A Case of Adrenocorticotropin-dependent Cushing Syndrome with Osilodrostat Exposure in Early Pregnancy

Abstract

Osilodrostat is a novel treatment for adrenocorticotropin-dependent Cushing syndrome; however, its safety during pregnancy has not been reported. This case involves a patient with Cushing disease who became pregnant while on osilodrostat. She was diagnosed at 31 years of age and underwent pituitary tumor removal. After a relapse at 35 years of age, she was initially treated with metyrapone but switched to osilodrostat and hydrocortisone because of nausea, achieving reasonable cortisol control. At 37 years of age, she unknowingly became pregnant despite irregular periods, and the pregnancy was detected at 16 weeks because of ongoing nausea. Osilodrostat was stopped, and she was started on pasireotide and metyrapone. The pregnancy proceeded normally despite elevated urinary free cortisol levels, although she contracted COVID-19 at 25 weeks. At 26 weeks and 1 day, preterm rupture of membranes and breech presentation led to an emergency cesarean section. The newborn had no adrenal insufficiency and developed normally. This case prompts consideration of whether osilodrostat can be used during pregnancy if risks are justified. Pasireotide is rarely used in pregnancy and may have limited effectiveness, but when given, can cause hyperglycemia because of insulin and incretin suppression and should be monitored carefully.

Introduction

Active Cushing syndrome decreases fertility, which explains its rarity in pregnancy. Fewer than 250 cases have been documented [1]. Whether it is ACTH-dependent or ACTH-independent, this disease poses significant risks to both mother and fetus. Its maternal complications include hypertension, preeclampsia, and diabetes [2], whereas the fetal risks include miscarriage, intrauterine growth restriction, and prematurity [3]. Given its rarity, there is no established standard of care for Cushing disease during pregnancy. Surgery offers a potential cure, but it can cause hypopituitarism and may not be feasible in the absence of a visible tumor [4]. Meanwhile, there are also risks associated with radiotherapy and pharmacological treatments [14]. The use of pasireotide, a somatostatin analog, for the treatment of a GH-secreting pituitary macroadenoma without complications has been reported in only 1 case during pregnancy [5]. To the best of our knowledge, this drug has not been used for Cushing disease before. Osilodrostat, like metyrapone, is a newer steroidogenesis inhibitor that blocks 11β-hydroxylase in the adrenal glands. It is effective for both ACTH-dependent and ACTH-independent Cushing syndrome [6]. However, it is contraindicated in pregnancy because of its proven teratogenic effects in animal studies [7]. As a result, data on its use in human pregnancy are lacking. Understanding the normal physiology of the hypothalamic-pituitary-adrenal (HPA) axis in pregnancy is essential. In normal pregnancy, the maternal levels of corticotropin-releasing hormone, ACTH, and cortisol rise both in the serum and urine because of placental production [89]. Although cortisol levels rise, only about 10% crosses the placenta because of 11β-hydroxysteroid dehydrogenase activity [10]. Fetal cortisol production remains minimal until late gestation, as 3β-hydroxysteroid dehydrogenase activity stays low until then [10]. Thus, most fetal cortisol originates from maternal sources [11]. In late pregnancy, fetal adrenal 3β-hydroxysteroid dehydrogenase activity increases, thereby enhancing fetal cortisol synthesis and promoting maturation of the HPA axis [10]. This case report discusses a female patient with recurrent Cushing disease who conceived while taking osilodrostat, which she took until early pregnancy; she was later treated successfully with pasireotide and metyrapone.

Case Presentation

A 30-year-old woman developed moon facies, central obesity, muscle weakness, and amenorrhea. Elevated levels of ACTH and cortisol, along with a roughly 6-mm pituitary adenoma, confirmed a diagnosis of Cushing disease. At 31 years of age, she successfully underwent transsphenoidal surgery, but 4 years later, biochemical relapse occurred with no identifiable residual tumor on imaging (Fig. 1). The patient was initially treated with metyrapone, but because of nausea, this was switched to osilodrostat. A block-and-replace approach was taken with osilodrostat 3 mg/day and hydrocortisone 10 mg/day, after which her cortisol levels normalized, but the menstrual irregularities persisted (Fig. 1).

 

Changes in urinary free cortisol (UFC) and pituitary magnetic resonance imaging (MRI) findings over time. The MRI scans at diagnosis, after surgery, at recurrence, and before pregnancy are shown alongside ACTH, cortisol, and UFC levels. The blood tests indicated recurrence, but no tumor was seen on MRI. Cortisol levels improved after osilodrostat treatment.

Figure 1.

Changes in urinary free cortisol (UFC) and pituitary magnetic resonance imaging (MRI) findings over time. The MRI scans at diagnosis, after surgery, at recurrence, and before pregnancy are shown alongside ACTH, cortisol, and UFC levels. The blood tests indicated recurrence, but no tumor was seen on MRI. Cortisol levels improved after osilodrostat treatment.

Diagnostic Assessment

At 38 years of age, the patient presented with nausea. The patient was followed up with an upper gastrointestinal endoscopy revealing no abnormalities. After a prolonged period of nausea, a pregnancy test revealed that she was 16 weeks pregnant.

Treatment

At this point, she had been on osilodrostat, which was immediately stopped and replaced with pasireotide 10 mg every 4 weeks because of pregnancy. Later, 24-hour urinary free cortisol (UFC) levels increased, leading to an early increase in pasireotide dose to 20 mg after 3 weeks before the recommended 4-week period elapsed; the same dose was administered every 4 weeks thereafter. And the same time, the initiation of up to 1000 mg metyrapone daily (Fig. 2). The patient also had hyperglycemia, which prompted insulin initiation, and subcutaneous heparin was also added because of the risk of thrombosis. At 25 weeks of pregnancy, she developed pharyngeal pain and a cough, which quickly resolved. At 26 weeks and 1 day, she experienced preterm premature rupture of membranes with the fetus in breech position, necessitating an emergency cesarean section. During this time, she tested positive for severe acute respiratory syndrome coronavirus 2 via polymerase chain reaction; however, she remained asymptomatic. Hydrocortisone was given before delivery as a steroid cover. Postpartum, osilodrostat was resumed, and pasireotide/metyrapone was discontinued. Two months after delivery, her disease remained stable, with UFC at 62.0 μg/day (171 nmol/day), within the normal reference range of 26.0 to 187.0 μg/day (72-516 nmol/day).

 

Urinary free cortisol (UFC) levels and medications during pregnancy. The UFC levels during pregnancy are shown. The UFC levels increased after stopping osilodrostat, and these remained high even after starting pasireotide. Adding metyrapone led to a decrease in the UFC.

Figure 2.

Urinary free cortisol (UFC) levels and medications during pregnancy. The UFC levels during pregnancy are shown. The UFC levels increased after stopping osilodrostat, and these remained high even after starting pasireotide. Adding metyrapone led to a decrease in the UFC.

Outcome and Follow-up

A live baby girl was born with extremely low birth weight, weighing 871 g. She was admitted to the neonatal intensive care unit with Apgar scores of 2 and 10 at 1 and 5 minutes, respectively, and was temporarily placed on a ventilator because of respiratory distress syndrome. During her stay, no signs of adrenal insufficiency appeared, and blood samples taken at noon showed ACTH levels of 23.3 pg/mL (5.1 pmol/L) and cortisol levels of 2.7 µg/dL (74.5 nmol/L). The normal reference ranges in adults are 7.2 to 63.3 pg/mL (1.6-13.9 pmol/L) for ACTH and 4.5 to 21.1 µg/dL (124.2-582.1 pmol/L) for cortisol. She was discharged at 40 weeks’ corrected gestational age, with subsequent normal growth and development.

Discussion

It remains challenging to manage Cushing disease during pregnancy because of limited treatment options and fetal safety concerns. An important aspect of managing hypercortisolemia in pregnancy is understanding the physiological regulation of the maternal-fetal HPA axis. In infants with very low birth weight, cortisol levels measured within an hour after birth typically range from 3.6 to 10.8 µg/dL (99-298 nmol/L) [12]. Although the neonate in this case had lower cortisol levels (2.7 µg/dL, 74.5 nmol/L), the blood sample was taken around noon, a time when levels are usually lower. Nevertheless, no signs of adrenal insufficiency were observed. Because newborns develop a stable cortisol rhythm within the first month [13], these findings suggest adequate adrenal function. Better obstetric outcomes can be expected when maternal hypercortisolism is successfully managed, such as reduced rates of prematurity and low birth weight [14]. A previous case report noted successful delivery after treatment with metyrapone, targeting UFC levels below 150 µg/day (414 nmol/day) [15]. Metyrapone was necessary in this patient because the cortisol levels were rising despite pasireotide monotherapy. This was gradually titrated to control UFC levels, which achieved some success. We introduced pasireotide during pregnancy based on previous reports of its use in acromegaly without adverse fetal outcomes [5]. However, pasireotide carries significant risk of hyperglycemia because of its inhibitory effects on insulin and incretin secretion [16]; this was seen in our patient, who required insulin therapy. Although rarely used in pregnancy—with only 1 reported case to our knowledge—it may be considered a viable option if other treatments are unsuccessful or unsuitable. Osilodrostat is contraindicated during pregnancy because it has shown teratogenic effects in animal studies, leading to limited human data [6]. In this case, the patient was unknowingly exposed during early pregnancy. However, no fetal malformations were observed, and this could be attributed to the underdeveloped fetal adrenal cortex during early gestation, which mainly relies on maternal hormone supply [10]. Osilodrostat was resumed after delivery, achieving effective disease control and clinical stability. It is also essential to consider that the preterm birth in this case may have resulted from suboptimal cortisol control, maternal COVID-19 infection, and the use of osilodrostat and pasireotide—drugs with minimal clinical data for use during pregnancy. These factors cannot be excluded entirely. However, based on our expertise, the contraindication of osilodrostat in pregnancy may warrant reevaluation.

Learning Points

  • Osilodrostat should not be used during pregnancy. Although preterm birth in this case may have resulted from various factors—including limited clinical data on osilodrostat and pasireotide—that the neonate showed no congenital abnormalities or adrenal problems indicates that the current caution against using osilodrostat in pregnancy might need to be reconsidered.
  • In early pregnancy, the fetal adrenal glands are immature and dependent on maternal hormones, so the effects of drugs that inhibit adrenal steroid synthesis may be relatively minor.
  • Pasireotide is rarely used during pregnancy. If administered, close monitoring is necessary, as insulin and incretin suppression may induce hyperglycemia.

From https://academic.oup.com/jcemcr/article/3/12/luaf269/8327956?login=false

 

Identification of Endogenous Hypercortisolism and the Effect of Mifepristone Treatment in Patients With Difficult-to-Manage Diabetes: A Case Series

Endogenous hypercortisolism (Cushing syndrome) is a multisystemic disease characterized by a wide range of clinical signs and symptoms. Its heterogeneous presentation can cause significant diagnostic delays, and prolonged exposure to excess cortisol activity can contribute to cardiometabolic abnormalities such as diabetes. When diabetes remains unresponsive or only partially responsive to standard-of-care treatment, clinicians should consider hypercortisolism as a potential underlying driver.Despite the risks associated with hypercortisolism, guidance on identifying and managing it in patients with diabetes remains limited. This article presents a case series of 10 patients from a single practice who were screened for hypercortisolism because of difficult-to-manage diabetes and additional comorbidities. All patients were treated for hypercortisolism with mifepristone, resulting in significant clinical improvements including weight loss, improved glycemic control, and reduced medication needs.

This real-world case series highlights the importance of recognizing hypercortisolism as a differential diagnosis and a potential contributing factor to difficult-to-manage diabetes despite standard-of-care therapies. Addressing hypercortisolism with mifepristone can result in substantial clinical benefits.

This article contains supplementary material online at https://doi.org/10.2337/figshare.30351361.

PDF of article here.

Real-World Osilodrostat Effectiveness and Safety in Non-Pituitary Cushing Syndrome

Abstract

Context

Osilodrostat’s clinical development program mostly enrolled Cushing disease patients. Data in non-pituitary Cushing syndrome (CS) are limited.

Objective

Evaluate osilodrostat effectiveness and safety in non-pituitary CS in real-world practice in France.

Design

Retrospective, observational study (LINC 7; NCT05633953). Data for patients who initiated osilodrostat under the French Autorisation Temporaire d’Utilisation scheme or, once approved, in routine clinical practice were extracted retrospectively for ≤36 months (2019–2022).

Setting

Multicenter institutional practice.

Patients or Other Participants

103 adult non-pituitary CS patients: ectopic adrenocorticotropic hormone secretion (EAS), n=53; adrenocortical carcinoma (ACC), n=19; adrenal adenoma (AA), n=17; bilateral adrenal nodular disease (BND), n=14. 43 remained on osilodrostat throughout the observation period.

Intervention

Median (min–max) osilodrostat exposure and baseline dose: 177 days (1–1178), 5.0 mg/day (1–60).

Main Outcome Measure

Proportion with mean urinary free cortisol (mUFC) ≤ upper limit of normal (ULN) at week (W) 12 (modified intention-to-treat [mITT] population: all enrolled patients with ≥12W follow-up, excluding patients without W12 mUFC for non-safety reasons).

Results

Osilodrostat was initiated and titrated based on investigator judgment. Cortisol decreased by W4, remaining stable thereafter. 23/52 patients (mITT; 44.2%, 95% CI 30.5–58.7) had mUFC ≤ULN at W12 (missing values input as non-responders). 45/52 had W12 mUFC available; proportion with mUFC ≤ULN by etiology: EAS, n=12/29 (41%); ACC, n=4/6; AA, n=1/3; BND, n=6/7. Most common (≥15%) TEAEs: adrenal insufficiency (28%) and hypokalemia (18%). 29 patients (EAS, n=24; ACC, n=5) died from AEs (n=1 assessed as osilodrostat related by investigator), mostly neoplasm progression (n=11).

Conclusions

Osilodrostat is a suitable treatment for endogenous Cushing syndrome of various non-pituitary etiologies.

InformationAccepted manuscripts
Accepted manuscripts are PDF versions of the author’s final manuscript, as accepted for publication by the journal but prior to copyediting or typesetting. They can be cited using the author(s), article title, journal title, year of online publication, and DOI. They will be replaced by the final typeset articles, which may therefore contain changes. The DOI will remain the same throughout.

Clinical Efficacy and Safety of Fluconazole Treatment in Patients with Cushing’s Syndrome

Abstract

Background:

Ketoconazole is effective for treating Cushing’s syndrome (CS) but its use is limited by the risk of hepatotoxicity. Fluconazole, with similar antifungal properties, is being investigated as a potentially safer alternative for managing CS. This study aims to evaluate the efficacy and safety of fluconazole in patients with CS.

Methods:

This retrospective study evaluated a total of 22 patients with CS, including 12 with Cushing’s disease (CD), 3 with adrenal Cushing’s syndrome (ACS), and 7 with ectopic Adrenocorticotropic hormone (ACTH) syndrome. Fluconazole was administered orally, ranging from 112.5 to 450 mg daily, with the duration varying from 2 weeks to over 5 years. The efficacy of fluconazole was assessed by changes in 24-hour urinary free cortisol (24-h UFC) levels. Additionally, hepatic safety was assessed by monitoring changes in alanine aminotransferase (ALT) levels.

Results:

Following fluconazole treatment, 24-h UFC levels significantly decreased from 717.6 ± 1219.4 to 184.1 ± 171.8 µg/day (p = 0.035). ALT levels showed an increase from 38.5 ± 28.4 to 56.5 ± 47.8 U/L, though this change was not statistically significant (p = 0.090). ALT levels exceeding the upper limit of normal range (ULN) were observed in 12 patients (54.5%), with only 4 patients (18.2%) showing ALT levels more than three times the ULN. Out of 10 patients who received treatment for over 1 year, 5 patients (50.0%) experienced a recurrence, with 24-h UFC levels more than 1.5 times the ULN within 3 to 12 months after fluconazole treatment.

Conclusion:

Fluconazole effectively reduces hypercortisolism in patients with CS without significant liver injury, suggesting it as a viable therapeutic option for CS. While some cases have shown treatment escape, more studies are required to confirm the long-term efficacy.

Introduction

Cushing’s syndrome (CS) is a complex endocrine disorder characterized by excessive cortisol production, leading to complications such as insulin-resistant hyperglycemia, muscle weakness (proximal myopathy), osteoporosis, cardiovascular diseases, and neuropsychiatric disorders.1 The primary causes of CS include pituitary ACTH-secreting tumor (Cushing’s disease (CD), adrenal neoplasm (adrenal Cushing’s syndrome (ACS)), or nonpituitary ACTH-secreting tumor (ectopic ACTH syndrome (EAS)). The most common cause is CD. If left untreated, CS patients face a 3.8 to 5-fold increase in mortality compared to the general population.2,3 The first-line treatment for CS involves surgical removal of the offending tumor(s). In CD cases, transsphenoidal pituitary surgery achieves success rates between 65% and 90% for microadenomas. However, complete resection can be challenging, especially with macroadenomas, leading to recurrence or persistent hypercortisolism in approximately 20%–25% of patients.4 Alternative treatments include pituitary stereotactic radiosurgery, which effectively controls cortisol levels over several years but carries potential adverse effects.5,6 For EAS patients, managing hypercortisolism while awaiting definitive treatments like surgery is critical.7 Bilateral adrenalectomy offers immediate control over cortisol excess but necessitates lifelong steroid replacement therapy, impacting the quality of life.8 In addition, some corticotropic pituitary tumors may progress post-surgery, requiring further targeted interventions.9
However, some patients were not candidates for surgery due to factors such as advanced age, personal preference against surgery, or the absence of a definitive culprit lesion. When surgery fails to fully correct hypercortisolism (i.e., when 24-h UFC levels do not decrease or even progressively rise in the weeks to months following surgery, indicating persistence or relapse), pharmacotherapy can be employed to reduce cortisol overproduction and enhance clinical outcomes.10,11 In addition, it could be administered before surgical intervention to reduce perioperative complications.12,13 Various medications are used in the treatment of CS, including adrenal steroidogenesis inhibitors, dopamine agonists, somatostatin analogs, or glucocorticoid receptor antagonist.4,14
Ketoconazole, an imidazole fungicide and adrenal steroidogenesis inhibitor, has long been off-label used as the first-line medication for patients with CS who cannot undergo surgery or for whom surgery is non-curative. It reduces cortisol synthesis by inhibiting the side-chain cleavage enzymes 11β-hydroxylase and 17,20-lyase.10 Effective doses range from 200 to 1200 mg daily, but gradual dose increases may be necessary due to the potential for escape from cortisol inhibition.10,15 Ketoconazole is extensively metabolized in the liver, leading to an increased risk of hepatotoxicity.16 In 2013, the U.S. Food and Drug Administration (FDA) issued warnings about the potentially life-threatening liver toxicity associated with ketoconazole. As a result, ketoconazole is no longer available in many regions.
Fluconazole, another azole antifungal agent, has been explored as an alternative treatment for CS. It inhibits adrenal steroidogenesis through the CYP450 pathway, and the effects have been confirmed in vitro, using primary cultures of human adrenocortical tissues and two adrenocortical carcinoma cell lines. The effects were mainly observed in enzymes 11β-hydroxylase and 17α-hydroxylase, which are key in cortisol synthesis.17 Another study also demonstrated that fluconazole inhibits glucocorticoid production in vitro in the adrenal adenoma cell line Y-1.18 Case reports have also documented adrenal insufficiency in patients with severe comorbidities treated with fluconazole, suggesting its potential for managing hypercortisolism.19,20 Fluconazole is characterized by its small molecular size and low lipophilicity. It is minimally metabolized, with approximately 80% excreted unchanged in the urine.16 This contributes to its lower incidence of adverse effects, particularly liver injury. In a cohort study estimating the risk of clinical acute liver injury among users of oral antifungals (fluconazole, griseofulvin, itraconazole, ketoconazole, or terbinafine) in the general population from the General Practice Research Database in the United Kingdom, fluconazole was associated with a lower relative risk of acute liver injury compared to other agents.21
Levoketoconazole, the 2S, 4R enantiomer of ketoconazole, provides enhanced enzyme inhibition with greater therapeutic efficacy and fewer side effects compared to ketoconazole.22 The main challenge with using levoketoconazole in the treatment of CS is the limited data from Randomized controlled trials (RCTs). To date, there are only two prospective studies (SONICS and LOGICS) and one systematic review that evaluate the efficacy and safety of levoketoconazole in this context.2325
Given that existing evidence on fluconazole treatment for CS is primarily limited to case reports, this study aims to evaluate the efficacy and safety of fluconazole in the first relatively large cohort of CS patients.

Patients and methods

Patients

This retrospective study analyzed a total of 22 patients with CS, including 12 cases of CD, 3 cases of ACS, and 7 cases of EAS. For patients who presented with Cushingoid appearance, a 1-mg overnight low-dose dexamethasone suppression test (LDDST) was performed. If the result revealed positive (>1.8 mcg/dL), further surveys were arranged. CS was diagnosed based on 24-h UFC levels (>three times the upper limit of normal range (ULN)), and 2-day LDDST (>1.8 mcg/dL). Once the biochemical diagnosis of CS was confirmed, morning plasma ACTH and cortisol levels were measured to differentiate between ACTH-dependent and ACTH-independent CS. Low ACTH levels (<5 pg/dL) accompanied by elevated cortisol concentrations (>15 mcg/dL) indicated an adrenal origin, consistent with ACTH-independent CS. In such cases, a computed tomography or magnetic resonance imaging scan was performed to evaluate for adrenal masses. If ACTH levels were greater than 5 pg/dL, ACTH-dependent CS was suspected. To identify the source of excessive ACTH secretion—either CD or EAS—further diagnostic testing was conducted, including high-dose dexamethasone suppression test (UFC suppresses >90%, or plasma cortisol suppresses > 50% from baseline, CD is most likely), or corticotropin-releasing hormone (CRH) stimulation test, or desmopressin (DDAVP) stimulation test (ACTH increases >50% and plasma cortisol increases >20% suggests CD), or inferior petrosal sinus sampling (central-to-peripheral ACTH ratio ⩾2 or ⩾3 post CRH or DDAVP suggests CD), or pituitary magnetic resonance imaging (pituitary mass >6 mm suggests CD).1,26 If the patient’s condition allowed, one or more of these tests were performed, and the final diagnosis was made based on a comprehensive interpretation of the combined results.

Methods

After the approval of the Institutional Review Board at Taipei Veterans General Hospital (IRB No. 2021-04-003CC), we conducted a retrospective study, which was waived for informed consent at Taipei Veterans General Hospital. Sample size calculations were not conducted because this was a retrospective study. We surveyed patients diagnosed with CS (CD, ACS, or EAS) who received fluconazole treatment at Taipei Veterans General Hospital in Taipei, Taiwan, between January 1st, 2015, and August 31st, 2020. Fluconazole was administered orally at doses ranging from 112.5 to 450 mg daily, with treatment durations ranging from 2 weeks to over 5 years (Fluconazole was not administered for other treatment purposes, such as infection). The inclusion criteria consisted of a confirmed diagnosis of CS (whether newly diagnosed, persistent, or recurrent) and a history of fluconazole treatment for CS. The exclusion criteria included patients who were not regularly followed up after fluconazole treatment or who lacked complete 24-h UFC data both before and after treatment with fluconazole.
The following data before initiation of treatment were collected: age, gender, body mass index (BMI), alcohol consumption, history of diabetes mellitus, history of chronic hepatitis, baseline 24-hour urinary free cortisol (24-h UFC) levels (reference range: 20–80 µg/day, measured by chemiluminescent immunoassay), morning serum cortisol, morning adrenocorticotropic hormone (ACTH) levels (measured by chemiluminescent immunoassay), and liver function index (alanine aminotransferase (ALT)). In addition, the history of surgery for pituitary tumor or ectopic lesion resection, as well as any other medical treatments apart from fluconazole, was recorded.
24-Hour UFC levels were monitored every 1 to 3 months after initiating fluconazole treatment. The average values from two 24-h UFC measurements (first and second data points within the first 4 months) were used to assess treatment efficacy. For the evaluation of hepatic safety, the maximum ALT level recorded within 6 months after starting fluconazole treatment was compared to the baseline ALT. In this study, we defined ALT levels exceeding three times the ULN as noteworthy liver injury.

Statistical analysis

Data are presented as mean ± standard deviation (SD) or as numbers (percentage), as appropriate. Due to the small sample sizes in some groups and the non-normal distribution of several variables, nonparametric statistical methods were employed to analyze the relationships between variables. Differences between groups were analyzed using the Pearson Chi-squared test, Student’s t-test, or one-way analysis of variance (ANOVA), as appropriate. A p-value less than 0.05 from the ANOVA was considered statistically significant, indicating that at least one group differed significantly from the others. All statistical analyses were performed using the SPSS software package (version 26; IBM Corporation, Armonk, NY, USA).

Results

The baseline characteristics of the patients are summarized in Table 1. No significant differences were found among the etiologies of CS in terms of age, gender, or history of diabetes (p = 0.271, p = 0.253, and p = 0.667, respectively). Cortisol (8AM), ACTH (8AM), and 24-h UFC levels were significantly higher in the EAS group (p = 0.041, p = 0.005, and p = 0.043, respectively) at diagnosis. BMI was significantly lower in the EAS group compared to the other groups (p = 0.002). Alcohol consumption and history of chronic hepatitis, both common causes of liver injury in Taiwan, showed no significant differences among the groups (p = 0.325 and p = 0.765, respectively). Regarding surgical history, eight patients (66.7%) in the CD group had undergone pituitary surgery, while no patients in the ACS group had a history of surgery. In the EAS group, two patients (28.6%) had undergone surgery: one had an anterior mediastinal tumor removal and left upper lung wedge resection, and the other had a suprasellar tumor resection (p = 0.064).

Open in Viewer

Table 1. The baseline characteristics of patients with Cushing’s syndrome.
Characteristics All (n = 22) CD (n = 12) ACS (n = 3) EAS (n = 7) p-Value*
Age (years) 54.5 ± 15.5 49.8 ± 15.3 56.0 ± 12.5 61.9 ± 15.9 0.271
Female, n (%) 17 (77.3) 10 (83.3) 3 (100) 4 (57.1) 0.253
Body mass index (kg/m2) 25.1 ± 4.3 27.4 ± 2.8 27.2 ± 1.3 21.0 ± 3.8 0.002
Cortisol (8AM) (µg/dL) 26.7 ± 18.7 21.5 ± 8.6 14.0 ± 4.0 40.3 ± 26.1 0.041
ACTH (8AM) (pg/mL) 151.9 ± 172.1 98.0 ± 63.1 6.4 ± 0.9 306.5 ± 228.3 0.005
24-h UFC (µg/day) 760.5 ± 1387.8 277.9 ± 125.6 107.6 ± 78.2 1891.2 ± 2155.7 0.043
Alcohol consumption, n (%)a 1 (4.5) 0 (0.0) 0 (0.0) 1 (14.3) 0.325
History of diabetes, n (%) 11 (50.0) 5 (41.7) 2 (66.7) 4 (57.1) 0.667
History of chronic hepatitis, n (%) 2 (9.1) 1 (8.3) 0 (0.0) 1 (14.3) 0.765
Surgery history, n (%)b 10 (45.5) 8 (66.7) 0 (0.0) 2 (28.6) 0.064
Using other medication, n (%) 10 (45.5) 4 (33.3) 0 (0.0) 6 (85.7) 0.020
 Etomidate, n (%) 8 (36.4) 3 (25.0) 0 (0.0) 5 (71.4) 0.047
 Metyrapone, n (%) 1 (4.5) 0 (0.0) 0 (0.0) 1 (14.3) 0.325
 Pasireotide, n (%) 1 (4.5) 1 (8.3) 0 (0.0) 0 (0.0) 0.646
Data are expressed as mean ± SD or number (percentage). 24-h UFC (reference range: 20–80 µg/day)
a
Alcohol consumption was defined as men consume more than two alcoholic equivalents per day, while women consume more than one alcoholic equivalent, with one alcoholic equivalent being 10 g of alcohol.
b
Surgery for pituitary tumor or ectopic lesions.
*
p-Value <0.05 from ANOVA, indicating at least one group differed significantly from the others.
24-h UFC, 24-hour urinary free cortisol; ACS, adrenal Cushing’s syndrome; ACTH, adrenocorticotropic hormone; CD, Cushing’s disease; EAS, ectopic ACTH syndrome; SD, standard deviation.
During fluconazole treatment, significant differences were observed among the three groups concerning the use of additional medications (p = 0.020). In the CD group, three patients (25%) received etomidate and one patient (8.3%) received pasireotide. No patients in the ACS group received other medications. In the EAS group, five patients (71.4%) received etomidate, and one patient (14.3%) received metyrapone. For patients treated with etomidate, the duration was limited to a few days before switching to fluconazole. One patient received concomitant therapy with pasireotide and fluconazole.
Table 2 presents the laboratory results for hormonal parameters and ALT levels before and after fluconazole treatment. Prior to treatment, there were no statistically significant differences among the three groups in terms of serum cortisol (8AM), ACTH (8AM), 24-h UFC, and ALT levels (p = 0.739, p = 0.239, p = 0.157, and p = 0.738, respectively).

Open in Viewer

Table 2. The laboratory exams of hormonal parameters and ALT before and after fluconazole treatment.
Variable All (n = 22) CD (n = 12) ACS (n = 3) EAS (n = 7) p-Value
Cortisol (8AM) before fluconazole (µg/dL) 18.3 ± 10.8 17.8 ± 11.6 14.8 ± 3.4 20.6 ± 12.1 0.739
ACTH (8AM) before fluconazole (pg/mL) 104.5 ± 122.2 101.9 ± 64.7 6.4 ± 0.9 150.7 ± 188.4 0.239
ACTH (8AM) after fluconazole treatment (pg/mL)a 75.7 ± 87.0 65.7 ± 44.3 6.8 ± 1.4 122.4 ± 133.4 0.020
24-h UFC before fluconazole (µg/day) 717.6 ± 1219.4 443.1 ± 391.5 139.2 ± 95.7 1436.0 ± 2000.0 0.157
24-h UFC after fluconazole (µg/day)b 184.1 ± 171.8 132.0 ± 117.3 53.3 ± 30.8 321.9 ± 198.8 0.017
Decline percentage (%) of 24-h UFC after fluconazole 39.2% ± 48.2% 50.2% ± 37.4% 55.8% ± 27.3% 13.1% ± 64.4% 0.228
Normalization of 24-h UFC after fluconazole, n (%) 6 (27.3) 4 (33.3) 2 (66.7) 0 (0.0) 0.074
24-h UFC <1.5× ULN after fluconazole, n (%) 10 (45.5) 6 (50.0) 3 (100.0) 1 (14.3) 0.040
ALT before fluconazole (U/L) 38.5 ± 28.4 42.4 ± 32.6 38.0 ± 14.1 30.8 ± 24.2 0.738
ALT after fluconazole (U/L)c 56.5 ± 47.8 76.7 ± 54.3 28.7 ± 12.7 28.8 ± 13.6 0.091
ALT >ULN after fluconazole, n (%)c 12 (54.5) 8 (66.7) 2 (66.7) 2 (28.6) 0.247
ALT >3× ULN after fluconazole, n (%)c 4 (18.2) 4 (33.3) 0 (0.0) 0 (0.0) 0.130
Data are expressed as mean ± SD or number (percentage). ALT (reference range: male: <41 U/L; female: <33 U/L). 24-h UFC (reference range: 20–80 µg/day).
a
The average of first and second ACTH after fluconazole treatment.
b
The average of first and second 24-h UFC after fluconazole treatment.
c
ALT: maximum in following 6 months.
1.
5×, 1.5 times upper limit of normal range; 3×, 3 times upper limit of normal range; 24-h UFC, 24-hour urinary free cortisol; ACS, adrenal Cushing’s syndrome; ACTH, adrenocorticotropic hormone; ALT, alanine aminotransferase; CD, Cushing’s disease; EAS, ectopic ACTH syndrome; ULN, upper limit of normal range.
Twenty-four-hour UFC levels after fluconazole treatment were monitored over the following months. The average values of the first and second 24-h UFC measurements showed significant declines compared to baseline levels as: decreased from 717.6 ± 1219.4 to 184.1 ± 171.8 µg/day in all patients (p = 0.035), decreased form 443.1 ± 391.5 to 132.0 ± 117.3 µg/day in the CD group (p = 0.009), decreased from 139.2 ± 95.7 to 53.3 ± 30.8 µg/day in the ACS group (p = 0.243), and decreased from 1436.0 ± 2000.0 to 321.9 ± 198.8 µg/day in the EAS group (p = 0.147). The percentage decline in 24-h UFC levels following treatment demonstrated a significant reduction as follows: 39.2% ± 48.2% in all patients, 50.2% ± 37.4% in the CD group, 55.8% ± 27.3% in the ACS group, and 13.1% ± 64.4% in the EAS group (p = 0.228) (Table 2 and Figure 1 illustrate these changes).

Open in Viewer

Figure 1. 24-h UFC before and after fluconazole treatment in patients with Cushing’s syndrome.
24-h UFC, 24-hour urinary free cortisol; ACS, adrenal Cushing’s syndrome; CD, Cushing’s disease; EAS, ectopic ACTH syndrome.
Normalization of 24-h UFC levels (reference range 20–80 μg/day) was observed in six patients (27.3%) across three groups: four patients (33.3%) in the CD group, two patients (66.7%) in the ACS group, and no patients in the EAS group (p = 0.074). Additionally, 10 cases (45.5%) across 3 groups, 6 cases (50%) in the CD group, 3 cases (100%) in the ACS group, and 1 case (14.3%) in the EAS group showed 24-h UFC less than 1.5 times the ULN (p = 0.040). In this study, 10 patients (45.5%) received fluconazole treatment for more than 1 year. Among these, five patients (50.0%) experienced a recurrence of hypercortisolism, with 24-h UFC levels exceeding 1.5 times the ULN within 3–12 months after treatment with fluconazole.
For hepatic safety assessment, the maximum ALT levels within 6 months of fluconazole treatment were analyzed and are presented in Table 2. Compared to baseline levels, ALT increased from 38.5 ± 28.4 to 56.5 ± 47.8 U/L in all patients (p = 0.090), and increased from 42.4 ± 32.6 to 76.7 ± 54.3 U/L in the CD group (p = 0.047). (Table 2 and Figure 2 illustrate these changes). After fluconazole treatment, 12 cases (54.5%) of all patients, 8 cases (66.7%) in the CD group, 2 cases (66.7%) in the ACS group, and 2 cases (28.6%) in the EAS group revealed ALT levels exceeded the ULN (p = 0.247). Additionally, 4 cases (18.2%) of all patients, 4 cases (33.3%) in the CD group, and no cases in the ACS and EAS groups revealed ALT levels more than three times the ULN (p = 0.130).

Open in Viewer

Figure 2. ALT before and after fluconazole treatment in patients with Cushing’s syndrome.
ACS, adrenal Cushing’s syndrome; ALT, Alanine aminotransferase; CD, Cushing’s disease; EAS, ectopic ACTH syndrome.

Discussion

To date, our study is the largest retrospective analysis providing the evaluation of the clinical efficacy and safety of fluconazole treatment in patients with CS. The major findings demonstrated that 24-h UFC levels significantly decreased across all groups after fluconazole treatment, with more than 50% reduction in both the CD and ACS groups. However, the EAS group showed only a 13.1% decline in 24-h UFC levels, although with a large interval (SD 64.4%) and small case numbers in this group, indicating greater variability in response and heterogeneity in this group. Regarding hepatic safety, while ALT levels increased after fluconazole treatment, particularly in the CD group, the changes were not statistically significant in other groups. The significant increase in ALT levels (42.4 ± 32.6 to 76.7 ± 54.3 U/L) in the CD group, but mild—less than two times ULN, may also be related to the high variability (large SD). Importantly, there was no severe hepatotoxicity in the study, because only four patients (18.2%) revealed ALT levels more than three times the ULN.
Fluconazole can be administered either intravenously or orally. Several case reports highlight its effectiveness and safety: Teng Chai et al. reported successful long-term treatment of recurrent CD in a 50-year-old woman using fluconazole with cabergoline, resulting in significant clinical and biochemical improvement without adverse effects.27 Zhao et al. reported that fluconazole normalized cortisol levels pre-surgery in a 48-year-old woman with CD and pulmonary cryptococcal infection.28 In another case, fluconazole with low-dose metyrapone normalized cortisol levels for 6 months in a 61-year-old woman with recurrent CD prior to radiotherapy.29 Riedl et al. demonstrated fluconazole’s efficacy and safety in an 83-year-old woman with CS from adrenocortical carcinoma.18 Canteros et al. reported effective cortisol reduction with mild side effects from fluconazole in a 39-year-old woman with EAS, enabling successful bilateral adrenalectomy.30 An 80-year-old woman with CS of unknown origin also showed effective cortisol control with fluconazole.31 Two of these six cases suffered from hepatic dysfunction at fluconazole doses over 400 mg/day; however, liver enzyme levels returned to normal after dosage reduction. A secondary analysis of a dose-adjustment trial for fluconazole in the treatment of invasive mycoses examined 85 patients who received prolonged high-dose treatment. For these cases, 27% experienced clinical symptoms, and 42% exhibited abnormal laboratory results. The common side effects were <5% of anorexia, hair loss, headache, and 12% of eosinophilia. However, these adverse effects did not progress, leading the study to conclude that fluconazole is well tolerated and generally safe.32
Ketoconazole has been used to treat hypercortisolism by inhibiting CYP450 enzymes, specifically 11β-hydroxylase and 17α-hydroxylase, and fluconazole has similar properties.17 Previous studies suggest that fluconazole is less potent in inhibiting glucocorticoid production compared to ketoconazole, with varying effects; however, cortisol reduction with fluconazole use has been confirmed.17,18 Unlike ketoconazole, which is extensively metabolized in the liver and associated with significant hepatotoxicity, fluconazole is minimally metabolized in the liver.16 According to the FDA, the risk of serious liver injury from ketoconazole is higher than with other azole agents.33 In our study of 22 patients, fluconazole was well tolerated, with no significant elevations in liver enzyme levels observed during 6 months of treatment. These findings suggest that fluconazole may represent a safer alternative to ketoconazole for the treatment of CS.
In five studies involving 310 patients with CS treated with an average dose of 673.9 mg/day of ketoconazole over an average of 12.6 months, normalization of urinary free cortisol was achieved in 64.3% of patients (median 50%, range 44.7%–92.9%). However, 23% of initially responsive patients eventually lost biochemical control.34 Another retrospective study of 200 patients with CD receiving ketoconazole at an average dose of 600 mg/day found that 64.7% of patients treated for over 2 years achieved UFC normalization, while 15.4% experienced recurrence, or “escape,” from cortisol control.15 In our study, 10 patients (45.5%) received fluconazole treatment for over 1 year, with 5 of these patients (50%) showing 24-h UFC levels not exceeding 1.5 times the ULN in the following 3–12 months (under control without escape). The long-term control of hypercortisolism with fluconazole appears to be less effective than with ketoconazole. However, this could be attributed to the small sample size in our study.
Table 1 shows baseline morning ACTH levels at diagnosis for all patients before any treatment, highlighting a statistically significant difference. In comparison, Table 2 presents morning ACTH levels prior to fluconazole treatment, where no statistical difference was observed. This is likely due to some patients in the CD and EAS groups having previously undergone surgery or received other medical treatments, which might reduce the tumor burden and the levels of ACTH.
Recent studies suggest that levoketoconazole demonstrates good efficacy and safety in the management of CS.2325 However, no head-to-head trials have been conducted to compare ketoconazole, levoketoconazole, and fluconazole directly. Therefore, further clinical trials are warranted to provide clearer insights into the comparative efficacy and safety of these therapeutic options in CS.
The limitations of this study include its retrospective design, which lacked comparator groups, and the small sample sizes in the ACS and EAS groups. In addition, patients were treated by different physicians, each using their own clinical judgment, without standardized follow-up protocols, making some data difficult to collect and analyze. The heterogeneity in dosing regimens also posed challenges in assessing the dose-response relationship. Besides, the relationship between the timing and dosages of other medications (etomidate, pasireotide, and metyrapone) and their effects on laboratory findings is challenging to analyze due to the limited number of cases. There were no statistically significant differences in ACTH level changes before and after fluconazole treatment among the three groups. This may be a limitation, as we only monitored the first and second ACTH measurements following fluconazole treatment. Further investigations with longer monitoring of ACTH levels may be necessary. The study’s observation period was approximately 5.5 years, but further investigation is required to confirm the long-term efficacy and safety of fluconazole treatment in CS.

Conclusion

This study demonstrates that fluconazole is effective in treating patients with CS, as evidenced by a significant reduction in 24-h UFC levels. Moreover, fluconazole was generally well tolerated, with a minimal risk of liver injury, suggesting it may be an effective and safe option for managing hypercortisolism in CS.

Acknowledgments

The authors thank the Medical Sciences & Technology Building of Taipei Veterans General Hospital for providing experimental space and facilities.

ORCID iD

Footnotes

Ethics approval and consent to participate This study was approved by the Institutional Review Board at Taipei Veterans General Hospital (IRB No. 2021-04-003CC). Due to the retrospective nature of this study, informed patient consent was waived.

Consent for publication Not applicable.

Author contributions

Tang-Yi Liao: Data curation; Formal analysis; Writing – original draft.
Yi-Chun Lin: Data curation; Writing – review & editing.
Chun-Jui Huang: Data curation; Writing – review & editing.
Chii-Min Hwu: Conceptualization; Data curation.
Liang-Yu Lin: Conceptualization; Data curation; Funding acquisition; Investigation; Methodology; Writing – review & editing.

Funding The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study was partly supported by research grants (Grant Nos. V108C-197, V109C-179, V110C-198, V111D62-002-MY3, V112C-183, V113C-094, V114C-116, and V114D77-002-MY3-1) to L.Y.L. from Taipei Veterans General Hospital, Taipei, Taiwan and MOST 111-2314-B-075-040-MY2 to L.Y.L. from National Science and Technology Council, Taiwan. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests The authors declare that there is no conflict of interest.

Availability of data and materials The data and materials generated and analyzed in the study are available from the corresponding author on reasonable request.

References

1. Nieman LK, Biller BM, Findling JW, et al. The diagnosis of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2008; 93(5): 1526–1540.
2. Clayton RN, Raskauskiene D, Reulen RC, et al. Mortality and morbidity in Cushing’s disease over 50 years in Stoke-on-Trent, UK: audit and meta-analysis of literature. J Clin Endocrinol Metab 2011; 96(3): 632–642.
3. Lindholm J, Juul S, Jørgensen JO, et al. Incidence and late prognosis of Cushing’s syndrome: a population-based study. J Clin Endocrinol Metab 2001; 86(1): 117–123.
4. Biller BM, Grossman AB, Stewart PM, et al. Treatment of adrenocorticotropin-dependent Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab 2008; 93(7): 2454–2462.
5. Castinetti F, Nagai M, Morange I, et al. Long-term results of stereotactic radiosurgery in secretory pituitary adenomas. J Clin Endocrinol Metab 2009; 94(9): 3400–3407.
6. Loeffler JS, Shih HA. Radiation therapy in the management of pituitary adenomas. J Clin Endocrinol Metab 2011; 96(7): 1992–2003.
7. Porterfield JR, Thompson GB, Young WF Jr, et al. Surgery for Cushing’s syndrome: an historical review and recent ten-year experience. World J Surg 2008; 32(5): 659–677.
8. Findling JW, Raff H. Cushing’s Syndrome: important issues in diagnosis and management. J Clin Endocrinol Metab 2006; 91(10): 3746–3753.
9. Assié G, Bahurel H, Coste J, et al. Corticotroph tumor progression after adrenalectomy in Cushing’s disease: a reappraisal of Nelson’s Syndrome. J Clin Endocrinol Metab 2007; 92(1): 172–179.
10. Schteingart DE. Drugs in the medical treatment of Cushing’s syndrome. Expert Opin Emerg Drugs 2009; 14(4): 661–671.
11. Nieman LK. Medical therapy of Cushing’s disease. Pituitary 2002; 5(2): 77–82.
12. Valassi E, Franz H, Brue T, et al. Preoperative medical treatment in Cushing’s syndrome: frequency of use and its impact on postoperative assessment: data from ERCUSYN. Eur J Endocrinol 2018; 178(4): 399–409.
13. Varlamov EV, Vila G, Fleseriu M. Perioperative management of a patient with Cushing Disease. J Endocr Soc 2022; 6(3): bvac010.
14. Pivonello R, De Martino MC, De Leo M, et al. Cushing’s syndrome. Endocrinol Metab Clin North Am 2008; 37(1): 135–ix.
15. Castinetti F, Guignat L, Giraud P, et al. Ketoconazole in Cushing’s disease: is it worth a try? J Clin Endocrinol Metab 2014; 99(5): 1623–1630.
16. Como JA, Dismukes WE. Oral azole drugs as systemic antifungal therapy. N Engl J Med 1994; 330(4): 263–272.
17. van der Pas R, Hofland LJ, Hofland J, et al. Fluconazole inhibits human adrenocortical steroidogenesis in vitro. J Endocrinol 2012; 215(3): 403–412.
18. Riedl M, Maier C, Zettinig G, et al. Long term control of hypercortisolism with fluconazole: case report and in vitro studies. Eur J Endocrinol 2006; 154(4): 519–524.
19. Albert SG, DeLeon MJ, Silverberg AB. Possible association between high-dose fluconazole and adrenal insufficiency in critically ill patients. Crit Care Med 2001; 29(3): 668–670.
20. Santhana Krishnan SG, Cobbs RK. Reversible acute adrenal insufficiency caused by fluconazole in a critically ill patient. Postgrad Med J 2006; 82(971): e23.
21. García Rodríguez LA, Duque A, Castellsague J, et al. A cohort study on the risk of acute liver injury among users of ketoconazole and other antifungal drugs. Br J Clin Pharmacol 1999; 48(6): 847–852.
22. Creemers SG, Feelders RA, De Jong FH, et al. Levoketoconazole, the 2S,4R enantiomer of ketoconazole, a new steroidogenesis inhibitor for Cushing’s syndrome treatment. J Clin Endocrinol Metabol 2021; 106: 1618–1630.
23. Fleseriu M, Pivonello R, Elenkova A, et al. Efficacy and safety of levoketoconazole in the treatment of endogenous Cushing’s syndrome (SONICS): a phase 3, multicentre, open-label, single-arm trial. Lancet Diabet Endocrinol 2019; 7: 855–865.
24. Pivonello R, Zacharieva S, Elenkova A, et al. Levoketoconazole in the treatment of patients with endogenous Cushing’s syndrome: a double-blind, placebo-controlled, randomized withdrawal study (LOGICS). Pituitary 2022; 25: 911–926.
25. Patra S, Dutta D, Nagendra L, et al. Efficacy and safety of levoketoconazole in managing Cushing’s syndrome: a systematic review. Indian J Endocr Metab 2024; 28: 343–349.
26. Sharma ST; AACE Adrenal Scientific Committee. An individualized approach to the evaluation of Cushing Syndrome. Endocr Pract 2017; 23(6): 726–737.
27. Teng Chai S, Haydar Ali Tajuddin A, Wahab NA, et al. Fluconazole as a safe and effective alternative to ketoconazole in controlling hypercortisolism of recurrent Cushing’s disease: a case report. Int J Endocrinol Metab 2018; 16(3): e65233.
28. Zhao Y, Liang W, Cai F, et al. Fluconazole for hypercortisolism in Cushing’s disease: a case report and literature review. Front Endocrinol (Lausanne) 2020; 11: 608886.
29. Burns K, Christie-David D, Gunton JE. Fluconazole in the treatment of Cushing’s disease. Endocrinol Diabetes Metab Case Rep 2016; 2016: 150115.
30. Canteros TM, De Miguel V, Fainstein-Day P. Fluconazole treatment in severe ectopic Cushing syndrome. Endocrinol Diabetes Metab Case Rep 2019; 2019(1): 19-0020.
31. Schwetz V, Aberer F, Stiegler C, et al. Fluconazole and acetazolamide in the treatment of ectopic Cushing’s syndrome with severe metabolic alkalosis. Endocrinol Diabetes Metab Case Rep 2015; 2015:1 50027.
32. Stevens DA, Diaz M, Negroni R, et al. Safety evaluation of chronic fluconazole therapy. Fluconazole Pan-American Study Group. Chemotherapy 1997;43(5):371–377.
33. Greenblatt HK, Greenblatt DJ. Liver injury associated with ketoconazole: review of the published evidence. J Clin Pharmacol 2014; 54(12): 1321–1329.
34. Pivonello R, De Leo M, Cozzolino A, et al. The treatment of Cushing’s disease. Endocr Rev 2015; 36(4): 385–486.

 

Delirium Induced by Rapid Titration of Osilodrostat in a Patient With Cushing’s Disease

Abstract

Cushing’s disease frequently presents with psychiatric symptoms such as depression, anxiety, and cognitive impairment. Osilodrostat, an 11β-hydroxylase inhibitor, is used for persistent or recurrent cases, but rapid titration may precipitate adrenal insufficiency and psychiatric complications.

We report a woman in her early 40s with a history of major depressive disorder treated with clomipramine. After transsphenoidal surgery for Cushing’s disease, she remained hypercortisolemic, and hydrocortisone replacement was continued postoperatively for safety due to unstable cortisol secretion. Cortisol secretion was unstable, with day-to-day fluctuations. Osilodrostat was initiated at 2 mg/day. Shortly thereafter, urinary free cortisol (UFC) increased, and between days 3 and 5, she developed depressive symptoms, depersonalization, and suicidal ideation. These were judged to be related to cortisol elevation, and osilodrostat was rapidly titrated, reaching 40 mg/day by day 9. Depressive symptoms improved as UFC decreased. However, from day 9, she developed delirium with fluctuating consciousness, disorientation, purposeless hyperactivity, and stereotyped speech, peaking on days 10-12. During this period, blood pressure decreased, accompanied by tachycardia and fever. Infection and metabolic abnormalities were clinically excluded. Symptoms resolved spontaneously by day 14, with amnesia for the episode, and she was discharged on day 20 without recurrence.

This case illustrates a rare clinical course where depressive symptoms during cortisol elevation and delirium during cortisol reduction occurred sequentially in the same patient following rapid osilodrostat titration. The episode suggests that abrupt cortisol fluctuations may induce psychiatric symptoms even under hydrocortisone supplementation. Clinicians should avoid rapid titration and ensure close collaboration between endocrinology and psychiatry when psychiatric symptoms arise during treatment.

Introduction

Cushing’s disease is caused by an adrenocorticotropic hormone (ACTH) secreting pituitary adenoma, leading to chronic hypercortisolism. In addition to physical features such as central obesity, moon face, and hypertension, psychiatric symptoms including depression, anxiety, and cognitive impairment are frequently observed [1-3]. Depression occurs in 40-60% of patients and is associated with increased suicide risk. Anxiety and cognitive impairment are also common, and psychiatric symptoms may even precede the physical manifestations. Thus, psychiatrists may encounter such patients at an early stage, and it is clinically important to consider underlying endocrine disorders [1,3]. The first-line treatment is transsphenoidal surgery, but remission is not always achieved [4].

Osilodrostat, an oral 11β-hydroxylase inhibitor, is primarily used for the treatment of persistent or recurrent Cushing’s disease. By inhibiting cortisol synthesis, it effectively lowers circulating cortisol levels, thereby improving the clinical manifestations of hypercortisolism. The phase III LINC 3 trial demonstrated its efficacy [5], but adverse events such as adrenal insufficiency and psychiatric symptoms have been reported [6-8]. Acute adrenal insufficiency can present with hypotension, tachycardia, fever, and gastrointestinal symptoms, and in severe cases with impaired consciousness or delirium [9]. To minimize these risks, gradual titration in 2-mg increments at intervals of at least two weeks is recommended [6].

For monitoring treatment efficacy, urinary free cortisol (UFC) is widely used as a reliable marker reflecting total cortisol secretion over 24 hours and serves as a standard index of disease activity and treatment response [1,2].

Case Presentation

The patient was a 43-year-old woman with a history of major depressive disorder since her early twenties, treated mainly with clomipramine. Although she experienced recurrent episodes, she was able to continue working as a clinical psychologist, with occasional sick leave. Her past history included papillary thyroid carcinoma treated surgically, followed by hypothyroidism managed with levothyroxine 75 µg/day.

In her thirties, she developed treatment-resistant hypertension. In March 2024, inferior petrosal sinus sampling confirmed Cushing’s disease. In April 2024, she underwent transsphenoidal surgery and started hydrocortisone replacement at 30 mg/day. However, hypercortisolism and elevated ACTH persisted. Cortisol levels showed marked day-to-day fluctuations rather than being consistently elevated, and replacement therapy was continued for safety.

In June 2024, she was admitted to our endocrinology department because of persistent disease activity. Psychiatry was consulted due to her psychiatric history. At admission, she was alert, cooperative, and exhibited neither depressive nor psychotic symptoms. Clomipramine was continued. Physical examination revealed a BMI of 27.5, central obesity, moon face, and violaceous striae. Blood pressure was 155/105 mmHg. Routine chemistry and thyroid function were within normal limits. Endocrinological work-up confirmed persistent hypercortisolism: the 24-hour UFC was markedly elevated (409.2 µg/day; normal < 50 µg/day), midnight serum cortisol was inappropriately high (14.3 µg/dL; normally suppressed at night), and dexamethasone suppression testing failed to suppress morning cortisol (9.7 µg/dL after 0.5 mg dexamethasone). Corticotropin-releasing hormone stimulation testing demonstrated an exaggerated ACTH response (63.6 → 105.0 pg/mL), consistent with pituitary-dependent Cushing’s disease. Postoperative brain MRI showed only expected surgical changes without new lesions.

Figure 1 illustrates the clinical course in this case. Osilodrostat was initiated at 2 mg/day on day 1. UFC unexpectedly rose thereafter, and between days 3 and 5, she developed depressed mood, depersonalization, and suicidal ideation. These psychiatric symptoms were judged to be associated with increased cortisol secretion. Antidepressant adjustment was not attempted. Instead, priority was given to endocrine control, and osilodrostat was rapidly up-titrated. Although the risk of adrenal insufficiency was considered, treatment was deemed safe under hydrocortisone supplementation. By day 9, the dose of osilodrostat reached 40 mg/day, UFC decreased, and depressive symptoms improved.

Timeline-of-clinical-events-and-interventions-in-the-present-case.
Figure 1: Timeline of clinical events and interventions in the present case.

Panel (A) shows the osilodrostat dosage and 24-hour urinary free cortisol (UFC) levels; panel (B) depicts vital signs (sBP, systolic blood pressure; BT, body temperature); and panel (C) illustrates psychiatric symptoms and the dosages of antipsychotic medications, all plotted against treatment days.

However, from day 9 onward, delirium and psychomotor agitation emerged, peaking on days 10-12. She displayed fluctuating consciousness, global disorientation, impaired attention, purposeless hyperactivity, stereotyped behaviors, and repetitive utterances of meaningless numbers. She wandered barefoot and occasionally shouted fragmented phrases such as “Say you love me.” Anxiety and insomnia were prominent, but hallucinations and self-disturbances were absent.

At that time, her vital signs showed a decline in blood pressure from 155/105 mmHg to 125/59 mmHg, a pulse rate of 110/min, and a temperature of 38.3°C. Electrolytes and glucose were normal, and no inflammatory response or other signs of infection were detected. Because of marked psychomotor agitation, imaging and EEG were not performed. Risperidone and haloperidol were given but were ineffective.

At onset, the delirium was interpreted as a manifestation of hypercortisolism, partly because it occurred during a holiday when comprehensive evaluation was not feasible. Osilodrostat was therefore not reduced. As her symptoms improved spontaneously and she remained stable under hydrocortisone supplementation, the dose was maintained. Since the delirium resolved completely and did not recur, additional imaging or EEG was not performed.

By day 14, delirium had resolved, and the patient reported amnesia for the episode. No recurrence occurred, and she was discharged on day 20 at her and her family’s request. Outpatient follow-up confirmed stable status without recurrence of delirium.

Discussion

This case illustrates an unusual clinical course in which qualitatively distinct psychiatric symptoms appeared sequentially during rapid titration of osilodrostat. The initial depressive phase coincided with a transient rise in UFC and may have been related to unstable cortisol secretion that had already been observed prior to admission. Although not sufficient for a formal diagnosis, such variability is reminiscent of cyclical Cushing’s disease [10], which has also been associated with mood fluctuations [1,3]. Previous studies have demonstrated the link between hypercortisolism and depression [1,3], and our case is consistent with these findings during the early phase of treatment.

In contrast, the subsequent delirium phase was accompanied by hypotension, tachycardia, and fever, resembling adrenal insufficiency. Similar neuropsychiatric manifestations, including delirium and psychosis, have been described in previous reports of adrenal insufficiency [8,9]. However, unlike those cases, where symptoms typically emerged after drug withdrawal, delirium in our patient developed rapidly following dose escalation. This temporal pattern suggests that even transient cortisol reductions may precipitate acute neuropsychiatric symptoms.

Taken together, these observations both align with and extend prior findings linking cortisol dysregulation to psychiatric manifestations. Our case supports previous evidence that hypercortisolism is associated with depressive symptoms [1,3], whereas hypocortisolism predisposes to delirium or psychosis [8,9]. Importantly, it also highlights a dynamic aspect of this relationship: abrupt cortisol fluctuations themselves, regardless of direction, may transiently disrupt neuroendocrine homeostasis and trigger psychiatric symptoms. This interpretation is consistent with reports of cyclical Cushing’s disease showing alternating mood states [10], but it differs in that the fluctuation here was iatrogenic and temporally linked to rapid pharmacologic titration.

Pharmacological factors may have further amplified these effects. Clomipramine and antipsychotics such as haloperidol and risperidone are known to cause confusion or agitation, particularly under hormonal stress. It is therefore plausible that psychotropic drug interactions and cortisol fluctuations acted synergistically to produce the observed neuropsychiatric manifestations.

This report has several limitations. The onset of delirium occurred during a holiday, and severe agitation precluded blood sampling for serum cortisol, ACTH testing, or therapeutic steroid administration. Thus, strict diagnostic criteria for adrenal insufficiency could not be fulfilled. Nonetheless, the clinical presentation, with hypotension, tachycardia, fever, and altered consciousness, was consistent with an adrenal insufficiency-like state. Electrolytes, glucose, and inflammatory markers remained within normal limits, making infection or metabolic causes unlikely. However, structural or neurological contributors could not be completely excluded because imaging and EEG were not performed. Although the clinical picture resembled adrenal insufficiency, true adrenal crisis was unlikely given the normal electrolyte levels, spontaneous recovery, and maintained oral intake. Therefore, this episode may be better characterized as a state of functional adrenal dysregulation rather than frank adrenal insufficiency.

Conclusions

This case highlights a rare course in which depressive symptoms during cortisol elevation and delirium during cortisol reduction occurred sequentially in the same patient following rapid titration of osilodrostat. The episode suggests that even under hydrocortisone supplementation, abrupt cortisol fluctuations can induce psychiatric symptoms. However, because some observations were paradoxical and certain assessments could not be performed during the acute phase, these interpretations should be made with caution. The episode may represent a state of functional adrenal dysregulation rather than distinct phases of hyper- or hypocortisolism.

This case offers two clinical lessons. First, osilodrostat should be titrated gradually according to established guidelines. Second, if psychiatric symptoms arise during treatment, they are best managed through close collaboration between endocrinology and psychiatry.

References

  1. Pivonello R, Simeoli C, De Martino MC, et al.: Neuropsychiatric disorders in Cushing’s syndrome. Front Neurosci. 2015, 9:129. 10.3389/fnins.2015.00129
  2. Sharma ST, Nieman LK, Feelders RA: Cushing’s syndrome: epidemiology and developments in disease management. Clin Epidemiol. 2015, 7:281-93. 10.2147/CLEP.S44336
  3. Sonino N, Fava GA, Raffi AR, Boscaro M, Fallo F: Clinical correlates of major depression in Cushing’s disease. Psychopathology. 1998, 31:302-6. 10.1159/000029054
  4. Fleseriu M, Auchus R, Bancos I, et al.: Consensus on diagnosis and management of Cushing’s disease: a guideline update. Lancet Diabetes Endocrinol. 2021, 9:847-75. 10.1016/S2213-8587(21)00235-7
  5. Pivonello R, Fleseriy M, Newell-Price J, et al.: Efficacy and safety of osilodrostat in patients with Cushing’s disease (LINC 3): a multicentre phase 3 study with a double-blind, randomised withdrawal phase. Lancet Diabetes Endocrinol. 2020, 8:748-61. 10.1016/S2213-8587(20)30240-0
  6. U.S. Food and Drug Administration. Osilodrostat prescribing information. (2020). Accessed: October 18, 2025: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/212801s000lbl.pdf.
  7. Gadelha M, Bex M, Feelders RA, et al.: Randomized trial of osilodrostat for the treatment of Cushing disease. J Clin Endocrinol Metab. 2022, 107:e2882-95. 10.1210/clinem/dgac178
  8. Ekladios C, Khoury J, Mehr S, Feghali K: Osilodrostat-induced adrenal insufficiency in a patient with Cushing’s disease. Clin Case Rep. 2022, 10:e6607. 10.1002/ccr3.6607
  9. Arlt W: Society for Endocrinology endocrine emergency guidance: Emergency management of acute adrenal insufficiency (adrenal crisis) in adult patients. Endocr Connect. 2016, 5:G1-3. 10.1530/EC-16-0054
  10. Meinardi JR, Wolffenbuttel BH, Dullaart RP: Cyclic Cushing’s syndrome: a clinical challenge. Eur J Endocrinol. 2007, 157:245-54. 10.1530/EJE-07-0262