and based on clinical review and assessment by E.B.G.

The study was approved by the institutional review board at MSKCC. All subjects gave written informed consent before participation.

Outcome Measurements

Cushing QoL

The Cushing QoL is a validated disease-specific questionnaire consisting of 12 questions on a 5-point scale ranging from “always” to “never” (for 10 questions) or “very much” to “not at all” (for 2 questions). Total score ranges from 12 to 60. This is converted to a 0 to 100 scale, with 0 indicating the worst and 100 the best QoL. It evaluates physical and psychological issues and can also be scored through these 2 distinct subscales. MID is defined as an increase of ≥10.1 (26).

BDI-II

The BDI-II is a validated 21-item patient-reported questionnaire. Patients self-rate each item on a scale from 0 to 3 based on how they were feeling during the past 2 weeks. Total score ranges from 0 (best) to 63 (worst); scores from 0 to 13 indicate no or minimal depression; 14 to 19, mild depression; 20 to 28, moderate depression; and 29 to 63, severe depression. MID is defined as a 20% reduction from baseline score (2728).

STAI

The STAI is an instrument with 2 subscales: State anxiety (STAI-S), which reflects the present moment, and Trait anxiety (STAI-T), which assesses a stable tendency toward anxiety. Both subscales consist of 20 items scored from 0 to 3. Total scores range from 0 to 60, with higher scores indicating greater anxiety. Prior studies suggest a change of 0.5× SDs—or approximately 5 to 10 points—as a reasonable threshold for MID. In our study, we defined the MID at 7 points, based on observed SD of change at 12.5 for STAI-S and 12.6 for STAI-T (29).

In this study, all score changes from baseline to follow-up were reported as positive values to uniformly represent improvement across measures. For BDI-II and STAI where higher scores indicate worse outcomes, the direction of change was inverted for consistency.

Hormone Assays

Hormone testing was performed at either the MSKCC clinical laboratory or external laboratories (Quest Diagnostics, Labcorp, Mayo Clinic Laboratories). Plasma ACTH was measured using Tosoh immunoassay [RRID:AB_2783633; normal range (NR): 7.4-64.3 pg/mL (1.6-14.2 pmol/L); MSKCC or 6 to 50 pg/mL (1.3-11.0 pmol/L); QuestDiagnostics] or electrochemiluminescence immunoassay [RRID:AB_3678556; NR: 7.2-63.3 pg/mL (1.6-13.9 pmol/L); LabCorp, Mayo Clinic Laboratories]. Serum cortisol was measured via either immunoassay [RRID:AB_2802133; NR: 4-22 µg/dL (110-607 nmol/L); QuestDiagnostics or 7-25 µg/dL (193-690 nmol/L); Mayo Clinic Laboratories], electrochemiluminescence immunoassay [RRID:AB_2802131; NR: 6.2-19.4 µg/dL; (171-535 nmol/L); LabCorp], or liquid chromatography–tandem mass spectrometry [LC-MS/MS; NR: 5-25 µg/dL (138-690 nmol/L)]. UFC was measured using LC-MS/MS [NR: 3.5-45 µg/24 hours (9.7-124 nmol/24 hours); MSKCC, Mayo Clinic Laboratories or 3.0 to 50 µg/24 hours (8.3-138 nmol/24 hours); Quest Diagnostics, LabCorp]. Late-night salivary cortisol (LNSC) was assessed via LC-MS/MS [NR: ≤ 0.09 µg/dL (2.5 nmol/L); QuestDiagnostics, LabCorp or <100 ng/dL (27.6 nmol/L); MSKCC, Mayo Clinic Laboratories]. LNSC values were analyzed categorically (normal vs abnormal), and patients were asked to provide 2 LNSC samples on separate evenings. Abnormal LNSC was defined as at least 1 value above the upper limit of normal for the assigned laboratory.

Comorbidities

Diabetes mellitus (DM) was defined by any of the following: hemoglobin A1c (HbA1c) > 6.4%, fasting blood glucose (FBG) ≥ 126 mg/dL (7.0 mmol/L), or use of at least 1 antidiabetic medication. Pre-DM was defined as HbA1c between 5.7% and 6.4% or FBG between 100 and 125 mg/dL (5.6-6.9 mmol/L). Women taking metformin for polycystic ovary syndrome were classified as nondiabetic only if their HbA1c and FBG values both before metformin initiation and at the time of CS diagnosis remained within the normal range. Hypertension was defined as systolic blood pressure ≥ 130 mmHg, diastolic blood pressure ≥ 80 mmHg, or use of any antihypertensive medication.

Statistical Analysis

Analyses were conducted using IBM SPSS for Windows (version 29.0, IBM Corp.). Data normality was assessed by the Shapiro–Wilk test. Descriptive statistics were used for demographic and clinical characteristics. Normally distributed data were compared by Student’s t-test and nonnormally distributed variables with the Mann–Whitney U-test. Paired T-tests were conducted to study mean changes from baseline to a single follow-up visit. For categorical characteristics and the MID, we calculated the achievement rates and used Pearson’s chi-square for comparisons where applicable. For patients with more than 2 follow-up visits ANOVA (repeated measures) was applied for the trajectory of each measurement over time. To identify predictors of improvement, univariable linear regression models for score change and logistic regression for MID achievement were performed using baseline visit and longest follow-up visit for each patient. Variables with P ≤ .10 or of clinical relevance were then entered into multivariable regression models—again, linear regression for score change and logistic regression for MID achievement—where each predictor was separately evaluated, adjusting for age, sex, and baseline score. Correlation analyses were performed using Pearson or Spearman correlation coefficients for data with normal or abnormal distribution, respectively. Correlation coefficients (r) were interpreted as follows: values between 0.0 and ±0.3: weak, between ±0.3 and ±0.7: moderate, and between ±0.7 and ±1.0: strong relationships. All statistical tests were 2-sided, and results were considered significant with P ≤ .05.

Results

Study Participants

From a cohort of 226 endogenous CS and silent ACTH tumor patients enrolled in our ongoing MSKCC prospective cohort study, we identified patients who had a baseline visit with active hypercortisolism, who had at least 1 follow-up visit while in surgical remission or medical control, and who had completed at least 1 of the evaluated questionnaires correctly. After excluding patients with silent ACTH tumors, those with missing data, and follow-up visits that did not meet remission criteria, we included 67 patients (56 females, 11 males) with a mean baseline age of 42.3 ± 13.1 years. Among these patients, 60 had CD and 7 had adrenal CS.

Further patient demographic information is shown in Tables 1 and 2.

 

Table 1.

Demographics and baseline characteristics

Demographic variable n = 67 patients
Age, years
 Mean (SD) 42.3 (13.1)
 Range 20-75
Sex, n (%)
 Female 56 (83.6)
CS subtype, n (%)
 CD 60 (89.6)
 Adrenal CS 7(10.4)
Race, n (%)
 White 50 (74.6)
 Black/African American 8 (11.9)
 Asian 2 (3.0)
 Other/unknown 7 (10.4)
24-hour UFC
 Mean (SD) 391.5 (1471) µg/24 hours,
1080 (4060) nmol/24 hours
 Median (IQR) 135.0 (82.7-220.0) µg/24 hours, 372 (228-607) nmol/24 hours
 Range (min-max) 29-12 346 µg/24 hours, 80-34 053 nmol/24 hours
LNSC, n (%)
 Normal 3 (4.5)
 Abnormal 59 (88.1)
 NA 5 (7.5)
Plasma ACTH
 Mean (SD) 70.7 (64.1) pg/mL, 15.6 (14.1) pmol/L
 Median (IQR) 56.0 (42.0-83.8) pg/mL, 12.3 (9.2-18.4) pmol/L
 Range (min-max) 11-416 pg/mL (2.4-91.5 pmol/L)
Prior recurrence at baseline, n (%) 16 (23.9)
Prior transsphenoidal surgery, n (%) 16 (23.9)
 1 9 (13.4)
 2 7(10.4)

Abbreviations: CD, Cushing disease; CS, Cushing’s syndrome; IQR, interquartile range; LNSC, late-night salivary cortisol; NA, not available; UFC, urinary free cortisol.

 

Table 2.

Baseline and follow-up data

Baseline Longest follow-up P-value
BMI (kg/m2)
 Mean (SD) 33.2 (7.6) 30.6 (8.5) <.001
 Median (IQR) 31.6 (26.8-37.3) 29.3 (25.3-34.8)
LNSC, n (%) <.001
 Normal 3 (4.5) 30 (44.7)
 Abnormal 59 (88.1) 16 (23.8)
 NA 5 (7.5) 21 (31.3)
DM, n (%) <.001
 DM 28 (41.8) 13 (19.4)
 Pre-DM 15 (22.4) 9 (13.4)
Hypertension, n (%) 55 (82.1) 35 (53.7) <.001
HbA1C (%) <.001
 Total mean (SD) 6.5 (1.8) 5.7 (0.9)
 DM/pre-DM mean (SD) 6.9 (1.8) 6.1 (1.0)
Antidiabetic medications, n (%) 20 (29.9) (22.4)
 1 12 (17.9) (13.4)
 2 1 (1.5) (3.0)
 3 3 (4.5) (1.5)
 Insulin 4 (6.0) 3 (4.5)
Antihypertensive medications, n (%) 34 (50.7) (37.3)
 1 15 (22.4) (19.4)
 2 10 (14.9) (11.9)
 ≥3 9 (13.4) 4 (6.0)
Other medications, n (%)
 Antidepressants 10 (14.9) 13 (19.4)
 Anxiolytics 12 (17.9) 12(17.9)
 Pain medications 16 (23.9) 23 (34.3)
 Sleep medications 16 (23.9) 21 (31.3)
Treatment at most recent follow-up,a n (%)
 Transsphenoidal surgery 44 (65.7)
 Medical therapy 18 (26.9)
 Bilateral adrenalectomy 3 (4.5)
 Radiation therapy 1 (1.5)
 Adrenalectomy (adrenal CS) 7 (10.4)

Abbreviations: BMI, body mass index; CS, Cushing’s syndrome; DM, diabetes mellitus; HbA1c, hemoglobin A1c; IQR, interquartile range; LNSC, late-night salivary cortisol.

a“n” refers to number of separate baseline-to-follow-up cases.

In total, there were 46 visits in G1, 31 in G2, and 24 in G3. At the most recent follow-up of each case, there were 24 visits in G1, 25 in G2, and 24 in G3.

The mean (range) duration from baseline to most recent follow-up was 28.3 (5-138) months in the overall cohort. The mean (range) follow-up duration since the most recent treatment was 6.3 (4-9) months for G1, 12.7 (10-18) months for G2, and 43.7 (23-120) months for G3. At their final follow-up visit, 44 patients (65.7%) achieved remission after transsphenoidal surgery (TSS), 18 (26.9%) were under medical control, 3 (4.5%) underwent bilateral adrenalectomy (BLA), 1 (1.5%) received radiation therapy (RT), and the 7 (10.4%) patients with adrenal CS underwent unilateral adrenalectomy (Table 2).

The following additional treatments were administered between this study’s baseline visit and longest follow-up: among the 44 patients treated with TSS at their latest follow-up, 1 underwent an additional TSS and 1 received medical therapy prior to TSS. Of the 18 medically managed patients at last follow-up, 8 (44.4%) had previously undergone TSS (3 of whom had 2 TSSs), and 2 of these 8 additionally received at least 1 different medication before switching to the 1 recorded at their last follow-up. Two (11.1%) other patients received 2 sequential medications before the final 1 at follow-up, and 1 (5.6%) patient was on a block-and-replace regimen with hydrocortisone (HC) after 2 TSSs and BLA. The complete treatment journey of patients on medical therapy, before and after entering the study, is shown in Fig. 1. Among the patients who underwent BLA at last follow-up, 1 had 2 prior TSSs, 1 had a sin1 gle prior TSS and received medical therapy and had 2 TSSs and received medical therapy. The patient treated with RT had 2 prior TSSs and received medical therapy.

 

Treatment journey of the 18 patients on medical therapy at their longest follow-up. Each row represents the longitudinal treatment course of each patient before and/or after entering the study. Multiple boxes indicating medical therapy within the same patient represent different medications administered over time. Segments outlined in bold represent the follow-up period analyzed in the current cohort, from this' study baseline to the longest available follow-up.

Figure 1.

Treatment journey of the 18 patients on medical therapy at their longest follow-up. Each row represents the longitudinal treatment course of each patient before and/or after entering the study. Multiple boxes indicating medical therapy within the same patient represent different medications administered over time. Segments outlined in bold represent the follow-up period analyzed in the current cohort, from this’ study baseline to the longest available follow-up.

Abbreviations: CT, clinical trial; Keto, ketoconazole; Levo, levoketoconazole; Mety, metyrapone; Mife, mifepristone; Osilo, osilodrostat; Pasi, pasireotide.

Sixteen patients presented with recurrent disease; an additional 9 patients (13.4%) developed recurrent or persistent disease after surgery. HC replacement was administered at 21 of the longest available follow-up visits [6 due to ongoing hypopituitarism or adrenal insufficiency (AI) and 15 for temporary postoperative AI], with another 9 cases receiving replacement at intermediate follow-up visits.

All 18 patients on medical therapy at their longest follow-up received adrenal steroidogenesis inhibitors: osilodrostat (8 patients, 44.4%), metyrapone (6 patients, 33.3%), and ketoconazole (4 patients, 22.2%).

Comorbid Conditions

As shown in Table 2, mean body mass index (BMI) at baseline was 33.2 ± 7.6 kg/m2. Twenty-eight (41.8%) patients presented with DM, 15 (22.4%) with prediabetes, and 24 (35.8%) without DM. Fifty-five of 67 patients (82.1%) had hypertension at baseline. At the longest follow-up, mean BMI decreased to 30.6 ± 8.5 kg/m² (P < .001), and mean HbA1c decreased to 5.7 ± 0.9% (P < .001). Thirteen patients (19.4%) continued to have DM, and 9 patients (13.4%) had prediabetes. Hypertension was present in 35 patients (53.7%), of whom 25 (71.4%) were receiving at least 1 antihypertensive medication.

LNSC levels remained abnormal in 16 patients (23.8%), although LNSC data were not available for 21 patients (31.3%). Of those, LNSC testing was not considered clinically indicated in some cases, such as patients on HC replacement for postoperative AI (n = 10) or patients with adrenal CS status postadrenalectomy (n = 3). The remaining 8 patients with missing LNSC data were on medical therapy (n = 4) or status post-TSS (n = 4).

Cushing QoL

Sixty-five patients (71 baseline to follow-up case pairs) completed the CushingQoL assessment. In the overall cohort, treatment resulted in significant improvements in mean QoL scores at all follow-up time points: mean change in G1 was 16.6 ± 18.6 (P < .001); G2, 19.1 ± 19.4 (P < .001); and G3, 16.6 ± 27.1 (P = .009) (Table 3Fig. 2A). For longest available follow-up for each case, overall mean improvement was 18.2 ± 20.9 points (P < .001).

 

Score trajectory for (A) Cushing QoL, (B) BDI-II, (C) STAI-State, and (D) STAI-Trait in the overall cohort based on duration of follow-up, including patients with 2 follow-up visits. Significant improvements in mean scores were observed in all assessments and all follow-up time points except in group 3 STAI-State, noted with a gray line. Group 1: 6 months posttreatment, group 2: 12 to 18 months posttreatment, group 3: ≥ 24 months posttreatment.

Figure 2.

Score trajectory for (A) Cushing QoL, (B) BDI-II, (C) STAI-State, and (D) STAI-Trait in the overall cohort based on duration of follow-up, including patients with 2 follow-up visits. Significant improvements in mean scores were observed in all assessments and all follow-up time points except in group 3 STAI-State, noted with a gray line. Group 1: 6 months posttreatment, group 2: 12 to 18 months posttreatment, group 3: ≥ 24 months posttreatment.

Abbreviations: BDI-II, Beck Depression Inventory-II; QoL, quality of life; STAI, State-Trait Anxiety Inventory.

 

Table 3.

Cushing QoL scores at baseline, follow-up visit, and mean score change in each time-based group for total cohort, patients who had TSS and patients on medical therapy

Category Subgroup n Baseline mean Follow-up visit mean Mean change SD (change) P-value
Total cohort Longest follow-up 71 42.4 60.6 18.2 20.9 <.001
Group 1 45 40.6 57.2 16.6 18.6 <.001
Group 2 30 43.5 62.6 19.1 19.4 <.001
Group 3 23 41.2 57.9 16.6 27.1 .009
TSS Longest follow-up 42 40.0 59.9 20.0 18.5 <.001
Group 1 29 40.2 57.0 16.8 19.1 <.001
Group 2 21 41.4 61.9 20.4 15.8 <.001
Group 3 9 29.0 48.7 19.7 24.9 .045
Medical therapy Longest follow-up 19 46.3 58.4 12.1 26.2 .059
Group 1 9 44.6 56.7 12.1 18.5 .086
Group 2 7 40.9 57.1 16.3 31.4 .219
Group 3 10 56.0 62.0 6.0 27.9 .513

Abbreviations: QoL, quality of life; TSS, transsphenoidal surgery.

In the subanalysis by treatment strategy, 42 patients who completed the Cushing QoL achieved surgical remission and 19 patients were controlled on medical therapy. In the surgical cohort, improvement in scores were noted across all time groups with a mean score increase of 20.0 ± 18.5 points from baseline to the longest available follow-up (P < .001) (Figs. 3A and 4A). Among these patients, 15 had 2 follow-up visits; between them the mean score further increased by 9.6 ± 14.8 points, indicating significant QoL improvement >6 months postsurgery (P  = .025). In contrast, patients under medical control at follow-up showed a mean improvement of 12.1 ± 26.2 points from baseline to the longest follow-up, which did not reach statistical significance (n = 19; P  = .059) (Table 3Figs. 3A and 4A).

 

Mean score change in total cohort, patients after transsphenoidal surgery, and patients on medical therapy based on duration of follow-up: (A) Cushing QoL, (B) BDI-II, (C) STAI-State, (D) STAI-Trait. Direct comparison between the 2 treatment modalities was performed only in the longest available follow-up visit for each patient. Caps represent SEM. Only P-values ≤ .05 are displayed.

Figure 3.

Mean score change in total cohort, patients after transsphenoidal surgery, and patients on medical therapy based on duration of follow-up: (A) Cushing QoL, (B) BDI-II, (C) STAI-State, (D) STAI-Trait. Direct comparison between the 2 treatment modalities was performed only in the longest available follow-up visit for each patient. Caps represent SEM. Only P-values ≤ .05 are displayed.

Abbreviations: BDI-II, Beck Depression Inventory-II; QoL, quality of life; STAI, State-Trait Anxiety Inventory.

 

Mean scores at baseline and longest follow-up in total cohort, patients after transsphenoidal surgery, and patients on medical therapy for (A) Cushing QoL, (B) BDI-II, (C) STAI-State, (D) STAI-Trait. Caps represent SEM. Asterisks (*) indicate significant change from baseline to follow-up (P ≤ .05) and brackets significant differences between the 2 treatment modalities at the longest follow-up visit (P ≤ .05).

Figure 4.

Mean scores at baseline and longest follow-up in total cohort, patients after transsphenoidal surgery, and patients on medical therapy for (A) Cushing QoL, (B) BDI-II, (C) STAI-State, (D) STAI-Trait. Caps represent SEM. Asterisks (*) indicate significant change from baseline to follow-up (P ≤ .05) and brackets significant differences between the 2 treatment modalities at the longest follow-up visit (P ≤ .05).

Abbreviations: BDI-II, Beck Depression Inventory-II; QoL, quality of life; STAI, State-Trait Anxiety Inventory.

MID achievement and predictors of improvement

In the overall cohort, CushingQoL MID was achieved in 42 of the 65 patients (64.6%) (Fig. 5). When stratified by follow-up duration, MID achievement rates were 60.8% in G1 (n = 45), 70.0% in G2 (n = 30), and 60.9% (n = 23) in G3.

 

MID achievement rates for all patient-reported outcomes at most recent follow-up.

Figure 5.

MID achievement rates for all patient-reported outcomes at most recent follow-up.

Abbreviations: MID, minimal important difference.

Males (n = 11) improved more than female patients (n = 54) (27.8 ± 13.0 vs 15.5 ± 21.9; P  = .020) and achieved the MID more frequently (90.9% vs 59.3%; P  = .045). Even though they presented with lower baseline scores compared to females (33.2 ± 16.3 vs 44.3 ± 20.7), that difference was not significant (P  = .117).

Score change differed by BMI category, using as cut-off the baseline mean of our cohort (≤33.2 vs >33.2 kg/m²): patients with lower BMI (n = 34) improved considerably more than those with higher BMI (n = 31) (median score change: 26 vs 11; P = .023). Likewise, MID achievement was more common in the low-BMI group (76.5% vs 51.6%; P = .036).

Patients presenting with recurrent disease at baseline (n = 16) reported better baseline QoL than those with primary disease (n = 49) (51.6 ± 19.5 vs 39.5 ± 20.9; P = .046), and their mean improvement following treatment was smaller (7.2 ± 21.0 vs 21.0 ± 19.8; P = .022). Only 43.8% of recurrent cases achieved the MID compared to 71.4% of primary cases (P = .044).

Patients reporting symptom duration ≥3 years prior to diagnosis (n = 29) were less likely to achieve the MID compared to those with shorter symptom duration (n = 35) (48.3% vs 66.7%; P = .008).

Patients with at least 1 abnormal LNSC (n = 15) value at follow-up were less likely to meet MID compared to those with normal LNSC values (n = 28) (33.3% vs 75.0%; P = .008). Similarly, patients requiring HC replacement (after their first TSS or unilateral adrenalectomy for adrenal CS) for >6 months (n = 22) were more likely to achieve MID than those requiring ≤6 months (n = 30) (81.8% vs 50.0%; P = .019).

MID achievement rates between the TSS and medical-therapy groups differed (71.4% vs 47.4%) but did not reach significance (P = .070).

Baseline 24 hours UFC was inversely correlated with baseline CushingQoL score (ρ = −0.3; P = .035), indicating a relationship between biochemical and symptomatic disease severity.

BDI-II

Fifty-six patients (60 case pairs) were included in this subgroup. In the overall cohort, improvements in BDI-II score were seen at all follow-up time points: mean change in G1 was 4.7 ± 9.2 (P = .004); in G2, 7.7 ± 7.3 (P  < .001); and in G3, 7.6 ± 10.6 (P = .008). In the overall cohort, mean improvement from baseline to the longest follow-up was 6.8 ± 8.6 points (P  < .001) (Table 4Fig. 2B). Of note, a significant 7.3-point improvement was noted between follow-up G1 (6 months) and follow-up G2 (12 months) (n = 11, P = .025), indicating continued improvement in depressive symptoms over time after treatment.

 

Table 4.

BDI-II scores at baseline, follow-up visit, and mean score change in each time-based group for total cohort, patients who had TSS and patients on medical therapy

Category Subgroup n Baseline mean Follow-up visit mean Mean change SD (change) P-value
Total cohort Longest follow-up 60 15.7 8.9 6.8 8.6 <.001
Group 1 37 17.0 12.2 4.7 9.2 .004
Group 2 26 15.2 7.5 7.7 7.3 <.001
Group 3 18 15.9 8.3 7.6 10.6 .008
TSS Longest follow-up 32 17.1 8.2 8.8 8.1 <.001
Group 1 22 18.6 13.6 5.0 10.9 .043
Group 2 17 14.7 6.7 8.0 8.1 <.001
Group 3 6 20.5 8.3 12.2 4.7 .001
Medical therapy Longest follow-up 18 14.4 11.0 3.4 9.9 .159
Group 1 8 14.6 11.0 3.6 6.7 .171
Group 2 6 18.3 10.8 7.5 7.1 .049
Group 3 9 11.8 8.8 3.0 13.3 .517

Abbreviations: BDI-II, Beck Depression Inventory-II; TSS, transsphenoidal surgery.

Among the 32 patients who underwent TSS, improvements were noted across all follow-up time groups, with mean scores decreasing from 17.1 ± 10.9 to 8.2 ± 7.0 at the longest follow-up (P  < .001). In contrast, the 18 patients treated medically did not experience a significant change (P = .159). Improvement following TSS was significantly greater than with medical therapy at longest follow-up for each case (8.8 ± 8.1 vs 3.4 ± 9.9; P = .043) (Figs. 3B and 4B).

MID achievement and improvement predictors

Thirty-eight patients (67.9%) achieved MID by their longest follow-up (Fig. 5). Twenty-nine (51.8%) patients had baseline scores ≥14 points, indicating mild or moderate depression, and 23 (79.3%) of these patients met the MID. By follow-up duration, overall MID achievement rates were 56.8% in G1 (n = 37), 76.9% in G2 (n = 26), and 72.2% in G3 (n = 18).

By treatment approach, MID was met by 75.0% of patients who had TSS (n = 32) and 38.9% of patients on medication (n = 18) (P = .012). All patients who underwent BLA (n = 4) or RT (n = 1) and 5 out of 6 patients treated for adrenal CS achieved MID.

Patients with recurrent and primary disease did not differ in terms of baseline score (P = .267). However, those with recurrent disease were less likely to achieve MID (42.9% vs 76.2%; n = 14 vs 75.6%; n = 42, P = .021).

Symptom duration prior to diagnosis was inversely correlated with BDI-II score change (ρ = −0.33, P = .016). Patients experiencing symptoms for ≥3 years (n = 24) exhibited lower MID achievement rates compared to those with shorter symptom duration (n = 31) (50.0% vs 83.9%; P = .007).

Patients with normal LNSC at follow-up had higher MID achievement rates (81.5%; n = 27 vs 45.5%; n = 11, P = .026).

STAI

STAI-S

Fifty-six patients (60 case pairs) completed the STAI-State questionnaire. All follow-up time groups exhibited improvements, although in G3 the score decrease did not reach significance. In the overall cohort, mean scores declined from 44.8 ± 14.0 to 35.3 ± 11.2 at the longest follow-up (P < .001) (Table 5).

 

Table 5.

STAI scores at baseline, follow-up visit, and mean score change in total cohort, patients who had TSS and patients on medical therapy

Outcome Category Subgroup n Baseline mean Follow-up visit mean Mean change SD (change) P-value
STAI-State Total cohort Longest follow-up 60 44.8 35.3 9.6 12.5 <.001
Group 1 40 45.9 36.6 9.3 12.3 <.001
Group 2 25 46.2 35.3 10.8 10.8 <.001
Group 3 17 42.4 36.1 6.3 13.8 .078
TSS Longest follow-up 33 44.4 34.3 10.1 12.3 <.001
Group 1 24 44.4 35.8 8.6 11.9 .002
Group 2 16 43.7 33.9 9.8 11.9 .005
Group 3 7 46.0 37.9 8.1 12.1 .126
Medical therapy Longest follow-up 17 47.2 37.4 9.8 14.7 .014
Group 1 9 50.9 37.2 13.7 13.7 .017
Group 2 5 56.4 39.8 16.6 8.4 .012
Group 3 8 36.3 34.6 2.0 14.9 .715
STAI-Trait Total cohort Longest follow-up 58 46.0 37.3 8.6 12.6 <.001
Group 1 36 47.9 40.3 7.6 12.0 <.001
Group 2 26 45.7 36.0 9.6 10.9 <.001
Group 3 16 46.7 36.9 9.8 13.2 .010
TSS Longest follow-up 31 47.5 36.7 10.7 12.2 <.001
Group 1 22 47.9 40.6 7.3 11.5 .008
Group 2 16 46.3 35.9 10.4 11.4 .002
Group 3 6 54.0 37.8 16.2 7.5 .003
Medical therapy Longest follow-up 18 45.1 38.8 6.2 13.4 .065
Group 1 8 49.5 39.8 9.8 14.0 .089
Group 2 6 47.5 36.2 11.3 10.9 .052
Group 3 8 39.3 37.5 1.8 12.7 .709

Abbreviations: STAI, State-Trait Anxiety Inventory; TSS, transsphenoidal surgery.

By treatment modality, state anxiety improved in both the TSS group (10.1 ± 12.3; n = 33; P < .001) and patients on medical therapy (9.8 ± 14.7; n = 17; P = .014) (Figs. 3C and 4C).

MID achievement and improvement predictors

Overall, 30 of 56 (53.5%) patients achieved MID in STAI-State at their longest follow-up visit (Fig. 5). By follow-up duration, MID achievement rates were 52.5% in G1 (n = 40), 56.1% in G2 (n = 25), and 64.7% in G3 (n = 17).

A negative correlation was observed between STAI-S score change and baseline age (ρ = −0.3, P = .029). Patients >40 years old at baseline (n = 29), improved less than younger patients (n = 27) [median score change: 5 vs 13 (P = .017)] and were less likely to meet the MID, with results approaching statistical significance (41.4% vs 66.7%, P = .058).

STAI-T

Fifty-three patients (58 case pairs) were evaluated. In the overall cohort, mean score change from baseline to longest follow-up was 8.6 ± 12.6 points (P < .001). In time-based subgroups the following score reductions were noted: G1: 7.6 ± 12.0 (P < .001), G2: 9.6 ± 10.9 (P < .001), G3: 9.8 ± 13.2 (P = .010) (Fig. 2D). Among patients treated with TSS (n = 31), significant improvement was seen in every subgroup. Patients receiving medical therapy (n = 18) showed numerical but not statistically significant improvement (P = .065) (Table 5Figs. 3D and 4D).

MID achievement and improvement predictors

STAI-Trait MID was achieved by 28 (52.8%) patients at the longest follow-up (Fig. 5). By follow-up duration, MID achievement rates were 44.4% in G1, 53.8% in G2, and 68.8% in G3.

Patients ≤40 years at baseline (n = 26) improved more than those aged >40 years (n = 27), with results approaching significance [median score change: 14 vs 4 (P = .060)].

Patients with ≥2 Follow-up Visits

Twenty-eight patients had multiple follow-up visits; we stratified by follow-up duration (<2 years vs ≥2 years) [Table S1 (30)].

Cushing QoL

Significant improvements were noted in all groups with pairwise comparisons revealing higher scores in both first and second follow-up, with the mean score changing by 14.9 (P = .002) and 21.5 (P < .001) points, respectively, in total cohort.

BDI-II

Although the overall trajectory demonstrated significant improvement, pairwise comparisons showed no significant changes between baseline and first follow-up. Improvement was noted between baseline and the second follow-up visit (P < .001) and between the 2 treated visits (P = .021) (Table 6).

 

Table 6.

BDI-II mean scores and pairwise comparisons in patients with 2 follow-up visits

Comparison Mean score A Mean score B Mean difference P-value
Baseline vs follow-up 1 16.9 13.0 4.846 .200
Baseline vs follow-up 2 16.9 7.1 9.731 <.001
Follow-up 1 vs follow-up 2 13.0 7.1 4.885 .021

Abbreviations: BDI-II, Beck Depression Inventory-II.

STAI-S

Overall, the mean score decreased from 45.9 ± 13.0 at baseline to 38.3 ± 12.4 at the first follow-up and to 36.1 ± 10.9 at the second follow-up (P = .005). In cases with follow-up ≥2 years (n = 13), the score trajectory did not change significantly from baseline (P = .187). In contrast, patients with total follow-up <2 years (n = 11) exhibited significant improvement (P = .008).

STAI-T

Overall, the mean score decreased from 49.2 ± 9.0 at baseline to 39.8 ± 11.6 at first follow-up and further to 36.4 ± 10.5 at second follow-up (P < .001). Significant improvement noted from baseline to both follow-up visits in both subgroups (P < .001).

Regression Analyses for Predictors of Change

In all measurements, after controlling for age and sex, baseline score was an independent predictor of greater change (P < .001) (Table 7). Patients with more impaired QoL, or severe depression and anxiety at baseline, had more room for improvement.

 

Table 7.

Predictors of mean score change from baseline to most recent follow-up of each patient in univariable and multivariable linear regression analysis

Outcome Parameter Univariable analysis Multivariable analysis
Estimate SE P-value Estimate SE P-value
Cushing QoL score change Baseline score −0.50 0.11 <.001 −0.47 0.11 <.001
Baseline age −0.05 0.20 .797 −0.04 0.19 .825
Male sex 12.11 6.83 .081 7.49 6.68 .267
Baseline age ≤40 (vs >40) −3.43 5.23 .515 −4.90 4.89 .321
Normal LNSC (vs abnormal) −19.98 6.4 .004 −19.39 5.26 .001
HC replacement >6 months (vs ≤6 months) 10.06 5.90 .095 12.35 4.96 .016
Primary disease at baseline (vs recurrent) −13.19 5.86 .028 −6.63 5.60 .241
Baseline BMI ≤33.2 kg/m2 (vs >33.2 kg/m2) −8.72 5.1 .095 −6.53 4.71 .171
Symptom duration ❤ years (vs ≥3 years) −4.60 5.25 .384 −4.55 4.70 .337
Treatment (TSS vs medical therapy) −7.87 5.8 .185 −4.23 5.41 .473
BDI-II score change Baseline score 0.57 0.09 <.001 0.58 0.09 <.001
Baseline age −0.08 0.09 .402 0.02 0.08 .797
Male sex −0.59 3.07 .848 0.80 2.53 .752
Baseline age ≤40 (vs >40) −3.96 4.82 .429 −0.52 2.02 .800
Normal LNSC (vs abnormal) −3.01 3.06 .332 −3.27 1.87 .090
HC replacement >6 months (vs ≤6 months) 0.06 2.577 .980 2.33 1.90 .226
Primary disease at baseline (vs recurrent) −4.76 2.63 .076 −2.66 2.17 .224
Baseline BMI ≤33.2 kg/m2 vs >33.2 kg/m2 −3.79 2.29 .104 −1.41 1.90 .462
Symptom duration ❤ years (vs ≥3 years) −5.61 2.23 .015 −3.49 1.78 .055
Treatment (TSS vs medical therapy) −5.46 2.60 .041 −3.94 2.02 .057
STAI-State score change Baseline score 0.57 0.09 <.001 0.56 0.09 <.001
Baseline age −0.22 0.13 .104 −0.11 0.12 .338
Male sex −5.70 4.37 .197 −4.39 3.69 .239
Baseline age ≤40 (vs >40) −5.94 3.30 .078 −3.75 2.73 .175
Normal LNSC (vs abnormal) −2.15 3.95 .589 −4.47 2.89 .131
HC replacement >6 months (vs ≤6 months) 0.72 3.45 .836 4.42 2.81 .123
Primary disease at baseline (vs recurrent) 2.41 3.91 .743 2.14 2.91 .465
Baseline BMI ≤33.2 kg/m2 (vs >33.2 kg/m2) −2.36 3.38 .488 −0.93 2.56 .716
Symptom duration ❤ years (vs ≥3 years) −5.67 3.33 .095 −3.26 2.46 .192
Treatment (TSS vs medical therapy) −1.50 3.91 .970 −2.77 2.97 .355
STAI-Trait score change Baseline score 0.58 0.11 <.001 0.56 0.12 <.001
Baseline age −0.20 0.13 .128 −0.07 0.11 .562
Male sex −3.09 4.57 .502 −0.83 4.13 .841
Baseline age ≤40 (vs >40) −5.45 3.36 .111 −2.55 3.03 .405
Normal LNSC (vs abnormal) −6.52 4.23 .133 −6.74 3.44 .059
HC replacement >6 months (vs ≤6 months) 4.63 3.52 .195 7.11 2.87 .018
Primary disease at baseline (vs recurrent) −2.07 3.90 .597 −0.34 3.42 .921
Baseline BMI ≤33.2 kg/m2 (vs >33.2 kg/m2) −4.95 3.38 .150 −2.59 3.00 .393
Symptom duration ❤ years (vs ≥3 years) −5.78 3.37 .093 −4.35 2.80 .127
Treatment (TSS vs medical therapy) −4.49 3.74 .236 −3.39 3.11 .281

Each predictor in multivariable analysis was separately evaluated, adjusting for baseline age, sex, and baseline score. In models exploring baseline age <40 years as a categorical variable, continuous baseline age was not included in the multivariable model. Statistically significant results (P ≤ .05) are indicated in bold.

Abbreviations: BDI-II, Beck Depression Inventory-II; BMI, body mass index; HC, hydrocortisone; LNSC, late-night salivary cortisol; QoL, quality of life; STAI, State-Trait Anxiety Inventory; TSS, transsphenoidal surgery.

Cushing QoL

Normal LNSC at follow-up and >6 months of postoperative HC replacement were predictors of QoL score improvement and MID achievement even after adjustment for baseline score, age, and sex. Lower baseline BMI and male sex, although significant in univariable analysis, were no longer significant in the multivariable linear model. However, a BMI < 33.2 kg/m² (P = .034) and symptom duration ❤ years prior to diagnosis (P = .005) remained statistically significant predictors of reaching the MID in the multivariable logistic model (Table 8Fig. 6). To determine if treatment modality modified the effect of LNSC, we built a model including baseline QoL score, age, sex, follow-up LNSC, and treatment type (TSS vs medical therapy). In this multivariable model, normal LNSC remained a significant predictor of improvement (P = .023).

 

MID achievement predictors after multivariable analysis for (A) Cushing QoL, (B) BDI-II, (C) STAI-State. Each predictor was analyzed in a separate logistic regression model after adjustment for baseline score, age, and sex. Predictors for trait anxiety are not shown, as a longer duration of postoperative HC replacement was a significant predictor only in the linear multivariable regression model.

Figure 6.

MID achievement predictors after multivariable analysis for (A) Cushing QoL, (B) BDI-II, (C) STAI-State. Each predictor was analyzed in a separate logistic regression model after adjustment for baseline score, age, and sex. Predictors for trait anxiety are not shown, as a longer duration of postoperative HC replacement was a significant predictor only in the linear multivariable regression model.

Abbreviations: BDI-II, Beck Depression Inventory-II; HC, hydrocortisone; LNSC, late-night salivary cortisol; QoL, quality of life; STAI, State-Trait Anxiety Inventory; TSS, transsphenoidal surgery.

 

Table 8.

Predictors of MID achievement from baseline to most recent follow-up of each patient in univariable and multivariable logistic regression models

Outcome Parameter Univariable analysis Multivariable analysis
Estimate SE P-value Estimate SE P-value
Cushing QoL MID achievement Baseline score 0.94 0.02 <.001 0.94 0.02 <.001
Baseline age 1.01 0.02 .548 1.02 0.03 .410
Male sex 6.89 1.09 .076 3.82 1.16 .249
Baseline age ≤40 (vs >40) 1.01 0.52 .987 1.27 0.62 .704
Normal LNSC (vs abnormal) 6.00 0.70 .011 22.82 1.17 .007
HC replacement >6 months (vs ≤6 months) 4.50 0.66 .023 14.49 0.99 .007
Primary disease at baseline (vs recurrent) 3.21 0.60 .050 1.78 0.68 .400
Baseline BMI ≤33.2 kg/m2 (vs >33.2 kg/m2) 3.05 0.54 .039 4.33 0.69 .034
Symptom duration ❤ years (vs ≥3 years) 4.29 0.56 .010 9.07 0.78 .005
Treatment (TSS vs medical therapy) 2.79 0.57 .074 2.36 0.68 .209
BDI-II MID achievement Baseline score 1.08 0.04 .064 1.08 0.04 .042
Baseline age 1.02 0.02 .510 1.01 0.03 .613
Male sex 5.28 1.10 .130 5.76 1.14 .126
Baseline age ≤40 (vs >40) 1.11 0.57 .854 1.05 0.63 .937
Normal LNSC (vs abnormal) 5.28 0.78 .033 14.86 1.25 .030
HC replacement >6 months (vs ≤6 months) 2.00 0.65 .288 2.32 0.71 .236
Primary disease at baseline (vs recurrent) 4.27 0.65 .026 2.67 0.71 .165
Baseline BMI ≤33.2 kg/m2 (vs >33.2 kg/m2) 1.94 0.58 .255 1.55 0.66 .504
Symptom duration < 3 years (vs ≥3 years) 5.20 0.64 .010 5.74 0.70 .012
Treatment (TSS vs medical therapy) 4.71 0.63 .014 4.19 0.69 .039
STAI-State MID achievement Baseline score 1.17 0.04 <.001 1.19 0.05 <.001
Baseline age 0.97 0.02 .241 0.96 0.03 .261
Male sex 1.95 0.71 .347 3.17 1.00 .249
Baseline age ≤40 (vs >40) 2.83 0.56 .061 5.87 0.89 .048
Normal LNSC (vs abnormal) 2.02 0.73 .337 2.41 1.04 .396
HC replacement >6 months (vs ≤6 months) 0.94 0.59 .943 2.66 0.97 .313
Primary disease at baseline (vs recurrent) 1.21 0.62 .757 2.15 0.92 .408
Baseline BMI ≤33.2 kg/m2 (vs >33.2 kg/m2) 2.05 0.54 .189 1.57 0.82 .584
Symptom duration < 3 years (vs ≥3 years) 1.39 0.55 .52 0.98 0.77 .980
Treatment (TSS vs medical therapy) 1.95 0.62 .279 1.44 0.78 .634
STAI-Trait MID achievement Baseline score 1.17 0.05 <.001 1.17 0.05 <.001
Baseline age 0.98 0.02 .295 0.97 0.03 .342
Male sex 2.33 0.75 .257 4.16 1.02 .161
Baseline age ≤40 (vs >40) 2.12 0.56 .175 2.32 0.76 .265
Normal LNSC (vs abnormal) 1.78 0.71 .416 1.48 0.96 .686
HC replacement >6 months (vs ≤6 months) 1.58 0.60 .450 4.21 0.95 .130
Primary disease at baseline (vs recurrent) 2.45 0.61 .138 2.06 0.90 .421
Baseline BMI ≤33.2 kg/m2 (vs >33.2 kg/m2) 1.98 0.54 .202 1.11 0.79 .891
Symptom duration < 3 years (vs ≥3 years) 1.09 0.53 .866 0.99 0.71 .984
Treatment (TSS vs medical therapy) 1.39 0.60 .585 1.18 0.82 .839

Each predictor in multivariable analysis was separately evaluated, adjusting for baseline age, sex and baseline score. In models exploring baseline age <40 years as a categorical variable, continuous baseline age was not included in the multivariable model. Statistically significant results (P ≤ .05) are indicated in bold.

Abbreviations: BDI-II, Beck Depression Inventory-II; BMI, body mass index; HC, hydrocortisone; LNSC, late-night salivary cortisol; MID, minimal important difference; QoL, quality of life; STAI, State-Trait Anxiety Inventory; TSS, transsphenoidal surgery.

BDI-II

Symptom duration ❤ years (P = .012), normal LNSC at follow-up (P = .030), and TSS (P = .039) instead of medical therapy (for CD) were statistically significant predictors of MID achievement in the multivariable logistic models even after adjusting for age, sex, and baseline score (Table 8Fig. 6).

STAI-S

In the multivariable logistic model adjusted for sex and baseline score, age <40 predicted higher odds of MID achievement (P = .041) (Table 8Fig. 6).

STAI-T

After adjustments for sex and baseline score, age group <40 was no longer a predictor of improvement. Although nonsignificant in univariable screening, duration of postoperative HC replacement >6 months emerged as a significant predictor of score change, though not MID achievement, after adjusting for age, sex, and baseline score (Tables 7 and 8).

Discussion

In a clinical practice cohort of patients with CS followed prospectively before and over time up to 11.5 years after surgical remission and/or biochemical control from medical treatment, we identified significant improvements in mean QoL, depression, and anxiety scores in the overall cohort, but only half of patients achieved clinically meaningful improvements in anxiety, as assessed by MID, and about two-thirds of the cohort achieved clinically meaningful improvements in QoL and depression at their most recent follow-up. When assessed by treatment strategy, surgery resulted in statistically significant improvements in all 3 measures, whereas medical therapy resulted in statistically significant improvements in state anxiety but not QoL or depression. These findings may be impacted by the smaller cohort size of the medically treated patients and more complex treatment journeys in the medically vs surgically treated patients. Overall, in this cohort of treated, biochemically controlled patients, several predictors of improvements were identified, including age, baseline BMI, duration of symptoms prior to treatment, duration of HC requirement after surgery, and LNSC normalization with treatment.

PRO studies in CS have shown that patients with CS are at risk for mood disorders and impaired QoL at diagnosis and that improvement posttreatment is often partial, delayed, or inconsistent, even after biochemical remission (3-12). The most recent prospective study confirmed persistent deficits in QoL and depressive symptoms up to 1 year postsurgery, with mean BDI-II scores remaining in the clinically significant range (9). As for anxiety, a prospective study reported high baseline anxiety in patients with CD, and, although it improved after surgery, a proportion continued to experience anxiety up to 1 year posttreatment (14). Neuroimaging supports a biological basis for these symptoms, with brain abnormalities (hippocampal atrophy, cortical thinning, white matter damage) seen after biochemical cure possibly explaining the long-term emotional and cognitive deficits in some patients (1215). As for previously reported predictors of improvement, male sex, lower BMI at follow-up (43132), LNSC normalization (17), and shorter duration of cortisol exposure (3233) emerged as independent predictors of better QoL. Persistent hormone deficits or arginine vasopressin deficiency were related to worse depression (9) while increased age and male sex predicted less anxiety (31). While some studies suggest that hypopituitarism and HC replacement are associated with poorer outcomes (1134), others found no significant difference (35). Limitations of these studies include the cross-sectional design (431-36), small cohort sizes (9), and lack of long-term follow-up >12 months (37), especially in the setting of clinical trials (17).

In our study, QoL, depression, and anxiety improved following treatment, but the patterns varied by domain and follow-up duration.

As for QoL, interestingly, patients with recurrent disease showed better baseline QoL scores than those with primary disease, possibly due to posttreatment surveillance, resulting in earlier diagnosis at recurrence vs initial presentation. Although patients on medical therapy showed a trend toward improvement with treatment, results did not reach significance, potentially due to sample size or the increased (better) baseline scores in patients with recurrent disease and thus those receiving medical treatment. Most patients on medical therapy had persistent or recurrent disease and have experienced longer, more complex treatment journeys (as depicted in Fig. 1) compared to those in surgical remission, which also may impact QoL and mood outcomes. Notably, in patients with 2 follow-up visits, QoL continued to significantly improve 6 months posttreatment in those treated surgically but not in the total cohort.

Multivariable analysis revealed several predictors of QoL improvement after treatment. LNSC normalization was independently associated with approximately 20 times higher odds of achieving the MID, indicating the clinical importance of recovery of cortisol circadian rhythm for treated CS patients and the need for further work to identify medical therapies and regimens that can facilitate this. Postoperative HC replacement for more than 6 months after surgery (indicating a longer hypothalamic-pituitary-adrenal axis recovery) was also associated with greater QoL improvement. This finding complements prior work showing an association between duration of postoperative HC replacement and long-term remission (3839). Lower baseline BMI and shorter symptom duration were predictive of MID achievement, though not of mean score change.

As for depression, patients with 2 follow-ups had a distinct pattern: no significant change between baseline and first follow-up but significant improvement between the 2 follow-up visits. This suggests that depression may take longer to improve, with more evident change >6 months after biochemical control, which contrasts prior work suggesting that anxiety takes longer than depression to improve (14). The delayed trajectory could reflect the structural brain changes seen in CS even in remission, which are partially reversible (1240). Our data showed that symptom duration > 3 years prior to diagnosis reduced MID achievement, consistent with the literature linking diagnostic delay to persistent depression (33). A normal follow-up LNSC was associated with approximately 15 times higher odds of achieving the MID after adjustment, again emphasizing the need to attempt LNSC normalization while on medical therapy (917).

As for anxiety, to date, no prospective study has assessed anxiety longitudinally using STAI, the gold standard for measuring and differentiating between trait and state anxiety (29). Our results confirm that anxiety improves after treatment; however, state and trait show different patterns. State anxiety was the only domain overall to improve significantly in the medical therapy group, while trait anxiety showed only a trend. Although age <40 predicted greater anxiety improvements in both, this remained significant only for state anxiety after adjustment in the logistic model. Trait anxiety improvements were predicted by longer postoperative HC replacement in the linear multivariable model, again suggesting that a shorter recovery time of the HPA axis may be an early indicator for identifying patients who require a closer follow-up. A normal LNSC at follow-up approached significance in the multivariable linear model, suggesting the importance of circadian rhythm recovery in trait anxiety improvement as well.

Across all measures, we found no baseline or outcome differences between pituitary and adrenal CS or between those on or off HC replacement at their last follow-up. Of note, our cohort was predominantly CD patients, and the small number of adrenal CS patients may limit the ability to detect a difference in the 2 cohorts.

Overall, discrepancies between mean change and MID achievement, as reflected in the linear and logistic models, respectively, highlight the importance of reporting both metrics when available, as they may capture different but clinically useful predictors.

We also observed differences between score change and MID achievement across different time groups within the same questionnaire. In STAI-State, G2 (12-18 months since most recent treatment) had greater score reductions than G3 (24 months or more posttreatment)—though change in G3 was nearly significant. However, a higher proportion of patients in G3 achieved MID. Looking at our data, G3 had the highest SD of mean change, indicating greater heterogeneity in treatment response, likely due to broader range of follow-up duration or higher medical therapy rates among patients: 45.5% (n = 10) in G3 vs 22.6% (n = 6) in G2% and 20% (n = 8) in G1. This variability in state anxiety is reflected in the subgroup of patients with 2 follow-up visits: those followed for >2 years showed no significant improvement, while those with <2 years did. Differential responses to long-term medical therapy, higher rates of loss to follow-up among postsurgical patients, or the negative impact of time on state anxiety symptoms may explain this. For BDI-II we used a percentage-based MID, which likely contributed to greater alignment with mean changes, and accounted for individual variability and baseline severity, factors especially relevant when applying generic tools in disease-specific contexts.

Of note, in the cohort overall, the mean follow-up score was within the normal range for depression (<14 for BDI-II) and anxiety (<40 for STAI) (41). This is an encouraging finding that, on average, patients with treated CS may have rates of depression and anxiety that are not clinically significant. Nevertheless, as shown in Table 2, rates of antidepressant, anxiolytic, pain, and sleep medication use did not decrease with treatment but instead were stable or increased numerically, although they were not statistically significant. Similarly, case-control studies have reported higher depression and anxiety levels in patients with CS in remission when compared to healthy controls, even if the mean scores were within the normal range for both groups (1542). Whether this difference is clinically significant still remains inconclusive. Taken together, these results emphasize the importance of multidisciplinary pituitary centers that integrate formal psychological services, including psychiatric care and social work support, to monitor and promote long-term mental health in this population.

Inclusion of both surgically and medically treated patients may be considered a limitation to the study, since it introduces heterogeneity in the cohort. However, including patients undergoing a range of treatments allows for analysis of CS cohorts as seen in a real-world practice rather than a controlled clinical trial setting, thus providing clinically valuable information. Another limitation of the study is the use of clinically available, rather than centralized, hormone assays, again introducing variability in our data. As this cohort included patients treated at our center, their endocrine testing followed standard of care, which did not include sending samples to a centralized laboratory. The use of antidepressants in a minority of patients could potentially affect depression scores. However, this is an unavoidable reality in patients with CS, and their use was stable over time (14.9% at baseline vs 19.4% at follow-up, P = .49). Given our prospective study design, which captured each patient’s change relative to their own baseline, and adjustment for baseline scores in multivariable models, any confounding is likely limited.

Despite these limitations, our data contribute to the literature as the largest clinical practice cohort to date that prospectively characterizes QoL and mood disturbances in CS patients, before and over time after achieving biochemical control. By incorporating 3 longitudinal time points, we identified that the greatest improvements occur within the first 6 months for QoL and anxiety, while depression improves more gradually beyond that point. Another strength of our approach is the use of score change and MID as outcomes when exploring potential predictors of improvement and not remission score per se, enabling more precise tracking of each patient’s progress and supporting an individualized approach by accounting for baseline severity.

In summary, this prospective analysis of mood and Qol in a clinical practice cohort of patients with CS showed that effective treatment of hypercortisolism improves depression, anxiety, and QoL, but one-third to one-half of patients do not experience clinically meaningful improvements in these measures. We identified predictors of improvement that highlight the need for early detection of CS and treatment strategies that allow for recovery of cortisol circadian rhythm. Psychological recovery in CS is heterogeneous, domain-specific, and not always aligned with biochemical normalization. Our findings support a model of care that extends beyond endocrine remission, integrating psychosocial follow-up and individualized treatment.

Acknowledgments

We would like to thank the people with Cushing’s syndrome who contributed their valuable time to this research.

Funding

This research was funded by the National Institutes of Health/National Cancer Institute Support Grant P30 CA008748.

https://academic.oup.com/jcem/advance-article/doi/10.1210/clinem/dgaf598/8307075?login=false

The Outcome of Abnormal Glucose Metabolism and Its Clinical Features in Patients With Cushing’s Disease After Curative Surgery

Abstract

Objective

To investigate the outcomes of abnormal glucose metabolism and its clinical characteristics in patients with Cushing’s disease (CD) who achieved biochemical remission after surgery.

Methods

Patients diagnosed with CD who achieved biochemical remission and underwent regular follow-up after surgery were enrolled. Pre- and postoperative clinical data were collected and analyzed.

Result

151CD patients were included, of whom 80 (53 %) had preoperative abnormal glucose metabolism, including 56 with diabetes mellitus (DM) and 24 with impaired glucose regulation (IGR). At one year after surgery, 57 patients exhibited improved glucose metabolism, accompanied by a significant reduction in the homeostasis model assessment of insulin resistance (HOMA-IR). Improvements were mainly observed at 3 and 6 months after surgery. At one-year after surgery, there were 20 patients with diabetes and 16 with IGR. Compared to those with NGT, these individuals exhibited a higher prevalence of hypertension, hyperlipidemia, fatty liver, and abnormal bone metabolism.

Conclusion

CD patients demonstrated a high incidence of abnormal glucose metabolism. Notably, approximately two-thirds demonstrated improved glucose metabolism one year after curative surgery, with the greatest improvements observed at 3- to 6-month postoperative follow-up.

Introduction

Cushing’s disease (CD) is characterized by excessive endogenous cortisol production caused by pituitary adrenocorticotropic hormone adenoma and is the main cause of Cushing’s syndrome (CS). Surgical resection of the tumor is the preferred treatment. Prolonged exposure to hypercortisolism increases the risk of metabolic abnormalities, including obesity, hypertension, glucose and lipid abnormalities, osteoporosis, etc. Additionally, it significantly elevates the risk of infection, thrombosis, and hypokalemia. Abnormal glucose metabolism is a common complication of CS, with an incidence ranging from 13.1 % to 47 %[1], and diabetes is an independent risk factor for mortality in CD patients[2].
Previous clinical studies have found that metabolic abnormalities such as diabetes, hypertension, and hyperlipidemia improve in CS patients who achieve biochemical remission after surgical treatment. However, the concept of improvement in glucose metabolism, the incidence of improvement, and its related factors are inconsistent in various reports. Previous studies primarily assessed the outcome of glucose metabolism based on plasma glucose results at a single fixed follow-up time after surgery. The lack of regular follow-up data makes it difficult to clearly understand the trend of postoperative plasma glucose changes, and there are no clinical data on when glucose metabolism begins to improve or change. Therefore, this study retrospectively analyzed the follow-up data of patients with Cushing’s disease in our hospital before and after surgery, and monitored the changes in glucose metabolism, to explore the characteristics and clinical features of such changes in patients with Cushing’s disease who achieved remission from CD following surgery..

Access through your organization

Check access to the full text by signing in through your organization.

Access through your organization

Section snippets

Subjects

This study enrolled hospitalized patients with Cushing’s disease at Huashan Hospital, Fudan University from January 2014 to February 2020. Inclusion criteria were as follows: (1) Age ≥ 18 years; (2) diagnosis of Cushing’s disease according to the 2021 Consensus on the Diagnosis and Management of Cushing’s Disease, confirmed by pathology[3]; (3) biochemical remission after transsphenoidal surgery; (4) complete preoperative data and regular follow-up visits (including visits at 1, 3, 6, and

Patients’ baseline characteristics

A total of 168 patients with CD were admitted to Huashan Hospital from 2014 to 2020 with pathological diagnosis and regular postoperative follow-up; however, 17 patients were excluded due to no biochemical remission after surgery or relapse during follow-up (Fig. 1). Ultimately, 151 patients (32 males and 119 females) were included in this study. The baseline characteristics of the included patients were shown in Table 1. There were 80 cases (53 %) complicated with abnormal glucose metabolism

Discussion

CD was a rare disease often associated with abnormal glucose metabolism. Based on medical history and OGTT screening, we found that over half (53 %) of CD patients exhibited abnormal glucose metabolism before surgery, with 37.1 % being diagnosed with diabetes. Previous studies have shown that the prevalence of diabetes in CS patients ranged from 13.1 % to 47 %, and most reports falling between 35 % and 45 %, which is consistent with our findings [1,12,13]. However, it should be noted that CD

Author contributions

Q.C. analyzed the data and wrote the manuscript. Q.C., Y.L., X.L., Q.S., W.S., and H.Z. collected the data. Y.L., Z.Z., M.H., S.Z., and H.Y. recruited patients. J.Z., Y.S., and S.Z. conducted the study design and revised the manuscript. All authors read and approved the final manuscript.

CRediT authorship contribution statement

Qiaoli Cui: Writing – review & editing, Writing – original draft, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Yujia Li: Writing – original draft, Investigation, Formal analysis, Data curation. Xiaoyu Liu: Investigation, Formal analysis, Data curation. Quanya Sun: Investigation, Data curation. Wanwan Sun: Investigation, Formal analysis, Data curation. Min He: Project administration, Investigation. Jie Zhang: Writing – review & editing, Supervision, Funding

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We are indebted to the patients who participated in this study and all the doctors who contributed to the diagnosis and treatment of these patients. This work was supported by grants from the Multidisciplinary Diagnosis and Treatment (MDT) demonstration project in research hospitals (Shanghai Medical College, Fudan University, NO: DGF501069/017), National Science and Technology Major Project (NO: 2023ZD0506800,2023ZD0506802), 2023 Ningbo International Cooperation Program (NO: 2023H024).

References (16)

  • R.N. Clayton et al.

    Mortality in patients with Cushing’s disease more than 10 years after remission: a multicentre, multinational, retrospective cohort study

    Lancet Diabetes Endocrinol

    (2016)
  • M. Fleseriu et al.

    Consensus on diagnosis and management of Cushing’s disease: a guideline update

    Lancet Diabetes Endocrinol

    (2021)
  • C. Scaroni et al.

    Glucose Metabolism Abnormalities in Cushing Syndrome: from Molecular Basis to Clinical Management

    Endocr Rev

    (2017)
  • C. Dai et al.

    Surgical outcome of transsphenoidal surgery in Cushing’s disease: a case series of 1106 patients from a single center over 30 years

    Endocrine

    (2022)
  • E. Valassi et al.

    Delayed remission after transsphenoidal surgery in patients with Cushing’s disease

    J Clin Endocrinol Metab

    (2010)
  • X. He et al.

    Glucocorticoid Withdrawal Syndrome following treatment of endogenous Cushing Syndrome

    (2022)
  • E.V. Varlamov et al.

    Perioperative Management of a Patient with Cushing Disease

    J Endocr Soc

    (2022)
  • Q. Cui et al.

    The recovery time of hypothalamic-pituitary-adrenal axis after curative surgery in Cushing’s disease and its related factor

    Endocrine

    (2023)
There are more references available in the full text version of this article.

High Recovery Rate of Adrenal Function After Successful Surgical Treatment of Cushing’s Syndrome

Abstract

Context

Successful first-line treatment of Cushing’s syndrome by resection of the underlying tumor is usually followed by adrenal insufficiency.

Purpose

The aims of this study were to determine the recovery rate and time to recovery of adrenal function after treatment for different forms of endogenous Cushing’s syndrome and to identify factors associated with recovery.

Methods

In this retrospective study of 174 consecutive patients with Cushing’s syndrome, the recovery rate and time to recovery of adrenal function after surgery were assessed.

Results

The 1-year, 2-year and 5-year recovery rates of patients with Cushing’s disease were 37.8, 70.1 and 81.1%, respectively. For patients with adrenal Cushing’s syndrome, the 1-year, 2-year and 5-year recovery rates were higher: 49.3, 86.9 and 91.3%, respectively. Median time to recovery for patients with Cushing’s disease and adrenal Cushing’s syndrome was 13.9 and 12.1 months, respectively. The median time to recovery of adrenal function in patients with Cushing’s disease with and without recurrence was 9.9 versus 14.4 months, respectively. Higher age was associated with a lower probability of recovery of adrenal function: HR 0.83 per decade of age (95% CI 0.70–0.98).

Conclusion

The recovery rate of adrenal function after successful surgery as first-line treatment in patients with Cushing’s syndrome is high. However, it may take several months to years before recovery of adrenal function occurs. In case of early recovery of adrenal function, clinicians should be aware of a possible recurrence of Cushing’s disease.

Introduction

Cushing’s syndrome (CS) is characterized by chronic exposure to an excess of glucocorticosteroids (1). Endogenous hypercortisolism is a rare disorder with an estimated incidence of 0.2–5 patients per million per year (1). CS can cause severe, disabling signs and symptoms and is associated with significantly increased morbidity and mortality. In approximately 70% cases, endogenous CS is caused by an ACTH-producing pituitary adenoma, also known as Cushing’s disease (CD). In 15–25% cases, an ACTH-independent form of CS is caused by a unilateral adrenal adenoma, adrenal carcinoma or bilateral micro- or macronodular hyperplasia (adrenal CS). An ACTH-producing ectopic tumor is a rare cause of CS. First-line treatment of CS is surgical removal of the pituitary, adrenal or ectopic tumor (12).

Successful first-line treatment by resection of the underlying tumor is usually followed by adrenal insufficiency (AI) due to suppression of the hypothalamic–pituitary–adrenal axis after prolonged exposure to high concentrations of cortisol (345). Theoretically, one would expect that the hypothalamic–pituitary–adrenal axis recovers over time and that the substitution of glucocorticosteroids can slowly be reduced and stopped as long as there is no irreversible damage to the remaining adrenal or pituitary tissue. However, in clinical practice, AI is not always transient. In a subset of patients, this is caused by permanent AI due to perioperative damage to the pituitary gland or irreversible atrophy of the contralateral adrenal gland. In other cases, tapering the dosage of glucocorticosteroids is not possible because this causes worsening of symptoms. Despite the glucocorticoid replacement therapy, patients often experience symptoms resembling AI, such as fatigue, myalgia, arthralgia, depression, anxiety and decreased quality of life, also known as glucocorticoid withdrawal syndrome (GWS) (6). GWS is caused by dependence on supraphysiologic glucocorticoid concentrations after chronic exposure to high concentrations of glucocorticoids, which can complicate and delay the withdrawal of exogenous steroids. As a result, patients and physicians often struggle with a dilemma: on the one hand, lowering the cortisol substitution is necessary to enable functional recovery of the hypothalamic–pituitary–adrenal axis. On the other hand, lowering the substitution therapy often causes worsening of symptoms. In clinical practice, it is not always possible to completely taper the substitution of steroids due to GWS, even in spite of intensive guidance and support by the treating physician, specialized nurse and other healthcare professionals. Moreover, in patients remaining on glucocorticoid replacement, it is not always clear whether the failure to recover from AI is caused by the irreversible damage of the remaining pituitary or adrenal tissue or the failure to overcome the GWS. The time after which adrenal function recovers and substitution therapy can be tapered off varies largely between patients but may take several years (7).

A recent survey among patients with CS highlighted the need of patients for better information about the difficult post-surgical course (8). However, scientific data about this post-operative period, particularly regarding the recovery rate and time to recovery from AI are scarce (91011121314151617181920). Because of the rarity of CS, most studies are hampered by a limited number of patients. The reported recovery rates of adrenal function after first-line treatment for CS vary widely, between 37 and 93% for CD (910111213) and between 38 and 93% for overt adrenal CS (101214151617).

The reported duration to recovery of the hypothalamic–pituitary–adrenal axis after CD and adrenal CS also varies widely, between 13 and 25 months after CD (910111319) and between 11 and 30 months in overt adrenal CS (101415161820).

Factors which influence the recovery rate and the duration to recovery of adrenal function are not entirely clear. A few studies reported a lower chance of recovery and a longer duration to recovery of adrenal function in patients who are younger, have more severe hypercortisolism, and longer duration of symptoms before diagnosis, whereas other studies could not confirm these findings (101321). By contrast, other studies reported a higher chance of recovery in younger patients (21). Identification of these factors may help provide patients with more information about the expected post-surgical course.

Therefore, the aims of the present study were to assess the recovery rate and time to recovery of adrenal function after successful first-line treatment in the different subtypes of CS in a large series of consecutive patients treated at a tertiary referral center and to identify factors associated with recovery.

Methods

Patients

The medical records of adult and pediatric patients treated for CS at Radboud University Medical Center, Nijmegen, between 1968 and 2022 were examined retrospectively. This is a tertiary referral hospital where practically all cases of CS from the large surrounding geographic area are managed. All patients with CD, adrenal CS and ectopic CS who were in remission and developed AI after first-line surgical treatment were included. Exclusion criteria were bilateral adrenalectomy as first-line treatment, adrenocortical carcinoma, radiotherapy of the pituitary gland before surgery, pituitary carcinoma and the therapeutic use of corticosteroids for conditions other than AI. Data were collected on age, sex, body mass index (BMI), duration of CS symptoms, comorbidities, the use of medication, biochemical results at diagnosis and during follow-up, preoperative imaging, surgical treatment and histology.

The study was assessed by the Committee for Research with Humans, Arnhem/Nijmegen Region and the need for written approval by individual patients was waived since this study did not fall within the remit of the Medical Research Involving Human Subjects Act (WMO). The study has been reviewed by the ethics committee on the basis of the Dutch Code of conduct for health research, the Dutch Code of conduct for responsible use, the Dutch Personal Data Protection Act and the Medical Treatment Agreement Act. The ethics committee has passed a positive judgment on the study. The procedures were conducted according to the principles of the Declaration of Helsinki.

Diagnostics and definitions

Patients were diagnosed with CS according to the guidelines available at the time, i.e., the presence of signs and symptoms of hypercortisolism in combination with confirmatory biochemical tests, including the 1 mg dexamethasone suppression test (DST), 24-h urine free cortisol (UFC), late-night salivary cortisol concentrations and/or hair cortisol. The cutoff value for adequate cortisol suppression after the DST was <50 nmol/L (22). For UFC, the times upper limit of normal was calculated because several assays with different reference values were used over time.

First-line treatment consisted of pituitary surgery in patients with CD and unilateral adrenalectomy in patients with ACS. In patients with bilateral macronodular hyperplasia, adrenalectomy of the largest adrenal was performed after carefully outweighing the risks and benefits of surgery together with the patient, taking into account factors such as age, severity of symptoms, comorbidities associated with hypercortisolism (e.g., diabetes mellitus type 2, cardiovascular disease, osteoporosis) and the severity of the hypercortisolism (2).

Peri- and postoperatively, all patients received glucocorticoid stress dosing, which was tapered off within a few days after surgery. Adrenal function was initially evaluated with a postoperative morning fasting cortisol concentration, measured at least 24 h after the last dose of hydrocortisone or cortisone acetate, within 7 days after surgery. If the postoperative morning fasting cortisol was <200 nmol/L, the patient was considered to have AI and glucocorticoid replacement therapy was continued. The starting dose was usually hydrocortisone 30 mg once daily (or an equivalent dose of cortisone acetate in the early years). For children, the dose was weight-based. Afterwards, the dose was slowly tapered off according to the symptoms/well-being of the patient and fasting cortisol values. During follow-up, the dose was usually divided into two or three doses a day.

Remission of CS after treatment was defined as either a morning cortisol of ≤50 nmol/L, adequate cortisol suppression after DST or a late-night salivary cortisol concentration within the reference range. Duration of AI was defined as the time between surgery and discontinuation of glucocorticoid replacement therapy. Complete recovery of adrenal function was assessed by spontaneous fasting cortisol concentration, an insulin tolerance test or a 250 μg ACTH stimulation test after discontinuation of glucocorticoid replacement therapy. In cases where fasting morning cortisol ≥520 nmol/L, adrenal function was considered as completely recovered. For the dynamic tests, assay-dependent cutoff values were used according to the guidelines available at the time. The dynamic tests were not performed routinely in all patients until 1999. In patients for whom no dynamic tests (results) were available, complete recovery of AI was defined as complete discontinuation of replacement therapy. Recurrence of CS was defined as the presence of signs and symptoms of hypercortisolism in combination with confirmatory biochemical tests, including the 1 mg DST, 24-h UFC, late-night salivary cortisol concentrations and/or hair cortisol.

Statistical analysis

Continuous data were expressed as mean ± SD or median + interquartile range (IQR), and categorical data were presented as frequency (n) and percentage (%). We produced Kaplan–Meier curves to determine the unadjusted probability of recovery of adrenal function over time. Patients that tapered off and completely stopped the glucocorticoid replacement therapy were assigned in the survival analyses as having an event (=recovery of adrenal function). The date of the last follow-up visit was assigned in the survival analyses as the last date and patients that were lost to follow-up or developed a recurrence before stopping the glucocorticoid replacement therapy were censored. In order to identify factors associated with recovery of adrenal function, we compared Kaplan Meier curves between several subgroups of patients: CD versus adrenal CS versus ectopic CS, age (at diagnosis) groups of ≤35 versus 36–55 versus ≥56 years old, patients with or without postoperative pituitary deficiencies, patients with or without recurrence of CS during follow-up, patients with or without preoperative medical treatment (PMT), patients operated before versus after 2010 and patients with a low versus slightly higher post-operative morning cortisol (<100 nmol/L versus 100–200 nmol/L), measured within 7 days after surgery. The Kaplan–Meier curves of the subgroups were compared using the two-sided log-rank test. The P-value ≤0.05 was considered statistically significant. The Kaplan–Meier curves provided the 1-year, 2-year and 5-year recovery rates and the median time to recovery of the adrenal gland. We used Cox proportional hazards models to calculate hazard ratios (HRs) with a 95% confidence interval (CI) of the probability of recovery of adrenal function over time in order to identify factors associated with recovery of adrenal function (univariate analyses). Cox proportional hazards models with multivariate analyses were performed to calculate the adjusted HRs with 95% CI. The model of multivariate analysis for the whole group included the variables: etiology of CS, age, sex, BMI, duration of symptoms before diagnosis, UFC and postoperative cortisol 0.10–0.20 versus <0.10 mcmol/L. The model of multivariate analysis for the patients with CD only included the variables: etiology of CD, age, sex, BMI, duration of symptoms before diagnosis, UFC, post-operative cortisol 0.10–0.20 versus <0.10 mcmol/L, PMT, hormonal deficiencies of the anterior pituitary gland other than AI and micro/macroadenoma. A 95% CI not including 1 was considered statistically significant.

All statistical analyses were performed using STATA version 11 (StataCorp, USA).

Results

In total, 174 patients were included in the analysis. The assessment of eligibility, the number of patients excluded from this study and the reasons for exclusion are shown in Fig. 1. The baseline characteristics are described in Table 1. The median follow-up was 6.8 years (IQR: 2.2–12.6). In 69.6% (94/135) of all patients who discontinued their glucocorticoid replacement therapy, the recovery of adrenal function was confirmed with a dynamic test or a morning cortisol concentration ≥520 nmol/L.

Figure 1View Full Size
Figure 1
Flowchart showing the assessment for eligibility, the number of patients excluded from the study and the reasons for exclusion.

Citation: Endocrine Connections 14, 5; 10.1530/EC-24-0612

Table 1Baseline characteristics.

Variable All patients CD Adrenal CS
Participants (n) 174 135 35
Female (%) 135/174 (77.6%) 102/135 (75.6%) 32/35 (91.4%)
Median age at diagnosis (y) 44 (35–55) 43 (32–55) 47 (36–54)
Median BMI at diagnosis (kg/m2) 28.3 (24.7–32.4) 28.6 (24.7–32.9) 28.0 (26.0–31.8)
Median duration of symptoms before diagnosis of CS (years) 3.0 (1.0–5.6) 3.0 (1.0–6.0) 3.5 (1.5–5.6)
Median times upper limit of normal UFC at diagnosis 3.7 (1.9–5.8) 3.9 (2.0–6.4) 2.4 (1.4–4.1)
Median cortisol after DST (nmol/L) 480 (320–630) 460 (290–620) 550 (330–710)
Median salivary cortisol at diagnosis (nmol/L) 8.6 (5.4–15.4) 10.1 (5.9–18.0) 6.1 (4.0–8.9)
Median follow up (years) 6.8 (2.2–12.6) 8.4 (3.0–13.5) 2.2 (1.2–4.7)
Preoperative medical therapy* (n) 120/174 (69%) 106/135 (78.5%) 10/35 (28.6%)
Pituitary microadenoma/macroadenoma/no adenoma detected on MRI scan (n) 64/27/28**
Bilateral disease (n) 7/35 (20.0%)

CD, Cushing’s disease; CS, Cushing’s syndrome; BMI, body mass index; UFC, 24-h urine free cortisol; DST, 1 mg dexamethasone suppression test. Continuous data are summarized as median and interquartile ranges. Categorical data are presented as frequencies and percentages.

*Cortisol-lowering medication, either metyrapone or ketoconazole.

**Missing data on MRI in 16 patients.

Recovery rates and recovery times of adrenal function

The probability of recovery of AI for CD, adrenal CS and ectopic CS are depicted in Fig. 2. The 1-year, 2-year and 5-year recovery rates of adrenal function for the entire cohort were 40.1, 73.4 and 83.3%, respectively. The median time to recovery of adrenal function was 13.9 months. The 1-year, 2-year and 5-year recovery rates of patients with CD were 37.8, 70.1 and 81.1%, respectively. The median recovery time was 13.9 months for patients with CD. For patients with adrenal CS, the 1-year, 2-year and 5-year recovery rates were higher: 49.3, 86.9 and 91.3%, respectively (two-sided log-rank test: P = 0.14). The median recovery time for patients with adrenal CS was 12.1 months. Seven out of the 35 patients with adrenal Cushing had bilateral disease. The median time to recovery in patients with bilateral disease was 17.5 versus 11.0 months in patients with unilateral disease.

Figure 2View Full Size
Figure 2
Cumulative probability of recovery of adrenal function in CD (n = 135), adrenal CS (n = 35) and ectopic Cushing (n = 4).

Citation: Endocrine Connections 14, 5; 10.1530/EC-24-0612

Of the 15 evaluated patients with ectopic CS, only four patients underwent successful resection of the ectopic tumor and were included in our study. All four patients had a neuroendocrine tumor of the lung and recovered from AI. The time to recovery of adrenal function was known in three patients: 5.7, 7.9 and 14.5 months.

Factors associated with recovery of adrenal function

Age at diagnosis

Figure 3 shows the Kaplan–Meier curves of three different age groups (group 1: 0–35 years old, group 2: 36–55 years old and group 3: 56–100 years old). The 1-year recovery rates of patients aged between 0–35, 36–55 and 56–100 years old were 54.6, 37.2 and 31.4%, respectively. The 2-year recovery rates were 79.3, 72.6 and 68.4%, respectively and the 5-years recovery rates were 89.6, 83.8 and 75.1%, respectively. The median times to recovery of adrenal function of patients aged between 0–35, 36–55 and 56–100 years old were 11.2, 13.4 and 17.6 months, respectively. The probability of recovery of AI was higher in young patients (0–35 years old) (two-sided log-rank test: P = 0.05).

Figure 3View Full Size
Figure 3
Cumulative probability of recovery of adrenal function by age groups.

Citation: Endocrine Connections 14, 5; 10.1530/EC-24-0612

Recurrence after primary treatment

In total, 17.8% patients with CD (24/135) had developed a recurrence during follow-up. Figure 4 shows the Kaplan–Meier curves with the probability of recovery of AI of the groups with and without recurrence during follow-up in patients with CD. The probability of recovery of AI was higher in patients with a recurrence (two-sided log-rank test: P-value = 0.02). In patients with a recurrence, the 1-, 2- and 5-year recovery rates of AI were 60.9, 78.3 and 87.0%, respectively. In patients without a recurrence, the 1-, 2- and 5-years recovery rates of AI were 32.6, 68.3 and 79.7%, respectively. The median time to recovery of adrenal function in patients with CD with and without recurrence was 9.9 versus 14.4 months, respectively.

Figure 4View Full Size
Figure 4
Cumulative probability of recovery of adrenal function by recurrence during follow-up in patients with CD.

Citation: Endocrine Connections 14, 5; 10.1530/EC-24-0612

There was only one patient with adrenal CS with a recurrence. This was a patient with bilateral macronodular hyperplasia. During the first surgery, the largest adrenal was removed. However, 3 years later, the contralateral adrenal was also removed because of the recurrence of CS.

Hypopituitarism after pituitary surgery

In patients with CD, we performed a sub-analysis based on the presence of anterior pituitary deficiencies after pituitary surgery for CD, besides AI. Antidiuretic hormone (ADH) deficiency was not included in this analysis. As expected after pituitary surgery and in line with the literature, temporary ADH deficiency occurred in a substantial part of the patients after surgery (23). Therefore, only central hypothyroidism, hypogonadotropic hypogonadism and growth hormone deficiency were taken into account (Fig. 5). The probability of recovery of AI was lower in patients with one or more pituitary deficiencies versus patients with intact pituitary function after surgery (two-sided log-rank test: P-value = 0.05). In patients with anterior pituitary deficiencies, the 1-, 2- and 5-years recovery rates of AI were 35.6, 60.4 and 67.6%, respectively. In patients without anterior pituitary deficiencies, the 1-, 2- and 5-years recovery rates of AI were 39.2, 76.0 and 89.1%, respectively. The median time to recovery of adrenal function in patients with CD with and without anterior pituitary deficiencies was 15.9 versus 13.4 months, respectively. Figure 6 shows the Kaplan–Meier curves by the number of hormonal deficiencies of the anterior pituitary gland, other than AI. Although statistical significance was not reached, there is a trend showing that the more postoperative hormonal deficiencies present, the lower the probability of recovery of AI is (two-sided log-rank test: P-value = 0.15).

Figure 5View Full Size
Figure 5
Kaplan–Meier curve by the presence/absence of hormonal deficiencies of the anterior pituitary gland (other than AI) after surgery in patients with CD.

Citation: Endocrine Connections 14, 5; 10.1530/EC-24-0612

Figure 6View Full Size
Figure 6
Kaplan–Meier curve by the number of hormonal deficiencies of the anterior pituitary gland after surgery in patients with CD.

Citation: Endocrine Connections 14, 5; 10.1530/EC-24-0612

Preoperative cortisol-lowering medical therapy, year of surgery and fasting cortisol concentration at the initial postoperative evaluation

Sub-analyses regarding patients who received PMT versus patients without PMT did not show any difference in the probability of recovery. In patients without PMT, the 1-, 2- and 5-years recovery rates of AI were 42.6, 77.6 and 85.2%, respectively. In patients with PMT, the 1-, 2- and 5-years recovery rates of AI were 41.6, 73.7 and 82.3%, respectively. The median time to recovery of adrenal function in patients without PMT and with PMT was 14.1 versus 13.5 months, respectively.

Sub-analyses regarding patients operated on before versus after 2010, regarding the results of the 1 mg dexamethasone suppression test at diagnosis and regarding patients with a low versus slightly higher postoperative morning cortisol within 7 days after surgery (<100 versus 100–200 nmol/L) also did not show any difference in the probability of recovery of adrenal function.

Table 2 shows HRs of univariate and multivariate Cox regression analyses. Adrenal CS and ectopic CS were associated with a higher probability of recovery of AI in comparison with patients with CS. Higher age was associated with a lower probability of recovery of AI.

Table 2Uni- and multivariate Cox regression analyses.

Variable Univariate Cox regression Multivariate Cox regression
HR 95% CI P value HR 95% CI P value
Etiology of CS (CD/adrenal CS/ectopic) 1.44 1.00–2.08 0.05 1.76 1.11–2.80 0.02
Etiology of CS (CD/adrenal CS) 1.42 0.91–2.22 0.12
Age (decades) 0.81 0.71–0.93 0.002 0.83 0.70–0.98 0.03
Sex (male/female) 1.02 0.68–1.55 0.92 0.74 0.46–1.20 0.22
BMI (kg/m2) 1.00 0.97–1.02 0.81 1.01 0.97–1.05 0.61
Duration of symptoms before diagnosis (years) 0.95 0.90–1.01 0.08 0.95 0.89–1.01 0.09
UFC (ULN) 1.03 0.99–1.07 0.15 1.01 0.97–1.05 0.57
Post-operative cortisol 0.10–0.20 versus <0.10 mcmol/L 0.92 0.56–1.50 0.73 1.16 0.58–2.30 0.67
In patients with CD only
PMT (no/yes) 1.23 0.75–2.02 0.40 1.26 0.53–3.02 0.60
Hormonal deficiencies of the anterior pituitary gland, other than AI (no/yes) 0.65 0.43–0.99 0.05 0.67 0.40–1.11 0.12
Micro/macroadenoma 1.13 0.70–1.83 0.62 1.42 0.79–2.52 0.24

PMT, preoperative medical treatment; HR, hazard ratio; CI, confidence interval; CS, Cushing’s syndrome; CD, Cushing’s disease; BMI, body mass index; UFC (ULN), times upper limit 24-h urine free cortisol; AI, adrenal insufficiency. The model of multivariate analysis for the whole group included the variables: etiology of CD, age, sex, BMI, duration of symptoms before diagnosis, UFC and postoperative cortisol 0.10–0.20 versus <0.10 mcmol/L. The model of multivariate analysis for the patients with CD only included the variables: etiology of CD, age, sex, BMI, duration of symptoms before diagnosis, UFC, postoperative cortisol 0.10–0.20 versus <0.10 mcmol/L, preoperative medical treatment, hormonal deficiencies of the anterior pituitary gland other than AI and micro/macroadenoma.

Discussion

In this study, we investigated the recovery rate of adrenal function and time to recovery after first-line treatment in patients with CS. The main finding is that the recovery rates of adrenal function are high. However, it may take several months to years before recovery of adrenal function occurs.

Patients with adrenal CS had higher recovery rates than patients with CD. This can be explained by the fact that the cortisol excess is generally less severe in adrenal CS and the fact that one adrenal gland remains completely intact after unilateral adrenalectomy. By contrast, patients who undergo pituitary surgery are at risk of developing new pituitary hormone deficiencies, including corticotrope deficiency, due to permanent structural damage to the pituitary gland. Our finding that patients with additional pituitary deficiencies after surgery for CD had lower recovery rates of adrenal function supports this hypothesis.

The recovery rates of adrenal function in CD, as well as in adrenal CS, are higher than what was reported in some previous studies (101112), but are similar to other reports (13151718). As shown in Table 3, it is difficult to compare previous studies because they all differ in design, study population and inclusion and exclusion criteria. For example, Berr et al. and Klose et al. used a different cutoff value of postoperative cortisol (<100 nmol/L) than we did (<200 nmol/L) to define initial AI shortly after surgery. However, only 25 patients in our cohort had a postoperative morning cortisol between 100 and 200 nmol/L and sub-analysis of patients with a morning cortisol <100 nmol/L versus patients with a morning cortisol between 100 and 200 nmol/L did not show any difference in recovery rate or time. Another difference between studies is the strategy for tapering off and stopping glucocorticoids in the postoperative period. In our study, patients started with 30 mg hydrocortisone per day after surgery. One might expect that a higher dose of hydrocortisone leads to a longer time to recovery of adrenal function. However, there are no data or evidence-based guidelines regarding the best strategy for tapering off and stopping glucocorticoids in the postoperative period.

Table 3Overview of previous studies regarding recovery of adrenal function after surgery in patients with CS.

Author n, etiology Recovery rate AI Time to recovery, years Follow up years Definition of AI/remission Substitution therapy (start doses) Recurrence rate (CD)
Alexandraki, 2013 (8) 131 CD 49/81 (60.5%) during follow up Median 1.5 years Minimum 6 years, mean 15.9 ± 6 years Postoperative cortisol ≤50 nmol/L Prednisolone 5 + 2 mg or HC 20 mg in divided doses 22.7% (microadenoma) 33.3% macroadenoma
Berr, 2015 (9) 5-year: Median: Mean 8.2 years Morning cortisol ≤100 nmol/L HC 40–50 mg/day
54 CD CD: 58% CD: 1.4 years CD: 7.0 years
26 ACS ACS: 38% ACS: 2.5 years ACS: 8.5 years
11 ECS ECS: 82% ECS: 0.6 years ECS: 13.5 years
Serban, 2019 (12) 61 CD 5-year: Median 1.6 years Minimum 3 years, median 6 years Morning cortisol ❤ μg/dL or cortisol after 250 μg synacthen test <18 μg/dL Cortisone acetate 25 mg, divided in 2–3 doses 16.4%
Persistent remission: 55.8% 2.1 years
Recurrence: 100% 1.0 years
Ciric 2012 (10) 86 CD 59.3% during follow up Mean 1.1 years Minimum 0.5 years, mean 5.7 years Drop in immediate postoperative cortisol, range <0.5–5.3 µg/dL and symptoms No specific unified algorithm 9.7%
Klose, 2004 (11) 2-year: Median: Post-operative cortisol <100 nmol/L and/or UFC <50 nmoL/24h Hydrocortisone 20–30 mg/day
18 CD CD: 67% CD: 2 years CD: 22.2%
14 ACS ACS: 79% ACS: 2 years ACS: 0%
Prete, 2017 (18) Median: Minimum 2 years Postoperative morning serum cortisol <5 μg/dL/138 nmol/L Hydrocortisone 20–30 mg/day in divided in 2–3 doses Patients with recurrence were excluded
15 CD CD: 1.3 years CD: median 5.8 years
31 ACS ACS: 0.8 years ACS: Median 4.0 years
 14 overt ACS Overt ACS: 1.5 years
 17 subclinical ACS Subclinical ACS: 0.5 years
Hurtado, 2018 (14) 81 ACS 87.8% during follow up Median ACS: 0.4 years Median ACS: 1.2 years Postoperative morning (day 1) serum cortisol <10 μg/dL/276 nmol/L or hemodynamic instability or received perioperative GC due to anticipated AI after unilateral adrenalectomy Prednisone or hydrocortisone, median hydrocortisone-equivalent dose 40 mg/day
 27 severe CS Severe: 1.0 years Severe: 1.0 years
 24 moderate CS Moderate: 0.2 years Moderate: 1.0 years
 30 MACE MACE: 0.2 years MACE: 1.5 years
Dalmazi, 2014 review on adrenal function after adrenalectomy for subclinical CS, 28 studies (17) ACS: 376 overt ACS 141 subclinical ACS Overt ACS: 93.4% subclinical ACS: 97.9% Mean overt ACS: 0.9 years subclinical ACS 0.5 years

CD, Cushing’s disease; ACS, adrenal Cushing’s syndrome; ECS, ectopic Cushing’s syndrome; AI, adrenal insufficiency; Subclin: subclinical; MACE, mild autonomous cortisol excess.

One might also hypothesize that the studies reporting high recurrence rates are related to higher recovery rates in CD patients. In our study, the recurrence rate was 17.8%, which is in line with previous studies (91324). The establishment of recovery of adrenal function in patients with a recurrence later on is a difficult matter: despite the exclusion of patients with immediate obvious persistent disease in our study, recovery of glucocorticoid secretion in patients who developed a recurrence later on could be an early manifestation of recurrence instead of true recovery of physiological adrenal function. A striking finding in this study, in line with the aforementioned hypothesis, was the considerably higher 1-year recovery rate and the shorter time to recovery of patients with a recurrence in comparison to patients without a recurrence. Recovery of adrenal function is more rapid in patients with recurrences (1325). These findings imply that in case of an early recovery of adrenal function, clinicians should be aware of a possible recurrence of CD.

Another difference between studies is the inclusion or exclusion of patients with mild autonomous cortisol secretion (MACS), formerly known as subclinical CS. Previous studies have shown that patients with subclinical CS have a higher probability of recovery and a shorter duration of AI (14151618). In our study, only two patients were diagnosed with subclinical CS (in this study characterized as inadequate suppression after DST in combination with values of UFC within the reference range) and therefore subgroup analysis was not possible.

In the present study, a rather high number of patients received PMT in comparison to other studies. In our institution, it was common practice to start PMT 3 months before pituitary surgery in patients with CD with the aim to improve hemostasis and other Cushing-related comorbidities, although the benefit of PMT has not yet been well established by randomized controlled trials. At the liberty of the treating physician, the dose of ketoconazole or metyrapone was titrated with the aim to normalize the 24-h UFC excretion. The doses needed to achieve normal 24-h UFC and the time to normalization of 24-h UFC varied between patients.

One could hypothesize that lowering cortisol levels during the weeks to months before surgery may result in a faster recovery of adrenal function. However, this was not the case in this study.

Overall, the present study shows a high recovery rate of adrenal function after treatment for CS. The time until recovery is partly dependent on the strategy and success of tapering off of glucocorticoids replacement and therefore may be very long because of GWS. These are meaningful findings. Tapering glucocorticoid substitution in parallel with the recovery of cortisol secretion after surgery for CS is often a challenging and lengthy trajectory for both patients and physicians. The lack of standardization of the follow-up and of the tapering protocols, the need for constant shared decision-making and personalized support for patients, particularly of those who are also confronted with severe associated comorbidities and unpredictable withdrawal symptoms, may discourage patients and physicians from proceeding in this endeavor. Given the rarity of the disease, knowledge on this topic is scarce. Previous, mainly smaller studies reported a wide range of recovery rates of adrenal function after first-line treatment for CS (varying between 37 and 93% for CD, and for overt adrenal CS between 38 and 93%) (10111213151718). The rather low percentages of recovery of adrenal function in some of these previous studies could discourage patients and physicians to persevere the attempt to taper off hydrocortisone. Our findings in a large cohort of patients with CS, including a sizable subgroup of patients with CD, allow us to deepen the multivariate analysis to uncover factors that are associated with a better chance of recovery. The data indicate that in this real-life setting, despite the long time to achieve recovery, the recovery rates are high and while this occurs for most of the patients within 1–2 years after treatment, recovery is still possible even after a longer follow-up. Moreover, this study showed that the recovery rate is higher in patients with adrenal CS versus CD, in younger patients and in patients with CD with preserved pituitary function after pituitary surgery. These findings are very important for clinical practice. They highlight the importance of continuing to taper off the glucocorticoids, if necessary slowly and steadily, in the years after surgery. They also help us better inform the patients beforehand and to improve the management and the expectations of both patients and physicians to motivate them to persevere in tapering of the glucocorticosteroids while considering the factors such as those identified to influence the chance of recovery during their personalized counseling and guidance of the patients in this often very difficult and lengthy period.

In our institution, it is common practice to counsel and provide guidance intensively to patients in this difficult period, both by the treating physician and a specialized nurse, as we consider this coordinated guidance of utmost importance. Moreover, all patients are provided with contact details so that they can reach to us for advice 24 h a day, either by phone or by secure email throughout this process. When indicated, patients are referred to other healthcare professionals such as psychologists, physical therapists, social workers and other specialists.

One important strength of our study is the large size of our single-center cohort, considering the rarity of the disease. This has also allowed us to do subgroup analyses and assess factors associated with recovery from postoperative AI. The limitations include the retrospective character of this study and the fact that patients were included over a long period of time (1968 to 2022) during which diagnostic tools and management protocols for CS have somewhat changed over this period of time. We have tried to mitigate the limitations that are inevitable with a retrospective study by being thorough and extensive in the quality and amount of data that we were able to collect. In addition to that, the diagnostic assessment and the treatment of the patients followed very strict and uniform protocols in conformity with the internationally recognized clinical guidelines available at the time. On the other hand, the fact that this represents a real-life study renders the results more relatable for clinical practitioners and strengthens its impact.

We collected data from medical records regarding the duration of CS-related signs and symptoms before diagnosis, as mentioned by the patient during history taking. We are well aware that these data are rather subjective and dependent on the accuracy of the recollection of the patient. However, this is the only way to assess the duration of symptoms before diagnosis. In our opinion, these data still could be very valuable.

In conclusion, our study shows that the large majority of patients with CS recover their adrenal function after first-line surgical treatment, even though the time to recovery may take several months to years. Informing patients beforehand and providing support, encouragement and guidance in this process is therefore paramount. Herewith, one could consider factors such as the age of the patient, the etiology of CS and the presence of additional pituitary deficiencies after pituitary surgery. In case of an early recovery of adrenal function, clinicians should be aware of a possible recurrence of CD. Future studies should establish the optimal postoperative management for CS to improve the chance for success of recovery of adrenal function.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the work reported.

Funding

This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

References

Insights on Diagnosing and Managing Cushing’s Syndrome

Cushing’s syndrome, or endogenous hypercortisolemia, is a rare condition that both general practice clinicians and endocrinologists should be prepared to diagnose and treat. Including both the pituitary and adrenal forms of the disease, the Endocrine Society estimates that the disorder affects 10 to 15 people per million every year in the United States. It is more common in women and occurs most often in people between the ages of 20 and 50.

Even though Cushing’s remains a rare disease, cortisol recently made waves at the American Diabetes Association 84th Scientific Session. A highlight of the meeting was the initial presentation of data from the CATALYST trial, which assessed the prevalence of hypercortisolism in patients with difficult-to-control type 2 diabetes (A1c 7.5+).

CATALYST is a prospective, Phase 4 study with two parts. In the prevalence phase, 24% of 1,055 enrolled patients had hypercortisolism, defined as an overnight dexamethasone suppression test (ODST) value greater than 1.8 µg/dL and dexamethasone levels greater than 140 µg/dL. Results of CATALYST’s randomized treatment phase are expected in late 2024.

Elena Christofides, MD, FACE, founder of Endocrinology Associates, Inc., in Columbus, OH, believes the CATALYST results will be a wake-up call for both physicians and patients seeking to advocate for their own health. “This means that nearly 1 in 4 patients with type 2 diabetes have some other underlying hormonal/endocrine dysfunction as the reason for their diabetes, or significant contribution to their diabetes, and they should all be screened,” she said. “All providers need to get comfortable with diagnosing and treating hypercortisolemia, and you need to do it quickly because patients are going to pay attention as well.”

In Dr. Christofides’ experience, patients who suspect they have a hormonal issue may start with their primary care provider or they may self-refer to an endocrinologist. “A lot of Cushing’s patients are getting diagnosed and treated in primary care, which is completely appropriate. But I’ve also met endocrinologists who are uncomfortable diagnosing and managing Cushing’s because it is so rare,” she said. “The important thing is that the physician is comfortable with Cushing’s or is willing to put in the work get comfortable with it.”

According to Dr. Christofides, the widespread popular belief that “adrenal fatigue” is causing millions of Americans to feel sick, tired, and debilitated may be creating barriers to care for people who may actually have Cushing’s. “As physicians, we know that adrenal fatigue doesn’t exist, but we should still be receptive to seeing patients who raise that as a concern,” said Dr. Christofides. “We need to acknowledsalige their lived experience as being very real and it can be any number of diseases causing very real symptoms. If we don’t see these patients, real cases of hypercortisolemia could be left undiagnosed and untreated.”

Dr. Christofides, who also serves as a MedCentral Editor-at-Large, said she reminds colleagues that overnight dexamethasone suppression test (ODST) should always be the first test when you suspect Cushing’s. “While technically a screening test, the ODST can almost be considered diagnostic, depending on how abnormal the result is,” she noted. “But I always recommend that you do the ODST, the ACTH, a.m. cortisol, and the DHEAS levels at the same time because it allows you to differentiate more quickly between pituitary and adrenal problems.”

Dr. Christofides does see a place for 24-hour urine collection and salivary cortisol testing at times when diagnosing and monitoring patients with Cushing’s. “The 24-hour urine is only positive in ACTH-driven Cushing’s, so an abnormal result can help you identify the source, but too many physicians erroneously believe you can’t have Cushing’s if the 24-hour urine is normal,” she explained. “Surgeons tend to want this test before they operate and it’s a good benchmark for resolution of pituitary disease.” She reserves salivary cortisol testing for cases when the patient’s ODST is negative, but she suspects Cushing’s may be either nascent or cyclical.

Surgical resection has long been considered first-line treatment in both the pituitary and adrenal forms of Cushing’s. For example, data shared from Massachusetts General Hospital showed that nearly 90% of patients with microadenomas did not relapse within a 30-year period. A recent study found an overall recurrence rate of about 25% within a 10-year period. When reoperation is necessary, remission is achieved in up to 80% of patients.

As new medications for Cushing’s syndrome have become available, Dr. Christofides said she favors medical intervention prior to surgery. “The best part about medical therapy is you can easily stop it if you’re wrong,” she noted. “I would argue that every patient with confirmed Cushing’s deserves nonsurgical medical management prior to a consideration of surgery to improve their comorbidities and surgical risk management, and give time to have a proper informed consent discussion.”

In general, medications to treat Cushing’s disease rely on either cortisol production blockade or receptor blockade, said Dr. Christofides. Medications that directly limit cortisol production include ketoconazoleosilodrostat (Isturisa), mitotane (Lysodren), levoketoconazole (Recorlev), and metyrapone (Metopirone). Mifepristone (Korlym, Mifeprex) is approved for people with Cushing’s who also have type 2 diabetes to block the effects of cortisol. Mifepristone does not lower the amount of cortisol the body makes but limits its effects. Pasireotide (Signifor) lowers the amount of ACTH from the tumor. Cabergoline is sometimes used off-label in the US for the same purpose.

Following surgery, people with Cushing’s need replacement steroids until their adrenal function resumes, when replacement steroids must be tapered. But Dr. Christofides said she believes that all physicians who prescribe steroids should have a clear understanding of when and how to taper patients off steroids.

“Steroid dosing for therapeutic purposes is cumulative in terms of body exposure and the risk of needing to taper. A single 2-week dose of steroids in a year does not require a taper,” she said. “It’s patients who are getting repeated doses of more than 10 mg of prednisone equivalent per day for 2 or more weeks multiple times per year who are at risk of adrenal failure without tapering.”

Physicians often underestimate how long a safe, comfortable taper can take, per Dr. Christofides. “It takes 6 to 9 months for the adrenals to wake up so if you’re using high-dose steroids more frequently, that will cause the patient to need more steroids more frequently,” she explained. “If you’re treating an illness that responds to steroids and you stop them without tapering, the patient’s disease will flare, and then a month from then to 6 weeks from then you’ll be giving them steroids again, engendering a dependence on steroids by doing so.”

When developing a steroid taper plan for postoperative individuals with Cushing’s (and others), Dr. Christofides suggests basing it on the fact that 5 mg of prednisone or its equivalent is the physiologic dose. “Reduce the dose by 5 mg per month until you get to the last 5 mg, and then you’re going to reduce it by 1 mg monthly until done,” she said. “If a patient has difficulty during that last phase, consider a switch to hydrocortisone because a 1 mg reduction of hydrocortisone at a time may be easier to tolerate.”

Prednisone, hydrocortisone, and the other steroids have different half-lives, so you’ll need to plan accordingly, adds Dr. Christofides. “If you do a slower taper using hydrocortisone, the patient might feel worse than with prednisone unless you prescribe it BID.” She suggests thinking of the daily prednisone equivalent of hydrocortisone as 30 mg to allow for divided dosing, rather than the straight 20 mg/day conversion often used.

What happens after a patient’s Cushing’s has been successfully treated? Cushing’s is a chronic disease, even in remission, Dr. Christofides emphasized. “Once you have achieved remission, my general follow-up is to schedule visits every 6 months to a year with scans and labs, always with the instruction if the patient feels symptomatic, they should come in sooner,” she said.

More on Cushing’s diagnosis and therapies.

https://www.medcentral.com/endocrinology/cushings-syndrome-a-clinical-update

Day 24: Cushing’s Awareness Challenge

Over the years, we went on several Windjammer Barefoot Cruises.  We liked them because they were small, casual and were fairly easy on the wallet.

They sailed around the Caribbean to a variety of islands, although they sometimes changed itineraries depending on weather, crew, whatever.  One trip we were supposed to go to Saba but couldn’t make port.  A lot of people got off at the next port and flew home.

The captains were prone to “Bedtime Stories” which were often more fiction than true but they added to the appeal of the trip.  We didn’t care if we missed islands or not – we were just there to sail over the waves and enjoy the ride.

The last trip we took with them was about two years before I started having Cushing’s problems.  (You wondered how I was going to tie this together, right?)

The cruise was uneventful, other than the usual mishaps like hitting docks, missing islands and so on.  Until it was a particularly rough sea one day.  I was walking somewhere on deck and suddenly a wave came up over the deck making it very slippery.  I fell and cracked the back of my head on the curved edge of a table in the dining area.  I had the next-to-the-worse headache I have ever had, the worst being after my pituitary surgery. At least after the surgery, I got some morphine.

We asked several doctors later if that hit could have contributed to my Cushing’s but doctors didn’t want to get involved in that at all.

The Windjammer folks didn’t fare much better, either. In October 1998, Hurricane Mitch was responsible for the loss of the s/v Fantome (the last one we were on). All 31 crew members aboard perished; passengers and other crew members had earlier been offloaded in Belize.

 

The story was recorded in the book The Ship and the Storm: Hurricane Mitch and the Loss of the Fantome by Jim Carrier.  The ship, which was sailing in the center of the hurricane, experienced up to 50-foot (15 m) waves and over 100 mph (160 km/h) winds, causing the Fantome to founder off the coast of Honduras.

“In October 1998, the majestic schooner Fantome came face-to-face with one of the most savage storms in Atlantic history. The last days of the Fantome are reconstructed in vivid and heartbreaking detail through Jim Carrier’s extensive research and hundreds of personal interviews. What emerges is a story of courage, hubris, the agony of command, the weight of lives versus wealth, and the advances of science versus the terrible power and unpredictability of nature.”

This event was similar to the Perfect Storm in that the weather people were more interested in watching the hurricane change directions than they were in people who were dealing with its effects.

I read this book and I was really moved by the plight of those crew members.

I’ll never know if that hit on my head contributed to my Cushing’s but I have seen several people mention on the message boards that they had a traumatic head injury of some type in their earlier lives.