New Diagnostic Criteria for Subclinical Hypercortisolism using Postsurgical Hypocortisolism

Clin Endocrinol (Oxf). 2016 Jun 24. doi: 10.1111/cen.13145. [Epub ahead of print]

 

Abstract

OBJECTIVE:

There is no consensus on the biochemical diagnostic criteria for subclinical hypercortisolism (SH). Using parameters related to the hypothalamic-pituitary-adrenal axis, we aimed to develop a diagnostic model of SH for predicting postsurgical hypocortisolism and metabolic complications.

DESIGN:

Prospective and cross-sectional, observational, multicentre study in Korea.

METHODS:

After exclusion of overt Cushing’s syndrome, adrenal incidentaloma (AI) patients who underwent unilateral adrenalectomy (n = 99) and AI patients (n = 843) were included. Primary outcome was defined as the presence of postsurgical hypocortisolism; secondary outcome was the presence of ≥4 complications (components of the metabolic syndrome and low bone mass). Postsurgical hypocortisolism was determined on the fifth postsurgery day using the ACTH stimulation test.

RESULTS:

Thirty-three of the 99 patients developed postsurgical hypocortisolism. Analysis of the presurgery overnight 1-mg dexamethasone suppression test (1-mg DST) showed that all patients with cortisol levels of >138 nmol/l experienced postsurgical hypocortisolism, whereas those with levels of ≤61 nmol/l did not. The models of (i) 1-mg DST >138 nmol/l or (ii) >61 nmol/l with the presence of one among low levels of ACTH and dehydroepiandrosterone-sulphate had the highest accuracy (89·9%, P < 0·001) and odds ratio [OR 111·62, 95% confidence interval (CI) 21·98-566·74, P < 0·001] for predicting postsurgical hypocortisolism. Finally, patients with the same criteria in the 843 AI patients showed the highest risk for having ≥4 complications (OR 3·51, 95% CI 1·84-6·69, P < 0·001), regardless of gender, age, body mass index and bilaterality.

CONCLUSIONS:

Our proposed model is able to accurately predict subtle cortisol excess and its chronic manifestations in AI patients.

© 2016 John Wiley & Sons Ltd.

Pituitary Gland: Normal Function and Assessment

Abstract

This computer-based, interactive module introduces preclinical medical students to normal pituitary function and outlines its assessment. Solid understanding of these topics is requisite to learning clinical disorders of the pituitary.

Existing resources largely target learners at earlier or later stages of training; thus, we created this resource to address needs of medical students during a first- or second-year endocrine course. A module format was selected to promote interactive, independent learning.

Two cohorts of medical students completed the 40-minute module: 172 second-year students who had completed a year of basic sciences in the traditional curriculum and 180 foundation-phase students in a three-semester combined basic and clinical sciences curriculum (due to a change in the medical school curriculum at our institution). In both instances, the module was completed before start of clinical pituitary content. A static set of PowerPoint slides accompanied the module to facilitate note taking.

Test Your Knowledge slides were inserted to ensure grasp of key terms/concepts before moving to subsequent slides. A short question-and-answer session was held following module completion to clarify points of confusion. Students rated effectiveness of the module as 4.6 out of 5, commenting on its clarity, organization, high-yield nature, and utility in preparing for clinical material.

Faculty noted greater understanding of foundational pituitary principles and more engaging discussions. The percentage of pituitary-related questions answered correctly on the midterm exam increased.

Finally, success of the pituitary module prompted development of adrenal, thyroid, and parathyroid modules that now comprise the Endocrine Organs Introduction Series in our curriculum.

Citation

Kirk D, Smith KW. Pituitary gland: normal function and assessment. MedEdPORTAL Publications. 2016;12:10430. http://dx.doi.org/10.15766/mep_2374-8265.10430

Educational Objectives

After completing this module, the learner will be able to:

  1. Describe the normal function and regulation of the pituitary gland, including names and actions of the anterior and posterior pituitary hormones.
  2. Understand the basic approach to laboratory assessment of the pituitary.
  3. Differentiate between anterior and posterior pituitary origin, function, and regulation.
  4. List the hormones produced by the pituitary gland.
  5. Discuss for each pituitary hormone: hypothalamic stimulating/inhibiting factors and their clinical uses, basic physiologic function, and regulation (feedback loop).
  6. Describe factors that affect growth hormone levels.
  7. Understand the tests for growth hormone excess and deficiency.
  8. Define a primary versus secondary endocrine disorder.

Keywords

  • Endocrine, Endocrinology, Pituitary, Module, Preclinical Medical Education

More information at https://www.mededportal.org/publication/10430

Six controversial issues on subclinical Cushing’s syndrome

Abstract

Subclinical Cushing’s syndrome is a condition of hypercortisolism in the absence of signs specific of overt cortisol excess, and it is associated with an increased risk of diabetes, hypertension, fragility fractures, cardiovascular events and mortality.

The subclinical Cushing’s syndrome is not rare, being estimated to be between 0.2–2 % in the adult population. Despite the huge number of studies that have been published in the recent years, several issues remain controversial for the subclinical Cushing’s syndrome screening, diagnosis and treatment.

The Altogether to Beat Cushing’s syndrome Group was founded in 2012 for bringing together the leading Italian experts in the hypercortisolism-related diseases. This document represents the Altogether to Beat Cushing’s syndrome viewpoint regarding the following controversial issues on Subclinical Cushing’s syndrome (SCS):

(1) Who has to be screened for subclinical Cushing’s syndrome?
(2) How to screen the populations at risk?
(3) How to diagnose subclinical Cushing’s syndrome in patients with an adrenal incidentaloma?
(4) Which consequence of subclinical Cushing’s syndrome has to be searched for?
(5) How to address the therapy of choice in AI patients with subclinical Cushing’s syndrome?
(6) How to follow-up adrenal incidentaloma patients with subclinical Cushing’s syndrome surgically or conservatively treated?

Notwithstanding the fact that most studies that faced these points may have several biases (e.g., retrospective design, small sample size, different criteria for the subclinical Cushing’s syndrome diagnosis), we believe that the literature evidence is sufficient to affirm that the subclinical Cushing’s syndrome condition is not harmless and that the currently available diagnostic tools are reliable for identifying the majority of individuals with subclinical Cushing’s syndrome.

Keywords

Subclinical hypercortisolism, Adrenal incidentalomas, Hypertension, Diabetes, Osteoporosis

Cushing’s syndrome: Pituitary surgery alone is the preferred treatment to improve survival

Background

No agreement has been reached on the long-term survival prospects for patients with Cushing’s disease. We studied life expectancy in patients who had received curative treatment and whose hypercortisolism remained in remission for more than 10 years, and identified factors determining their survival.

Methods

We did a multicentre, multinational, retrospective cohort study using individual case records from specialist referral centres in the UK, Denmark, the Netherlands, and New Zealand. Inclusion criteria for participants, who had all been in studies reported previously in peer-reviewed publications, were diagnosis and treatment of Cushing’s disease, being cured of hypercortisolism for a minimum of 10 years at study entry, and continuing to be cured with no relapses until the database was frozen or death. We identified the number and type of treatments used to achieve cure, and used mortality as our primary endpoint. We compared mortality rates between patients with Cushing’s disease and the general population, and expressed them as standardised mortality ratios (SMRs). We analysed survival data with multivariate analysis (Cox regression) with no corrections for multiple testing.

Read more at http://www.univadis.com/viewarticle/cushing-s-syndrome-pituitary-surgery-alone-is-the-preferred-treatment-to-improve-survival-421761

Long-term Cognitive Effects of Glucocorticoid Excess in Cushing’s Syndrome

Psychoneuroendocrinology. 2016 Mar;65:26-33. doi: 10.1016/j.psyneuen.2015.11.020. Epub 2015 Nov 30.

Forget H1, Lacroix A2, Bourdeau I2, Cohen H3.

Abstract

CONTEXT AND OBJECTIVE:

We previously found that patients with Cushing’s syndrome (CS) scored lower than controls in several domains of cognitive function and that correction of hypercortisolism is not necessarily correlated with short-term improvement in intellectual performance. Here, we examined the long-term outcome in patients treated for CS by assessing the extent to which the detrimental effects of glucocorticoid (GC) excess on cognition can be reversed three years after corrective surgery.

DESIGN:

A battery of neuropsychological tests, including tests of attention, visuospatial processing, learning and memory, and executive functioning were administered pre-treatment and 12, 24 and 36 months post-treatment.

PATIENTS AND CONTROL SUBJECTS:

We included 18 patients with endogenous CS recruited before surgical treatment and 18 controls matched for age, sex and education.

RESULTS:

CS patients performed worse than controls on tests of attention, executive functioning and nonverbal aspects of memory. Moreover, at 36 months following eucortisolism, executive function performance and, to a lesser extent, attention tasks showed limited change compared to pre-treatment testing.

CONCLUSION:

Chronic hypercortisolism is accompanied by a deleterious impact on aspects of cognitive function. This negative effect on attention, executive performance and nonverbal memory seen in patients with CS suggests a differential effect of excess GCs upon different brain areas and networks. This influence persists years after the return to normal cortisol secretion levels.

Copyright © 2015 Elsevier Ltd. All rights reserved.

KEYWORDS:

Attention; Cognitive functions; Endogenous Cushing’s syndrome; Glucocorticoids; Hypercortisolism; Memory

PMID:
26708069
[PubMed – in process]

From http://www.ncbi.nlm.nih.gov/pubmed/26708069