A Letter To Patients With Chronic Disease

Dear Patients: You have it very hard, much harder than most people understand.  Having sat for 16 years listening to the stories, seeing the tiredness in your eyes, hearing you try to describe the indescribable, I have come to understand that I too can’t understand what your lives are like.  How do you answer the question, “how do you feel?” when you’ve forgotten what “normal” feels like?  How do you deal with all of the people who think you are exaggerating your pain, your emotions, your fatigue?  How do you decide when to believe them or when to trust your own body?  How do you cope with living a life that won’t let you forget about your frailty, your limits, your mortality?

I can’t imagine.

But I do bring something to the table that you may not know.  I do have information that you can’t really understand because of your unique perspective, your battered world.  There is something that you need to understand that, while it won’t undo your pain, make your fatigue go away, or lift your emotions, it will help you.  It’s information without which you bring yourself more pain than you need suffer; it’s a truth that is a key to getting the help you need much easier than you have in the past.  It may not seem important, but trust me, it is.

You scare doctors.

No, I am not talking about the fear of disease, pain, or death.  I am not talking about doctors being afraid of the limits of their knowledge.  I am talking about your understanding of a fact that everyone else seems to miss, a fact that many doctors hide from: we are normal, fallible people who happen to doctor for a job.  We are not special.  In fact, many of us are very insecure, wanting to feel the affirmation of people who get better, hearing the praise of those we help.  We want to cure disease, to save lives, to be the helping hand, the right person in the right place at the right time.

But chronic unsolvable disease stands square in our way.  You don’t get better, and it makes many of us frustrated, and it makes some of us mad at you.  We don’t want to face things we can’t fix because it shows our limits.  We want the miraculous, and you deny us that chance.

And since this is the perspective you have when you see doctors, your view of them is quite different.  You see us getting frustrated.  You see us when we feel like giving up.  When we take care of you, we have to leave behind the illusion of control, of power over disease.  We get angry, feel insecure, and want to move on to a patient who we can fix, save, or impress.  You are the rock that proves how easily the ship can be sunk.  So your view of doctors is quite different.

Then there is the fact that you also possess something that is usually our domain: knowledge.  You know more about your disease than many of us do – most of us do.  Your MS, rheumatoid arthritis, end-stage kidney disease, Cushing’s disease, bipolar disorder, chronic pain disorder, brittle diabetes, or disabling psychiatric disorder – your defining pain –  is something most of us don’t regularly encounter.  It’s something most of us try to avoid.  So you possess deep understanding of something that many doctors don’t possess.  Even doctors who specialize in your disorder don’t share the kind of knowledge you can only get through living with a disease.  It’s like a parent’s knowledge of their child versus that of a pediatrician.  They may have breadth of knowledge, but you have depth of knowledge that no doctor can possess.

So when you approach a doctor – especially one you’ve never met before – you come with a knowledge of your disease that they don’t have, and a knowledge of the doctor’s limitations that few other patients have.  You see why you scare doctors?  It’s not your fault that you do, but ignoring this fact will limit the help you can only get from them.  I know this because, just like you know your disease better than any doctor, I know what being a doctor feels like more than any patient could ever understand.  You encounter doctors intermittently (more than you wish, perhaps); I live as a doctor continuously.

So let me be so bold as to give you advice on dealing with doctors.  There are some things you can do to make things easier, and others that can sabotage any hope of a good relationship:

  1. Don’t come on too strong – yes, you have to advocate for yourself, but remember that doctors are used to being in control.  All of the other patients come into the room with immediate respect, but your understanding has torn down the doctor-god illusion.  That’s a good thing in the long-run, but few doctors want to be greeted with that reality from the start.  Your goal with any doctor is to build a partnership of trust that goes both ways, and coming on too strong at the start can hurt your chances of ever having that.
  2. Show respect – I say this one carefully, because there are certainly some doctors who don’t treat patients with respect – especially ones like you with chronic disease.  These doctors should be avoided.  But most of us are not like that; we really want to help people and try to treat them well.  But we have worked very hard to earn our position; it was not bestowed by fiat or family tree.  Just as you want to be listened to, so do we.
  3. Keep your eggs in only a few baskets – find a good primary care doctor and a couple of specialists you trust.  Don’t expect a new doctor to figure things out quickly.  It takes me years of repeated visits to really understand many of my chronic disease patients.  The best care happens when a doctor understands the patient and the patient understands the doctor.  This can only happen over time.  Heck, I struggle even seeing the chronically sick patients for other doctors in my practice.  There is something very powerful in having understanding built over time.
  4. Use the ER only when absolutely needed – Emergency room physicians will always struggle with you.  Just expect that.  Their job is to decide if you need to be hospitalized, if you need emergency treatment, or if you can go home.  They might not fix your pain, and certainly won’t try to fully understand you.  That’s not their job.  They went into their specialty to fix problems quickly and move on, not manage chronic disease.  The same goes for any doctor you see for a short time: they will try to get done with you as quickly as possible.
  5. Don’t avoid doctors – one of the most frustrating things for me is when a complicated patient comes in after a long absence with a huge list of problems they want me to address.  I can’t work that way, and I don’t think many doctors can.  Each visit should address only a few problems at a time, otherwise things get confused and more mistakes are made.  It’s OK to keep a list of your own problems so things don’t get left out – I actually like getting those lists, as long as people don’t expect me to handle all of the problems.  It helps me to prioritize with them.
  6. Don’t put up with the jerks – unless you have no choice (in the ER, for example), you should keep looking until you find the right doctor(s) for you.  Some docs are not cut out for chronic disease, while some of us like the long-term relationship.  Don’t feel you have to put up with docs who don’t listen or minimize your problems.  At the minimum, you should be able to find a doctor who doesn’t totally suck.
  7. Forgive us – Sometimes I forget about important things in my patients’ lives.  Sometimes I don’t know you’ve had surgery or that your sister comes to see me as well.  Sometimes I avoid people because I don’t want to admit my limitations.  Be patient with me – I usually know when I’ve messed up, and if you know me well I don’t mind being reminded.  Well, maybe I mind it a little.

You know better than anyone that we docs are just people – with all the stupidity, inconsistency, and fallibility that goes with that – who happen to doctor for a living.  I hope this helps, and I really hope you get the help you need.  It does suck that you have your problem; I just hope this perhaps decreases that suckishness a little bit.

Sincerely,

Dr. Rob

Post Script: This post has generated a huge amount of conversation and interest (as witnessed by the large number of comments!).  I very much appreciate the dialogue it has spawned both here and across the web.  I’ve subsequently written follow-up posts explaining my thoughts in more detail – largely in response to the comments here.  One of them discusses in more detail my own experiences as a doctor and the second talks of the importance of  knowing and being known.  Reading these will give you a better picture of my thought process and perspective on this.Dr. Rob

From http://more-distractible.org/musings/2010/07/14/a-letter-to-patients-with-chronic-disease

Paraneoplastic Cushing’s Syndrome Due to ACTH-Secreting Acinic Cell Carcinoma of the Parotid Gland: A Rare Case

​​​​​​​​​​​​​​Although acinic cell carcinoma — a cancer of the glands that produce saliva — is usually considered low risk, it can behave aggressively and cause Cushing’s syndrome, according to researchers who described such a case involving a 58-year-old man in Turkey.

They added that if not recognized and treated at an early stage, it can rapidly become life-threatening.

“The rarity of this entity poses a diagnostic challenge,” wrote the group of four researchers from a hospital in Turkey. “Awareness of this association is critical, as early identification and intervention may be lifesaving in selected patients.”

The case was described in a letter to the editor, titled “Paraneoplastic Cushing’s syndrome due to ACTH-secreting acinic cell carcinoma of the parotid gland: A rare case,” in the European Annals of Otorhinolaryngology, Head and Neck Diseases.

High cortisol: Symptoms and signs

When we become stressed out bodies release cortisol – the stress hormone – which helps us cope with challenges. Cortisol’s role is to convert protein into energy by releasing glycogen and counteract inflammation. When cortisol is released in the body temporarily, this is okay and won’t have long-lasting detrimental effects to health as it is a natural response to a stressor. But when cortisol levels remain high chronically it can eventually begin to tear your body down thus causing health complications. This is why numerous health experts recommend the reduction of stress as much as possible because in the long run it can harm our health.

High cortisol levels over the long term can destroy healthy muscle and bone, slow down healing, impair digestion, metabolism and mental function, and weaken the immune system. Additionally, adrenal fatigue has been linked to numerous other health conditions including fibromyalgia, hypothyroidism, chronic fatigue syndrome, arthritis, premature menopause, and many others. High cortisol levels are also associated with many unwanted symptoms which we will outline below.

High cortisol symptoms

If you’re concerned about your cortisol levels, the following signs and symptoms associated with high cortisol levels can alert you and prompt you to make the necessary changes in order to reduce cortisol levels.

  • Unexplained weight gain
  • Skin symptoms including acne, skin infections, lesions, thin-appearing skin, bruising, growing facial hair, and reddish purple streaks on skin
  • Muscle and bone symptoms like a deep pain in the bones, weak muscles, chronic backaches, increased risk of bone fractures
  • Gender specific changes such as women developing male-pattern hair growth, irregular menstrual cycles, low libido, infertility
  • Neurological symptoms such as depression, irritability, headaches, chronic fatigue, and anxiety
  • High blood pressure (hypertension)
  • Poor sleep or lack of sleep
  • Swelling of hands and feet

If you notice any of the above symptoms, you may want to have your cortisol levels checked to confirm diagnosis. Living with high cortisol levels over the long term can have detrimental effects on a person’s health. Treating high cortisol as soon as possible can lower the risk of long-term health problems.

Causes of high cortisol

There are two main causes of high cortisol: Chronic stress and more rarely, Cushing’s disease. Cushing’s disease is caused by a hormone-secreting tumor on the adrenal gland which results in the release more cortisol than required.

Living with chronic stress also leads to high cortisol because the release of cortisol is a natural response from the body when it is stressed. The hypothalamic–pituitary-adrenal [HPA] axis is what regulates the timely release of cortisol during acute stress, but when stress becomes chronic the feedback from the HPA becomes damaged and so cortisol continues to be released.

Conditions that can contribute to chronic stress and high cortisol include:

  • Depression
  • Panic disorder
  • Generalized anxiety disorder
  • Post traumatic stress disorder (PTSD)
  • Anorexia nervosa
  • Bulimia nervosa
  • Alcoholism
  • Diabetes
  • Severe obesity
  • Metabolic syndrome
  • Polycystic ovary syndrome (PCOS)
  • Obstructive sleep apnea
  • Working in shifts
  • End-stage kidney disease
  • Chronic pain

Tips to lower high cortisol

Here are some tips that can help you lower your high cortisol levels and thus prevent long-term health problems associated with high cortisol. [MaryO’Note:  These will not work if you have active Cushing’s!    You must remove  the source of your Cushing’s first.]

  • Eat a well balanced meal with plenty of fruits and vegetables, avoid sugars, consume low glycemic index foods, avoid processed foods, eat a wide variety of health foods to ensure you receive all essential vitamins and nutrients
  • Exercise on a regular basis
  • Take time out of each day to relax – listen to music, meditate, pray, perform your favorite hobby, anything that promotes relaxation
  • Take up yoga or tai chi
  • Ensure you are getting adequate sleep
  • Drink tea
  • Watch funny videos or hang out with a funny friend
  • Go for a massage
  • Do something spiritual – attend a service
  • Chew gum
  • Limit caffeine intake
  • Stretch

By incorporating these helpful tips into your life you will find that your high cortisol symptoms begin to diminish and your overall health begins to improve.

From http://www.belmarrahealth.com/high-cortisol-symptoms-signs-look/

 

Genetic mutation lowers obesity in Cushing’s syndrome

London E. J Clin Endocrinol Metab. 2013; doi:10.1210/jc.2013-1956.

Among adult patients with Cushing’s syndrome, those with mutations in PRKAR1A, the gene that controls cAMP-dependent protein kinase, are less obese than their counterparts without these mutations, according to a recent study.

The retrospective study evaluated adrenalectomy samples from 51 patients with Cushing’s syndrome, 13 with PRKAR1A mutations and 32 without. Of the 51 patients, 40 were female and 11 were male, and patients ranged in age from 4 to 74 years.

A non-Cushing’s syndrome comparison group consisting of 6 adrenalectomy patients with aldosterone producing adenomas (APAs) was included. Additional comparison groups comprising clinical data from 89 patients with Cushing’s disease and 26 with hyperaldosteronism were also studied.

Researchers recorded the weight, height and BMI of all patients, and measured abdominal subcutaneous adipose tissue (ScAT) and periadrenal adipose tissue (PAT) using computed tomography. PAT was collected and frozen for evaluation; the extracts were assessed for levels of cAMP and protein kinase (PKA) activity, as well as for protein and mRNA expression of subunits of PKA. Diurnal cortisol levels and urine-free cortisol were also measured preoperatively.

The study found that in adults with Cushing’s syndrome, the mean BMI of those with PRKAR1A mutations was lower than that of patients with noPRKAR1A mutations (P<.05), and was not inconsistent with the hyperaldosteronism comparison group.

In pediatric patients with adrenal Cushing’s syndrome, the presence of PRKAR1A mutation did not have an impact on mean BMI z-scores. However, in comparison with pediatric patients with pituitary Cushing’s disease, the BMI z-scores were significantly lower in pediatric Cushing’s disease patients with PRKAR1Amutations (P<.05). Patients with Cushing’s syndrome without PRKAR1A mutations had significantly more PAT and ScAT than non-Cushing’s syndrome patients. Additionally, the ratio of basal-to-total (cAMP-triggered) PKA activity was significantly lower in patients with PRKAR1A mutations, suggesting greater proportions of active PKA (P<.005).

“These findings have obvious implications in the establishment of the diagnosis of CS in patients with PRKAR1A mutations: These patients may be leaner than other patients with [Cushing’s syndrome],” the study authors wrote. “Perhaps more importantly, our findings point to the importance of cAMP and or PKA signaling in the regulation of adiposity.”

Disclosures: The researchers report no relevant financial disclosures.

From http://www.healio.com/endocrinology/adrenal/news/online/%7B693f94cd-359d-4c52-8e0d-bfd0e4a51d03%7D/genetic-mutation-lowers-obesity-in-cushings-syndrome

A Second Look at Refractory Edema: Delayed Diagnosis of Paraneoplastic Cushing’s Syndrome in Small Cell Lung Cancer

Abstract

Paraneoplastic Cushing syndrome (PCS) is a rare manifestation of ectopic adrenocorticotropic hormone (ACTH) production, mostly associated with bronchial carcinoid and small cell lung cancer (SCLC). Its clinical manifestations: refractory hypertension, profound hypokalemia, metabolic alkalosis, worsening hyperglycemia, and edema, can easily be misattributed to more common conditions, especially in older adults with multiple comorbidities, leading to diagnostic errors.

We present a case of an 84-year-old man with a history of stage IA non-SCLC treated one year earlier, who developed progressive dyspnea, orthopnea, bilateral extremity edema, severe hypokalemia, metabolic alkalosis, and new-onset hypertension. His symptoms were initially managed as volume overload and diuretic-resistant heart failure in the outpatient setting. During hospitalization, persistent metabolic alkalosis, worsening hyperglycemia, resistant hypertension, and refractory hypokalemia prompted further evaluation. Laboratory studies demonstrated markedly elevated early morning cortisol (102.7 µg/dL) and ACTH (293 pg/mL). Computed tomography (CT) imaging revealed a new right infrahilar mass, extensive mediastinal adenopathy, and bilateral adrenal metastases. Endobronchial ultrasound-guided biopsy confirmed SCLC. The patient was diagnosed with paraneoplastic ACTH-dependent CS and initiated on systemic chemotherapy.

This case highlights several diagnostic vulnerabilities, including anchoring bias, confirmation bias, premature closure, and failure to integrate multiple abnormal findings into a unifying diagnosis. Earlier recognition of the characteristic cluster of hypercortisolism signs-refractory hypokalemia, metabolic alkalosis, resistant hypertension, and hyperglycemia- may have accelerated diagnosis and treatment. Clinicians should maintain a high index of suspicion for PCS in older adults with a history of lung cancer who present with unexplained electrolyte disturbances and rapidly worsening cardiometabolic parameters. Early diagnosis is critical given the high morbidity and mortality associated with untreated paraneoplastic Cushing’s syndrome.

Introduction

Paraneoplastic ACTH-dependent Cushing syndrome (CS) is an uncommon but severe manifestation of ectopic adrenocorticotropic hormone production. Ectopic ACTH syndrome accounts for approximately 6-10% of all cases of endogenous CS [1]. This represents 10-20% of ACTH-dependent forms of Cushing syndrome, which themselves comprise 70-80% of all endogenous CS cases. Lung neuroendocrine tumors account for approximately 25% of cases, followed by small cell lung cancers (SCLC) (20%), with other sources being neuroendocrine tumors of the thymus, pancreas, and medullary thyroid carcinoma [2,3]. Patients typically present with symptoms related to underlying malignancy and rapid onset of severe hypercortisolism characterized by profound hypokalemia, metabolic alkalosis, hyperglycemia, and muscle weakness, often without the classic cushingoid features seen in other forms of CS [4,5].

These abnormalities are often initially attributed to more common conditions, including heart failure, diuretic use, thyroid disease, and worsening chronic diseases such as diabetes mellitus, especially in older adults with multimorbidity. This often leads to diagnostic errors. Diagnostic delays in paraneoplastic Cushing syndrome (PCS) are common and clinically meaningful. Hypercortisolism accelerates tumor progression, increases vulnerability to infection, worsens cardiometabolic dysfunction, and contributes to poor performance status, substantially limiting therapeutic options [6-8]. Prompt recognition requires clinicians to identify the hallmark constellation of metabolic disturbances and consider endocrine etiologies early.

We describe an older adult who presented with cough, dyspnea, edema, severe resistant hypertension, metabolic alkalosis, and electrolyte derangements that were initially attributed to volume overload and chronic lung disease. The diagnostic process ultimately led to the identification of extensive-stage SCLC, which caused ectopic ACTH production. We emphasize the diagnostic errors that contributed to the delayed recognition of this life-threatening syndrome.

Case Presentation

An 84-year-old man with a history of pre-diabetes, chronic obstructive pulmonary disease (COPD), a former smoker, and previously treated stage IA non-SCLC (left lower lobe, treated with Stereotactic Body Radiation Therapy) presented with cough, progressive shortness of breath, orthopnea, and bilateral lower extremity edema. Two weeks prior, outpatient clinicians treated his worsening edema and dyspnea with loop diuretics, and he was also started on nifedipine and losartan for hypertension.

In the emergency department, vital signs revealed blood pressure 216/98 mmHg, heart rate 104 beats/min, and respiratory rate 23 breaths/min. Physical examination demonstrated bilateral pedal edema extending to the mid-shins and bilateral upper extremity edema. Lung examination revealed no wheezing or crackles. The abdomen was obese but without palpable masses.

Initial laboratory evaluation showed mild thrombocytopenia (114 × 103/µL), creatinine 1.10 mg/dL, potassium 2.9 mmol/L, bicarbonate 43 mmol/L, chloride 88 mmol/L, glucose 240 mg/dL, unremarkable liver function test, and elevated B-type natriuretic peptide (BNP) of 198 pg/mL. Arterial blood gas demonstrated pH 7.58 and PaCO₂ 42 mmHg, indicating primary metabolic alkalosis. Urinalysis was significant for glucosuria, otherwise unremarkable. Chest X-ray showed bibasilar atelectasis without evidence of pulmonary edema. He was admitted for decompensated heart failure. Pertinent admission laboratory findings are summarized in Table 1.

Test Result Range
Hemoglobin 16.4 g/dL 13.8-17.2 g/dL
White cell count 9.7 × 103/µL 4.0-10.50 × 103/µL
Platelet 114 × 103/µL 130-400 × 103/µL
Sodium 142 mmol/L 133-145 mmol/L
Potassium 2.9 mmol/L 3.3-5.1 mmol/L
Chloride 88 mmol/L 98-108 mmol/L
Bicarbonate 43 mmol/L 22-32 mmol/L
Creatinine 1.10 mg/dL 0.50-1.20 mg/dL
BNP 198.8 pg/mL 10.0-100.0 pg/mL
Albumin 3.7 g/dL 3.0-5.0 g/dL
Glucose 240 mg/dL 70-100 mg/dL
Serum cortisol 102.7 µg/dL 6.7-22.6 µg/dL
Plasma ACTH 293 pg/mL 6-50 pg/mL
Urine chloride 73 mmol/L
Urine potassium 38 mmol/L
Table 1: Summary of relevant laboratory findings at presentation

Metabolic alkalosis, renal potassium wasting, hyperglycemia, elevated cortisol, and ACTH suggested an ACTH-dependent Cushing’s syndrome.

BNPL: brain natriuretic peptide; ACTH: adrenocorticotropic hormone

Despite diuresis with IV furosemide, he continued to demonstrate metabolic alkalosis and worsening hypokalemia (nadir 2.8 mmol/L), requiring repeated potassium supplementation. Hyperglycemia persisted with capillary blood glucose 170-300 mg/dL, requiring escalating insulin doses. Blood pressures remained elevated despite escalation of losartan and nifedipine. Echocardiogram on day 2 of admission was unremarkable with an ejection fraction of 55-60% and normal diastolic function. Doppler ultrasound of the lower and upper extremities did not reveal deep vein thrombosis.

On hospital day 3, diagnosis was reassessed, and differentials were broadened to include endocrine causes of hypertension with metabolic alkalosis. Urine electrolytes revealed high urine chloride (73 mmol/L) and potassium (38 mmol/L), suggestive of potassium wasting from possible mineralocorticoid excess. Subsequent testing revealed markedly elevated serum cortisol (102.7 µg/dL) and plasma ACTH (293 pg/mL), suggesting an ACTH-dependent process. Given his significant history of smoking and treated NSCLC, a CT chest/abdomen/pelvis was done, which showed a new right infrahilar mass, mediastinal lymphadenopathy, and nodular fullness of both adrenal glands concerning for metastatic disease (Figures 16).

Axial-CT-chest-showing-an-enlarged-right-paratracheal-lymph-node.
Figure 1: Axial CT chest showing an enlarged right paratracheal lymph node.

Axial image demonstrates a right paratracheal lymph node measuring 14.8 mm in short axis, concerning for malignant nodal involvement.

Non-contrast-axial-CT-chest-showing-a-dominant-right-paratracheal-lymph-node
Figure 2: Non-contrast axial CT chest showing a dominant right paratracheal lymph node

A right paratracheal lymph node measuring 16.2 × 16.5 mm is demonstrated, further supporting malignant mediastinal involvement in small cell lung cancer.

Axial-non-contrast-CT-chest-demonstrating-residual-treated-left-lower-lobe-lesion
Figure 3: Axial non-contrast CT chest demonstrating residual treated left lower lobe lesion

A spiculated nodule in the left lower lobe measuring 9.2 mm (AP) × 8.5 mm (transverse) on image 60, slightly decreased from the prior measurement of 9.3 × 10.6 mm, corresponding to the site of previously treated squamous cell carcinoma.

Axial-non-contrast-CT-chest-showing-markedly-enlarged-subcarinal-lymph-node
Figure 4: Axial non-contrast CT chest showing markedly enlarged subcarinal lymph node

A dominant subcarinal lymph node measuring 24 × 34 mm, highly suspicious for malignant mediastinal involvement.

Axial-non-contrast-CT-chest-showing-right-infrahilar-mass-like-fullness
Figure 5: Axial non-contrast CT chest showing right infrahilar mass-like fullness

Soft tissue density in the right lower lobe infrahilar region measuring up to 25 mm in transverse diameter, concerning for primary malignant involvement.

Non-contrast-CT-demonstrating-bilateral-adrenal-metastases
Figure 6: Non-contrast CT demonstrating bilateral adrenal metastases

Nodular enlargement of both adrenal glands has progressed compared with prior imaging: the left adrenal lateral limb measures 14 mm (previously 9.2 mm) and the right adrenal body measures 12.4 mm (previously 7 mm). Multiple benign hepatic cysts are also visualized (red arrows).

Bronchoscopy with endobronchial ultrasound-guided transbronchial needle aspiration of the subcarinal (station 7) and right hilar (station 10R) lymph nodes revealed small cell carcinoma. He was diagnosed with extensive-stage SCLC with adrenal metastases and paraneoplastic ACTH-dependent Cushing syndrome. Systemic chemotherapy with carboplatin, etoposide, and atezolizumab was initiated.

Discussion

PCS caused by ectopic ACTH secretion is associated with significantly higher morbidity and mortality than other forms of hypercortisolism. Patients experience universal acute complications and have markedly shortened survival, with median survival reported as low as 3-4 months in those with SCLC [7-9]. Early mortality is common, with most deaths occurring within weeks to months of diagnosis and frequently driven by opportunistic infections, thromboembolic events, and severe metabolic derangements [6,7]. Hypercortisolism itself impairs the ability to deliver effective cancer therapy, increasing the risk of treatment-related complications and reducing chemotherapy response rates [6]. Ectopic ACTH production is therefore considered the most lethal etiology of Cushing syndrome, with tumor progression and infection being the predominant causes of death.

Diagnostic error is the failure to establish an accurate and timely explanation of the patient’s health problem(s) or communicate that explanation to the patient [10]. Diagnostic errors remain a significant contributor to patient harm, with estimates suggesting they affect 5-25% of patients [11,12]. These errors often arise not from knowledge deficits but from cognitive heuristics that clinicians rely on to navigate diagnostic uncertainty. While heuristics are essential for efficiency, they can predispose clinicians to systematic errors, especially when used uncritically or in complex cases [13,14]. Three cognitive pitfalls are particularly relevant in diagnostic error: anchoring bias (fixating early on a diagnosis and failing to adjust as new data emerge), premature closure (ceasing further diagnostic inquiry once an initial label is applied), and diagnostic momentum (the inertia created as more clinicians accept and act upon an early diagnostic impression) [15,16]. These processes can perpetuate incorrect diagnoses and delay definitive care.

For our patient, the initial clinical presentation of dyspnea, orthopnea, bilateral edema, and markedly elevated blood pressure in this older adult reasonably prompted consideration of several common cardiopulmonary and renal conditions. Acute decompensated heart failure was an early working diagnosis given his orthopnea, lower extremity edema, and elevated BNP. However, this diagnosis became less convincing as objective data accumulated. The patient had no pulmonary edema on chest imaging and preserved left ventricular systolic and diastolic function on echocardiography. Additionally, the severity of metabolic alkalosis and hypokalemia was disproportionate to the degree of diuretic exposure and volume status. These discrepancies argued against heart failure as a unifying diagnosis.

A COPD exacerbation was also considered due to the patient’s chronic lung disease and dyspnea. Yet he had no wheezing, no infectious symptoms, and no significant gas-exchange abnormality. His arterial blood gas (ABG) demonstrated metabolic alkalosis without primary respiratory acidosis. Moreover, his dyspnea improved early in the hospitalization, while the metabolic disturbances worsened, further making COPD a less likely diagnostic consideration. Renal causes of edema and hypertension, including nephrotic syndrome and intrinsic kidney disease, were evaluated. The patient had normal albumin and creatinine, and no significant proteinuria or hematuria on urinalysis, findings that could not explain his systemic edema. Similarly, acute or chronic kidney disease could not account for the combination of profound hypokalemia, metabolic alkalosis, and high urine chloride, which instead suggested an active mineralocorticoid process with renal wasting.

Primary hyperaldosteronism was a strong possibility, particularly given the combination of hypertension, hypokalemia, and metabolic alkalosis. However, the patient’s severe hyperglycemia, thrombocytopenia, new constitutional swelling of the upper extremities, and rapid symptom evolution were atypical for isolated hyperaldosteronism. Additionally, bilateral adrenal fullness seen on CT imaging was more consistent with adrenal metastases than with aldosterone-producing adenomas or hyperplasia. The degree of metabolic derangements also exceeded that typically observed in primary hyperaldosteronism, prompting evaluation for cortisol excess.

CS emerged as a unifying explanation for the multisystem abnormalities. The biochemical pattern, including severe metabolic alkalosis, renal potassium wasting, hyperglycemia, and resistant hypertension, is characteristic of activation of glucocorticoid and mineralocorticoid receptors. Markedly elevated cortisol and ACTH levels confirmed ACTH-dependent hypercortisolism. In older adults, pituitary Cushing disease typically evolves more slowly and is rarely associated with such profound hypokalemia [17,18]. Therefore, ectopic ACTH secretion became the leading diagnosis. The patient’s imaging, showing a new right infrahilar mass, progressive mediastinal lymphadenopathy, and bilateral adrenal enlargement, provided a clear source, later confirmed as extensive-stage SCLC.

This diagnostic trajectory illustrates how complex presentations can lead clinicians toward more common conditions, even when early clues point elsewhere. Several cognitive and system-level factors contributed to the delayed recognition of hypercortisolism. Anchoring on heart failure, a condition that fit parts of the patient’s presentation, discouraged re-examination of the initial differential when laboratory data did not fully align. Metabolic abnormalities were at first treated as isolated issues rather than components of a broader endocrine disorder. The patient’s prior non-SCLC had been in remission, which may have reduced the perceived likelihood of malignancy-related pathology, despite the well-known risk of second primary lung cancers and transformation events in older adults with smoking histories. Older adults with a history of smoking who have survived cancer face a substantially elevated risk of developing second primary lung cancers, with the risk persisting for decades after smoking cessation. Among lung cancer survivors, the 10-year cumulative incidence of a second primary lung cancer is approximately 8-15%, which is considerably higher than rates observed in general lung cancer screening populations [19,20].

The availability of more familiar explanations for dyspnea, edema, and hypertension, such as heart failure, may have overshadowed the classical biochemical signature of hypercortisolism. Recognition of ectopic ACTH production requires integrating disparate clinical findings into one physiological pathway. When evaluated collectively rather than individually, these abnormalities strongly suggest cortisol excess long before imaging or biopsy results are available.

Earlier consideration of endocrine etiologies could have expedited diagnosis, reduced unnecessary diuresis, and allowed earlier initiation of appropriate oncologic therapy. PCS from SCLC is associated with rapid clinical decline, impaired immunity, and decreased tolerance to chemotherapy. Prompt recognition may therefore improve both morbidity and the feasibility of cancer-directed treatment. This case reinforces the importance of revisiting and broadening the differential diagnoses when expected clinical improvement does not occur, particularly in older adults with prior malignancy and new multisystem derangements. Incorporating metacognitive strategies, actively questioning initial assumptions, seeking disconfirming evidence, and engaging in reflective practice can mitigate such errors [13].

Conclusions

This case emphasizes the importance of considering paraneoplastic ACTH-dependent CS in older adults presenting with unexplained hypokalemia, metabolic alkalosis, hyperglycemia, and resistant hypertension, particularly in patients with a history of lung cancer. Diagnostic error arose from anchoring on cardiopulmonary etiologies and failure to synthesize metabolic abnormalities into a unifying diagnosis. Early recognition of hypercortisolism is essential, as untreated ectopic ACTH production rapidly worsens morbidity and limits therapeutic efficacy in SCLC.

References

  1. Reincke M, Fleseriu M: Cushing syndrome: A review. JAMA. 2023, 330:170-81.
  2. Gadelha M, Gatto F, Wildemberg LE, Fleseriu M: Cushing’s syndrome. Lancet. 2023, 402:2237-52. 10.1016/S0140-6736(23)01961-X
  3. Pelosof LC, Gerber DE: Paraneoplastic syndromes: An approach to diagnosis and treatment. Mayo Clin Proc. 2010, 85:838-54. 10.4065/mcp.2010.0099
  4. Haugen BR, Alexander EK, Bible KC, et al.: 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016, 26:2016. 10.1089/thy.2015.0020
  5. NCCN Guidelines Version 2.2026 Small – Google Scholar [Internet]. (2025). Accessed: October 7, 2025: https://scholar.google.com/scholar.
  6. Ost DE, Jim Yeung SC, Tanoue LT, Gould MK: Clinical and organizational factors in the initial evaluation of patients with lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013, 143:e121S-41S. 10.1378/chest.12-2352
  7. Schernthaner-Reiter MH, Siess C, Micko A, et al.: Acute and life-threatening complications in Cushing syndrome: Prevalence, predictors, and mortality. J Clin Endocrinol Metab. 2021, 106:e2035-46. 10.1210/clinem/dgab058
  8. Shepherd FA, Laskey J, Evans WK, Goss PE, Johansen E, Khamsi F: Cushing’s syndrome associated with ectopic corticotropin production and small-cell lung cancer. J Clin Oncol. 1992, 10:21-7. 10.1200/JCO.1992.10.1.21
  9. Al-Toubah T, Pelle E, Hallanger-Johnson J, Haider M, Strosberg J: ACTH-secreting pancreatic neuroendocrine neoplasms: A case-series. J Neuroendocrinol. 2023, 35:e13336. 10.1111/jne.13336
  10. Measure Dx: A Resource To Identify, Analyze, and Learn From Diagnostic Safety Events. (2022). Accessed: October 7, 2025: https://www.ahrq.gov/diagnostic-safety/tools/measure-dx.html.
  11. Singh H, Meyer AN, Thomas EJ: The frequency of diagnostic errors in outpatient care: Estimations from three large observational studies involving US adult populations. BMJ Qual Saf. 2014, 23:727-31. 10.1136/bmjqs-2013-002627
  12. Auerbach AD, Lee TM, Hubbard CC, et al.: Diagnostic errors in hospitalized adults who died or were transferred to intensive care. JAMA Intern Med. 2024, 184:164-73.
  13. Croskerry P: The importance of cognitive errors in diagnosis and strategies to minimize them. Acad Med. 2003, 78:775-80. 10.1097/00001888-200308000-00003
  14. Gigerenzer G, Gaissmaier W: Heuristic decision making. Annu Rev Psychol. 2011, 62:451-82. 10.1146/annurev-psych-120709-145346
  15. Watari T, Tokuda Y, Amano Y, Onigata K, Kanda H: Cognitive bias and diagnostic errors among physicians in Japan: A self-reflection survey. Int J Environ Res Public Health. 2022, 19:4645. 10.3390/ijerph19084645
  16. Ogdie AR, Reilly JB, Pang WG, Keddem S, Barg FK, Von Feldt JM, Myers JS: Seen through their eyes: Residents’ reflections on the cognitive and contextual components of diagnostic errors in medicine. Acad Med. 2012, 87:1361-7. 10.1097/ACM.0b013e31826742c9
  17. Paleń-Tytko JE, Przybylik-Mazurek EM, Rzepka EJ, Pach DM, Sowa-Staszczak AS, Gilis-Januszewska A, Hubalewska-Dydejczyk AB: Ectopic ACTH syndrome of different origin-Diagnostic approach and clinical outcome. Experience of one Clinical Centre. PLoS One. 2020, 15:e0242679. 10.1371/journal.pone.0242679
  18. Melmed S: Pituitary-tumor endocrinopathies. N Engl J Med. 2020, 382:937-50. 10.1056/NEJMra1810772
  19. Adams SJ, Stone E, Baldwin DR, Vliegenthart R, Lee P, Fintelmann FJ: Lung cancer screening. Lancet. 2023, 401:390-408. 10.1016/S0140-6736(22)01694-4
  20. Takemura C, Yoshida T, Yoshida Y, et al.: Unveiling the molecular and clinical risk landscape of second primary lung cancer in resected non-small cell lung cancer. Lung Cancer. 2025, 208:108750. 10.1016/j.lungcan.2025.108750

https://www.cureus.com/articles/448285-a-second-look-at-refractory-edema-delayed-diagnosis-of-paraneoplastic-cushings-syndrome-in-small-cell-lung-cancer#!/