How does COVID-19 impact the adrenal gland?

This month marks a little over one year since the first surge of COVID-19 across the United States. April is also Adrenal Insufficiency Awareness month, a good time to review the data on how COVID-19 infection can impact the adrenal glands.

The adrenal glands make hormones to help regulate blood pressure and the ability to respond to stress. The hormones include steroids such as glucocorticoid (cortisol), mineralocorticoid (aldosterone), and forms of adrenaline known as catecholamines (norepinephrine, epinephrine, and dopamine). The activity of the adrenal gland is controlled through its relationship with the pituitary gland (the master regulator of hormones in the body).

Some common adrenal diseases include the following:

  • Addison’s Disease (where the body attacks the adrenal glands making them dysfunctional)
  • Hyperaldosteronism
  • Cushing’s Syndrome
  • Pheochromocytoma
  • Adrenal Nodules/Masses (termed incidentaloma)
  • Congenital adrenal hyperplasia

COVID-19 was found in the adrenal and pituitary glands of some patients who succumbed to the illness, suggesting that these organs might be among the targets for infection.  One of the first highly effective therapies for COVID-19 infection was the use of IV steroid (dexamethasone) supplementation in hospitalized patients in patients requiring oxygen.

A focused search of COVID-19-related health literature shows 85 peer-reviewed papers that have been published in medical literature specifically on the adrenal gland and COVID-19. This literature focuses on three phases of COVID infection that may impact the adrenal gland: the acute active infection phase, the immediate post-infection phase, and the long-term recovery phase.

Medical research has identified that during the acute active infection, the adrenal system is one of the most heavily affected organ systems in the body in patients who have COVID-19 infection requiring hospitalization. In these cases, supplementation with the steroid dexamethasone serves as one of the most powerful lifesaving treatments.

Concern has also been raised regarding the period of time just after the acute infection phase – particularly, the development of adrenal insufficiency following cases of COVID-19 hospitalizations. Additionally, some professional societies recommend that for patients who have adrenal insufficiency and are on adrenal replacement therapy, they be monitored closely post-COVID-19 vaccine for the development of stress-induced adrenal insufficiency.

In mild-to-moderate COVID-19 cases, there does not seem to be an effect on adrenaline-related hormones (norepinephrine, epinephrine, dopamine). However, in cases of severe COVID-19 infection triggering the development of shock, patients will need supplementation with an infusion of catecholamines and a hormone called vasopressin to maintain their blood pressure.

Finally, some studies have addressed the concern of adrenal insufficiency during the long-term recovery phase. Dr Sara Bedrose, adrenal endocrine specialist at  Baylor College of Medicine, indicates that studies which included adrenal function in COVID survivors showed a large percentage of patients with suboptimal cortisol secretion during what is called ACTH stimulation testing.

Results indicated that most of those cases had central adrenal insufficiency. It was concluded that adrenal insufficiency might be among the long-term consequences of COVID-19 and it seemed to be secondary to pituitary gland inflammation (called hypophysitis) or due to direct hypothalamic damage. Long-term follow-up of COVID 19 survivors will be necessary to exclude a gradual and late-onset adrenal insufficiency.

Some patients who have COVID-19 will experience prolonged symptoms. To understand what is happening to them, patients may question whether or not they have a phenomenon called adrenal fatigue. This is a natural question to ask, especially after having such a severe health condition. A tremendous amount of resources are being developed to investigate the source and treatment of the symptoms, and this work has only just begun.

However, adrenal fatigue is not a real medical diagnosis. It’s a term to describe a group of signs and symptoms that arise due to underactive adrenal glands. Current scientific data indicate that adrenal fatigue is not in and of itself a medical disease – although a variety of over-the-counter supplements and compounded medications may be advocated for in treatment by alternative medicine/naturopathic practitioners.

My takeaway is that we have learned a great deal about the effects COVID-19 infection has on the adrenal glands. Long-term COVID-19 remains an area to be explored –  especially in regards to how it may affect the adrenal glands.

-By Dr. James Suliburk, associate professor of surgery in the Division of Surgical Oncology and section chief of endocrine surgery for the Thyroid and Parathyroid Center at Baylor College of Medicine

From https://blogs.bcm.edu/2021/04/22/how-does-covid-19-impact-the-adrenal-gland/

Primary hyperaldosteronism: a case of unilateral adrenal hyperplasia with contralateral incidentaloma

BMJ Case Reports 2016; doi:10.1136/bcr-2016-216209
  • CASE REPORT
  1. Sujit Vakkalanka1,
  2. Andrew Zhao1,
  3. Mohammed Samannodi2

+Author Affiliations


  1. 1University at Buffalo, Buffalo, New York, USA

  2. 2Department of Medicine, Buffalo, New York, USA
  1. Correspondence toDr Mohammed Samannodi, samannodi@gmail.com
  • Accepted 28 June 2016
  • Published 14 July 2016

Summary

Primary hyperaldosteronism is one of the most common causes of secondary hypertension but clear differentiation between its various subtypes can be a clinical challenge.

We report the case of a 37-year-old African-American woman with refractory hypertension who was admitted to our hospital for palpitations, shortness of breath and headache. Her laboratory results showed hypokalaemia and an elevated aldosterone/renin ratio. An abdominal CT scan showed a nodule in the left adrenal gland but adrenal venous sampling showed elevated aldosterone/renin ratio from the right adrenal vein. The patient began a new medical regimen but declined any surgical options.

We recommend clinicians to maintain a high level of suspicion to consider the less common subtypes of primary hyperaldosteronism, especially given the fact that the management greatly varies.

From http://casereports.bmj.com/content/2016/bcr-2016-216209.short?rss=1

Patients with ARMC5 mutations: The NIH clinical experience

Screenshot 2016-05-27 13.12.55

 

Adrenal Disorders

R Correa, M Zilbermint, A Demidowich, F Faucz, A Berthon, J Bertherat, M Lodish, C Stratakis

Summary: Researchers conducted this study to describe the different phenotypical characteristics of patients with armadillo repeat containing 5 (ARMC5) mutations, located in 16p11.2 and a likely tumor-suppressor gene. They determined that patients with bilateral adrenal enlargement, found on imaging tests, should be screened for ARMC5 mutations, which are associated with subclinical Cushing’s syndrome (CS) and primary hyperaldosteronism (PA).

Methods:

  • Researchers identified 20 patients with ARMC5 mutations (germline and/or somatic) who were enrolled in a National Institutes of Health (NIH) protocol.
  • They obtained sociodemographic, clinical, laboratory, and radiological data for all participants.

Results:

  • Three families (with a total of 8 patients) were identified with ARMC5 germline mutations; the rest of the patients (13/20) had sporadic mutations.
  • The male to female ratio was 1.2:1; mean age was 48 years and 60% of patients were African American.
  • Forty percent of patients were diagnosed with CS, 20% with subclinical CS, 30% with hyperaldosteronism, and 10% had no diagnosis.
  • The mean serum cortisol (8 am) and Urinary Free Cortisol were 13.1 mcg/dl and 77 mcg/24 hours, respectively.
  • Nearly all patients (95%) had bilateral adrenal enlargement found on CT or MRI.
  • Patients underwent the following treatments: Bilateral adrenalectomy (45%), unilateral adrenalectomy (25%), medical treatment (20%), and no treatment (10%).
  • ARMC5 mutations are associated with primary macronodular adrenal hyperplasia (PMAH) and are also seen in patients with PA, especially among African Americans.

From http://www.mdlinx.com/endocrinology/conference-abstract.cfm/ZZ37C4C5D3BF1A4FAE9C479A696660535B/57884/?utm_source=confcoveragenl&utm_medium=newsletter&utm_content=abstract-list&utm_campaign=abstract-AACE2016&nonus=0

Adrenal Diseases During Pregnancy: Pathophysiology, Diagnosis And Management Strategies

Am J Med Sci. 2014 Jan;347(1):64-73. doi: 10.1097/MAJ.0b013e31828aaeee.

Author information

Abstract

: Adrenal diseases-including disorders such as Cushing’s syndrome, Addison’s disease, pheochromocytoma, primary hyperaldosteronism and congenital adrenal hyperplasia-are relatively rare in pregnancy, but a timely diagnosis and proper treatment are critical because these disorders can cause maternal and fetal morbidity and mortality.

Making the diagnosis of adrenal disorders in pregnancy is challenging as symptoms associated with pregnancy are also seen in adrenal diseases. In addition, pregnancy is marked by several endocrine changes, including activation of the renin-angiotensin-aldosterone system and the hypothalamic-pituitary-adrenal axis.

The aim of this article was to review the pathophysiology, clinical manifestation, diagnosis and management of various adrenal disorders during pregnancy.

PMID:
23514671
[PubMed – in process]

From http://www.ncbi.nlm.nih.gov/pubmed/23514671

Genetic mutation lowers obesity in Cushing’s syndrome

London E. J Clin Endocrinol Metab. 2013; doi:10.1210/jc.2013-1956.

Among adult patients with Cushing’s syndrome, those with mutations in PRKAR1A, the gene that controls cAMP-dependent protein kinase, are less obese than their counterparts without these mutations, according to a recent study.

The retrospective study evaluated adrenalectomy samples from 51 patients with Cushing’s syndrome, 13 with PRKAR1A mutations and 32 without. Of the 51 patients, 40 were female and 11 were male, and patients ranged in age from 4 to 74 years.

A non-Cushing’s syndrome comparison group consisting of 6 adrenalectomy patients with aldosterone producing adenomas (APAs) was included. Additional comparison groups comprising clinical data from 89 patients with Cushing’s disease and 26 with hyperaldosteronism were also studied.

Researchers recorded the weight, height and BMI of all patients, and measured abdominal subcutaneous adipose tissue (ScAT) and periadrenal adipose tissue (PAT) using computed tomography. PAT was collected and frozen for evaluation; the extracts were assessed for levels of cAMP and protein kinase (PKA) activity, as well as for protein and mRNA expression of subunits of PKA. Diurnal cortisol levels and urine-free cortisol were also measured preoperatively.

The study found that in adults with Cushing’s syndrome, the mean BMI of those with PRKAR1A mutations was lower than that of patients with noPRKAR1A mutations (P<.05), and was not inconsistent with the hyperaldosteronism comparison group.

In pediatric patients with adrenal Cushing’s syndrome, the presence of PRKAR1A mutation did not have an impact on mean BMI z-scores. However, in comparison with pediatric patients with pituitary Cushing’s disease, the BMI z-scores were significantly lower in pediatric Cushing’s disease patients with PRKAR1Amutations (P<.05). Patients with Cushing’s syndrome without PRKAR1A mutations had significantly more PAT and ScAT than non-Cushing’s syndrome patients. Additionally, the ratio of basal-to-total (cAMP-triggered) PKA activity was significantly lower in patients with PRKAR1A mutations, suggesting greater proportions of active PKA (P<.005).

“These findings have obvious implications in the establishment of the diagnosis of CS in patients with PRKAR1A mutations: These patients may be leaner than other patients with [Cushing’s syndrome],” the study authors wrote. “Perhaps more importantly, our findings point to the importance of cAMP and or PKA signaling in the regulation of adiposity.”

Disclosures: The researchers report no relevant financial disclosures.

From http://www.healio.com/endocrinology/adrenal/news/online/%7B693f94cd-359d-4c52-8e0d-bfd0e4a51d03%7D/genetic-mutation-lowers-obesity-in-cushings-syndrome

%d bloggers like this: