Severe COVID-19 risks greatly increased for children with adrenal insufficiency

Adrenal insufficiency increases the risk for severe outcomes, including death, 23-fold for children who contract COVID-19, according to a data analysis presented at the ENDO annual meeting.

“Adrenal insufficiency in pediatrics does increase risk of complications with COVID-19 infections,” Manish Gope Raisingani, MD, assistant professor in the department of pediatrics in the division of pediatric endocrinology at Arkansas Children’s Hospital, University of Arkansas for Medical Sciences, told Healio. “The relative risk of complications is over 20 for sepsis, intubation and mortality, which is very significant.”

Adrenal transparent _Adobe
Source: Adobe Stock

Using the TriNetX tool and information on COVID-19 from 54 health care organizations, Raisingani and colleagues analyzed data from children (aged 0-18 years) with COVID-19; 846 had adrenal insufficiency and 252,211 did not. The mortality rate among children with adrenal insufficiency was 2.25% compared with 0.097% for those without, for a relative risk for death of 23.2 (P < .0001) for children with adrenal insufficiency and COVID-19. RRs for these children were 21.68 for endotracheal intubation and 25.45 for sepsis.

“Children with adrenal insufficiency should be very careful during the pandemic,” Raisingani said. “They should take their steroid medication properly. They should also be appropriately trained on stress steroids for infection, other significant events.”

From https://www.healio.com/news/endocrinology/20210321/severe-covid19-risks-greatly-increased-for-children-with-adrenal-insufficiency

Largest-ever analysis of its kind finds Cushing’s syndrome triples risk of death

WASHINGTON–Endogenous Cushing’s syndrome, a rare hormonal disorder, is associated with a threefold increase in death, primarily due to cardiovascular disease and infection, according to a study whose results will be presented at ENDO 2021, the Endocrine Society’s annual meeting.

The research, according to the study authors, is the largest systematic review and meta-analysis to date of studies of endogenous (meaning “inside your body”) Cushing’s syndrome. Whereas Cushing’s syndrome most often results from external factors–taking cortisol-like medications such as prednisone–the endogenous type occurs when the body overproduces the hormone cortisol, affecting multiple bodily systems.

Accurate data on the mortality and specific causes of death in people with endogenous Cushing’s syndrome are lacking, said the study’s lead author, Padiporn Limumpornpetch, M.D., an endocrinologist from Prince of Songkla University, Thailand and Ph.D. student at the University of Leeds in Leeds, U.K. The study analyzed death data from more than 19,000 patients in 92 studies published through January 2021.

“Our results found that death rates have fallen since 2000 but are still unacceptably high,” Limumpornpetch said.

Cushing’s syndrome affects many parts of the body because cortisol responds to stress, maintains blood pressure and cardiovascular function, regulates blood sugar and keeps the immune system in check. The most common cause of endogenous Cushing’s syndrome is a tumor of the pituitary gland called Cushing’s disease, but another cause is a usually benign tumor of the adrenal glands called adrenal Cushing’s syndrome. All patients in this study had noncancerous tumors, according to Limumpornpetch.

Overall, the proportion of death from all study cohorts was 5 percent, the researchers reported. The standardized mortality ratio–the ratio of observed deaths in the study group to expected deaths in the general population matched by age and sex–was 3:1, indicating a threefold increase in deaths, she stated.

This mortality ratio was reportedly higher in patients with adrenal Cushing’s syndrome versus Cushing’s disease and in patients who had active disease versus those in remission. The standardized mortality ratio also was worse in patients with Cushing’s disease with larger tumors versus very small tumors (macroadenomas versus microadenomas).

On the positive side, mortality rates were lower after 2000 versus before then, which Limumpornpetch attributed to advances in diagnosis, operative techniques and medico-surgical care.

More than half of observed deaths were due to heart disease (24.7 percent), infections (14.4 percent), cerebrovascular diseases such as stroke or aneurysm (9.4 percent) or blood clots in a vein, known as thromboembolism (4.2 percent).

“The causes of death highlight the need for aggressive management of cardiovascular risk, prevention of thromboembolism and good infection control and emphasize the need to achieve disease remission, normalizing cortisol levels,” she said.

Surgery is the mainstay of initial treatment of Cushing’s syndrome. If an operation to remove the tumor fails to put the disease in remission, other treatments are available, such as medications.

Study co-author Victoria Nyaga, Ph.D., of the Belgian Cancer Centre in Brussels, Belgium, developed the Metapreg statistical analysis program used in this study.

###

Endocrinologists are at the core of solving the most pressing health problems of our time, from diabetes and obesity to infertility, bone health, and hormone-related cancers. The Endocrine Society is the world’s oldest and largest organization of scientists devoted to hormone research and physicians who care for people with hormone-related conditions.

The Society has more than 18,000 members, including scientists, physicians, educators, nurses and students in 122 countries. To learn more about the Society and the field of endocrinology, visit our site at http://www.endocrine.org. Follow us on Twitter at @TheEndoSociety and @EndoMedia.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

From https://www.eurekalert.org/pub_releases/2021-03/tes-lao031621.php

Endocrine testing in obesity

Affiliations expand

Abstract

Endocrine disorders such as Cushing’s syndrome and hypothyroidism may cause weight gain and exacerbate metabolic dysfunction in obesity. Other forms of endocrine dysfunction, particularly gonadal dysfunction (predominantly testosterone deficiency in men and polycystic ovarian syndrome in women), and abnormalities of the hypothalamic-pituitary-adrenal axis, the growth hormone-IGF-1 system and vitamin D deficiency are common in obesity. As a result, endocrinologists may be referred people with obesity for endocrine testing and asked to consider treatment with various hormones. A recent systematic review and associated guidance from the European Society of Endocrinology provide a useful evidence summary and clear guidelines on endocrine testing and treatment in people with obesity. With the exception of screening for hypothyroidism, most endocrine testing is not recommended in the absence of clinical features of endocrine syndromes in obesity, and likewise hormone treatment is rarely needed. These guidelines should help reduce unnecessary endocrine testing in those referred for assessment of obesity and encourage clinicians to support patients with their attempts at weight loss, which if successful has a good chance of correcting any endocrine dysfunction.

Similar articles

COVID-19 and Cushing’s syndrome: recommendations for a special population with endogenous glucocorticoid excess

Rosario Pivonello,a,b Rosario Ferrigno,a Andrea M Isidori,c Beverly M K Biller,d Ashley B Grossman,e,f and Annamaria Colaoa,b

Over the past few months, COVID-19, the pandemic disease caused by severe acute respiratory syndrome coronavirus 2, has been associated with a high rate of infection and lethality, especially in patients with comorbidities such as obesity, hypertension, diabetes, and immunodeficiency syndromes.

These cardiometabolic and immune impairments are common comorbidities of Cushing’s syndrome, a condition characterised by excessive exposure to endogenous glucocorticoids. In patients with Cushing’s syndrome, the increased cardiovascular risk factors, amplified by the increased thromboembolic risk, and the increased susceptibility to severe infections, are the two leading causes of death.

In healthy individuals in the early phase of infection, at the physiological level, glucocorticoids exert immunoenhancing effects, priming danger sensor and cytokine receptor expression, thereby sensitising the immune system to external agents. However, over time and with sustained high concentrations, the principal effects of glucocorticoids are to produce profound immunosuppression, with depression of innate and adaptive immune responses. Therefore, chronic excessive glucocorticoids might hamper the initial response to external agents and the consequent activation of adaptive responses. Subsequently, a decrease in the number of B-lymphocytes and T-lymphocytes, as well as a reduction in T-helper cell activation might favour opportunistic and intracellular infection. As a result, an increased risk of infection is seen, with an estimated prevalence of 21–51% in patients with Cushing’s syndrome. Therefore, despite the absence of data on the effects of COVID-19 in patients with Cushing’s syndrome, one can make observations related to the compromised immune state in patients with Cushing’s syndrome and provide expert advice for patients with a current or past history of Cushing’s syndrome.

Fever is one of the hallmarks of severe infections and is present in up to around 90% of patients with COVID-19, in addition to cough and dyspnoea. However, in active Cushing’s syndrome, the low-grade chronic inflammation and the poor immune response might limit febrile response in the early phase of infection. Conversely, different symptoms might be enhanced in patients with Cushing’s syndrome; for instance, dyspnoea might occur because of a combination of cardiac insufficiency or weakness of respiratory muscles. Therefore, during active Cushing’s syndrome, physicians should seek different signs and symptoms when suspecting COVID-19, such as cough, together with dysgeusia, anosmia, and diarrhoea, and should be suspicious of any change in health status of their patients with Cushing’s syndrome, rather than relying on fever and dyspnoea as typical features.

The clinical course of COVID-19 might also be difficult to predict in patients with active Cushing’s syndrome. Generally, patients with COVID-19 and a history of obesity, hypertension, or diabetes have a more severe course, leading to increased morbidity and mortality. Because these conditions are observed in most patients with active Cushing’s syndrome, these patients might be at an increased risk of severe course, with progression to acute respiratory distress syndrome (ARDS), when developing COVID-19. However, a key element in the development of ARDS during COVID-19 is the exaggerated cellular response induced by the cytokine increase, leading to massive alveolar–capillary wall damage and a decline in gas exchange. Because patients with Cushing’s syndrome might not mount a normal cytokine response, these patients might parodoxically be less prone to develop severe ARDS with COVID-19. Moreover, Cushing’s syndrome and severe COVID-19 are associated with hypercoagulability, such that patients with active Cushing’s syndrome might present an increased risk of thromboembolism with COVID-19. Consequently, because low molecular weight heparin seems to be associated with lower mortality and disease severity in patients with COVID-19, and because anticoagulation is also recommended in specific conditions in patients with active Cushing’s syndrome, this treatment is strongly advised in hospitalised patients with Cushing’s syndrome who have COVID-19. Furthermore, patients with active Cushing’s syndrome are at increased risk of prolonged duration of viral infections, as well as opportunistic infections, particularly atypical bacterial and invasive fungal infections, leading to sepsis and an increased mortality risk, and COVID-19 patients are also at increased risk of secondary bacterial or fungal infections during hospitalisation. Therefore, in cases of COVID-19 during active Cushing’s syndrome, prolonged antiviral treatment and empirical prophylaxis with broad-spectrum antibiotics should be considered, especially for hospitalised patients (panel ).

Panel

Risk factors and clinical suggestions for patients with Cushing’s syndrome who have COVID-19

Reduction of febrile response and enhancement of dyspnoea

Rely on different symptoms and signs suggestive of COVID-19, such as cough, dysgeusia, anosmia, and diarrhoea.

Prolonged duration of viral infections and susceptibility to superimposed bacterial and fungal infections

Consider prolonged antiviral and broad-spectrum antibiotic treatment.

Impairment of glucose metabolism (negative prognostic factor)

Optimise glycaemic control and select cortisol-lowering drugs that improve glucose metabolism. Hypertension (negative prognostic factor) Optimise blood pressure control and select cortisol-lowering drugs that improve blood pressure.

Thrombosis diathesis (negative prognostic factor)

Start antithrombotic prophylaxis, preferably with low-molecular-weight heparin treatment.

Surgery represents the first-line treatment for all causes of Cushing’s syndrome, but during the pandemic a delay might be appropriate to reduce the hospital-associated risk of COVID-19, any post-surgical immunodepression, and thromboembolic risks. Because immunosuppression and thromboembolic diathesis are common Cushing’s syndrome features, during the COVID-19 pandemic, cortisol-lowering medical therapy, including the oral drugs ketoconazole, metyrapone, and the novel osilodrostat, which are usually effective within hours or days, or the parenteral drug etomidate when immediate cortisol control is required, should be temporarily used. Nevertheless, an expeditious definitive diagnosis and proper surgical resolution of hypercortisolism should be ensured in patients with malignant forms of Cushing’s syndrome, not only to avoid disease progression risk but also for rapidly ameliorating hypercoagulability and immunospuppression; however, if diagnostic procedures cannot be easily secured or surgery cannot be done for limitations of hospital resources due to the pandemic, medical therapy should be preferred. Concomitantly, the optimisation of medical treatment for pre-existing comorbidities as well as the choice of cortisol-lowering drugs with potentially positive effects on obesity, hypertension, or diabates are crucial to improve the eventual clinical course of COVID-19.

Once patients with Cushing’s syndrome are in remission, the risk of infection is substantially decreased, but the comorbidities related to excess glucocorticoids might persist, including obesity, hypertension, and diabetes, together with thromboembolic diathesis. Because these are features associated with an increased death risk in patients with COVID-19, patients with Cushing’s syndrome in remission should be considered a high-risk population and consequently adopt adequate self-protection strategies to minimise contagion risk.

In conclusion, COVID-19 might have specific clinical presentation, clinical course, and clinical complications in patients who also have Cushing’s syndrome during the active hypercortisolaemic phase, and therefore careful monitoring and specific consideration should be given to this special, susceptible population. Moreover, the use of medical therapy as a bridge treatment while waiting for the pandemic to abate should be considered.

Acknowledgments

RP reports grants and personal fees from Novartis, Strongbridge, HRA Pharma, Ipsen, Shire, and Pfizer; grants from Corcept Therapeutics and IBSA Farmaceutici; and personal fees from Ferring and Italfarmaco. AMI reports non-financial support from Takeda and Ipsen; grants and non-financial support from Shire, Pfizer, and Corcept Therapeutics. BMKB reports grants from Novartis, Strongbridge, and Millendo; and personal fees from Novartis and Strongbridge. AC reports grants and personal fees from Novartis, Ipsen, Shire, and Pfizer; personal fees from Italfarmaco; and grants from Lilly, Merck, and Novo Nordisk. All other authors declare no competing interests.

References

1. Kakodkar P, Kaka N, Baig MN. A comprehensive literature review on the clinical presentation, and management of the pandemic coronavirus disease 2019 (COVID-19) Cureus. 2020;12 [PMC free article] [PubMed[]
2. Pivonello R, Isidori AM, De Martino MC, Newell-Price J, Biller BMK, Colao A. Complications of Cushing’s syndrome: state of the art. Lancet Diabetes Endocrinol. 2016;4:611–629. [PubMed[]
3. Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017;17:233–247. [PubMed[]
4. Hasenmajer V, Sbardella E, Sciarra F, Minnetti M, Isidori AM, Venneri MA. The immune system in Cushing’s syndrome. Trends Endocrinol Metab. 2020 doi: 10.1016/j.tem.2020.04.004. published online May 6, 2020. [PubMed] [CrossRef[]
5. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect. 2020;80:607–613. [PMC free article] [PubMed[]
6. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18:1094–1099. [PubMed[]
7. Isidori AM, Minnetti M, Sbardella E, Graziadio C, Grossman AB. Mechanisms in endocrinology: the spectrum of haemostatic abnormalities in glucocorticoid excess and defect. Eur J Endocrinol. 2015;173:R101–R113. [PubMed[]
8. Nieman LK, Biller BM, Findling JW. Treatment of Cushing’s syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2015;100:2807–2831. [PMC free article] [PubMed[]
9. Pivonello R, De Leo M, Cozzolino A, Colao A. The treatment of Cushing’s disease. Endocr Rev. 2015;36:385–486. [PMC free article] [PubMed[]
10. Newell-Price J, Nieman L, Reincke M, Tabarin A. Endocrinology in the time of COVID-19: management of Cushing’s syndrome. Eur J Endocrinol. 2020 doi: 10.1530/EJE-20-0352. published online April 1. [PubMed] [CrossRef[]

Successful Cushing’s Surgery Leads to Better Bone Density

Biomarkers in a majority of Cushing’s syndrome patients with surgically induced disease remission showed a high rate of bone turnover and greater bone mineral density one and two years later, a study reports.

Before treatment, these patients were found to have greater bone degradation and poorer bone formation, as can be common to disease-related bone disorders.

Researchers believe their work is the first study of its kind, “and the data obtained will be instrumental for clinicians who care for patients with Cushing’s syndrome.”

The study, “The Effect of Biochemical Remission on Bone Metabolism in Cushing’s Syndrome: A 2‐Year Follow‐Up Study,” was published in the Journal of Bone and Mineral Research.

Two common co-conditions of Cushing’s syndrome are osteopenia, a loss of bone mass, and osteoporosis, in which the body makes too little bone, loses too much bone, or both. Studies suggest up to 80% of people with Cushing’s have evidence of reduced bone mineral density affecting the entire skeleton.

However, few risk factors to predict bone health have been identified so far, and guidelines for osteoporosis management due to Cushing’s are lacking. Uncertainty as to the natural course of osteoporosis once a diagnosis of Cushing’s syndrome has been made is also still evident.

Investigators at the University of Munich, reportedly for a first time, analyzed the natural course of bone mineral density and bone turnover (recycling) in a group of people with endogenous Cushing’s syndrome — which refers to the disease caused by excess cortisol in the bloodstream, often due to a tumor in the adrenal or pituitary glands.

They examined medical records of 89 Cushing syndrome patients with a mean age of 44, of which 74% were women. Of these, 65% had pituitary Cushing’s (Cushing’s disease), 28% had adrenal, and 7% had ectopic Cushing’s, which is caused by tumors outside the adrenal or pituitary glands. A group of 71 age- and sex-matched healthy participants were included as controls.

In all patients, blood samples were collected at the time of diagnosis (baseline) and one and two years after removing one or both adrenal glands or moving tumors affecting the pituitary gland. Blood samples were analyzed for biomarkers related to bone formation and degradation (resorption).

At the study’s beginning, the mean levels of two bone formation markers, osteocalcin and intact PINP, were significantly decreased in patients compared with controls, whereas the bone formation marker alkaline phosphatase was increased.

Both markers for bone degradation — called CTX and TrAcP — were also high, which demonstrated “increased bone resorption and decreased bone formation in [Cushing’s syndrome],” the team wrote.

While bone markers were similar in participants with a reduced bone mass relative to those with a normal bone mass, bone mineral density was lower overall. Bone mineral density was significantly lower in the neck and spine compared with the femur (thigh bone). Normal bone mineral density was reported in 28 (32%) patients, while 46 (52%) had osteopenia, and the remaining 15 (17%) lived with osteoporosis.

A history of low-trauma bone fractures due to osteoporosis occurred in 17 (19%) patients, taking place shortly before diagnosis in more than half of these (58%) people, and more than two years before a Cushing’s diagnosis in the remaining group (42%).

Compared to patients without fractures, those with fractures had a significantly lower T‐score, a bone density measure that represents how close a person is to average peak bone density. While Cushing’s subtype, age, or body mass index (BMI, body fat based on height) did not differ between groups, men had a significantly higher risk of fractures than women (35% of men vs. 14% of women).

Both disease severity and duration did not contribute to fractures rates, but urinary free cortisol (a circulating cortisol measure) was significantly higher in patients with a low T‐score.

At the one year after tumor removal, which led to Cushing’s remission based on blood tests, a significant increase in bone formation markers was reported. These biomarkers decreased slightly at two years post-surgery, but remained elevated.

At the beginning of the study, bone resorption markers were mildly increased, which rose further one year after surgery before returning almost to normal levels by two years. In parallel, bone density measures conducted in 40 patients showed a matching increase in T-score, particularly in the spine.

After two years, bone mineral density improved in 78% of patients, and T-scores improved in 45% of them. No fractures occurred after Cushing’s treatment, and there was no significant correlation between bone turnover markers and better bone mineral density.

“This study analyzes for the first time in a comprehensive way bone turnover markers during the course of [Cushing’s syndrome],” the researchers wrote. “Our data suggest that the phase immediately after remission from [Cushing’s syndrome] is characterized by a high rate of bone turnover, resulting in a spontaneous net increase in bone mineral density in the majority of patients.”

These results “will influence future therapeutic strategies in patients” with Cushing’s syndrome, they added.

 

Steve holds a PhD in Biochemistry from the Faculty of Medicine at the University of Toronto, Canada. He worked as a medical scientist for 18 years, within both industry and academia, where his research focused on the discovery of new medicines to treat inflammatory disorders and infectious diseases. Steve recently stepped away from the lab and into science communications, where he’s helping make medical science information more accessible for everyone.