Cushing’s syndrome in a child

Abstract

Cushing’s syndrome is a rare entity in children. Adrenal tumour is the common cause of this syndrome in young children, whereas, iatrogenic causes are more common among older children. We report a 4 year old male child diagnosed with Cushing syndrome due to a right adrenal adenoma; the child presented with obesity and increase distribution of body hair. After thorough investigation and control of hypertension and dyselectrolytemia, right adrenalectomy was performed. The patient had good clinical recovery with weight loss and biochemical resolution of Cushing’s syndrome.

1. Introduction

Cushing’s syndrome (CS) is rarely encountered in children. The overall incidence of Cushing syndrome is approximately 2–5 new cases per million people per year. Only approximately 10% of the new cases each year occur in children [1]. Unlike in adults, a male-to-female predominance have been observed in infants and young toddlers [[1][2][3]]. Although iatrogenic causes are common in children above seven years of age, adrenal causes (adenoma, carcinoma or hyperplasia) are common in children of younger age [4]. We report a 4 year old boy diagnosed with Cushing syndrome caused by a right adrenal adenoma, who had presented with obesity and increase distribution of body hair. Right adrenalectomy was performed and clinical stabilization resulted in weight loss and biochemical resolution of Cushing’s syndrome. (see Fig. 5)

2. Case report

A 4 years old boy presented with complaints of excessive weight gain of 5 months duration and increase frequency of micturition and appearance of body hair for 4 months. There was no history of any other illness, medication or steroid intake. The child was first born at term by normal vaginal delivery and birth weight of 3 kg. Physical examination revealed a chubby boy with moon face, buffalo hump, protruding abdomen, increase body hair and appearance of coarse pubic hair (Fig. 1). His intelligent quotient (IQ) was appropriate for his age and sex. His younger sibling was in good health and other family members did not have any metabolic or similar problems.

Fig. 1

Fig. 1. The child with moon face, protruded abdomen and coarse body hair.

The patient’s body length was 92cm (between -2SD to -3SD), weight 20kg (between 1 SD and 2 SD), weight for height >3SD, and BMI was 23.6 (BMI for age >3 SD). His blood pressure on right arm in lying position was 138/76 mm Hg (above 99th percentile for height and age).

Investigations: Morning 8am serum cortisol level – 27.3 μg/dl (normal: 6–23 μg/dl).

with a concurrent plasma ACTH level of < 5 pg/ml (n value < 46 pg/ml).

His serum cortisol following low dose dexamethasone suppression test (1mg dexamethasone at 11pm) at 8 am next morning was 22.1 μug/dl and his 24 hours urine catecholamine fraction was within normal limit.

HB % — 10.3 gm/dl; LDDST — 25 μg/dl; FBS — 106 mg/dl.

Serum Na+ – 140.6mmol/l; K+ – 2.83mmol/l; Ca+ – 8.7 mg/dl.

S. Creatinine −0.3 mg/dl.

Ultrasonography of abdomen revealed a heterogenous predominantly hypoechoic right supra renal mass. Contrast enhanced CT abdomen revealed well defined soft tissue density lesion (size −5.2 cm × 5.2 cm x 5.7cm) in right adrenal gland with calcifications and fat attenuations showing mild attenuation on post contrast study (Fig. 2).

Fig. 2

Fig. 2. CECT shows right adrenal mass with calcification and mild attenuation on post-contrast study.

The child was started on oral amlodipine 2.5mg 12hourly; after 5days blood pressure became normal. For hypokalemia oral potassium was given @20 meq 8 hourly and serum potassium value became normal after 4 days. Right laparoscopic adrenalectomy was planned. but due to intra operative technical problems it was converted to an open adrenalectomy with right subcostal incision. A lobulated mass of size 9 cm × 5 cm x 4 cm with intact capsule was excised. The tumour weighed 230 gm. There was no adhesion with adjacent organs, three regional nodes were enlarged but without any tumour tissue. Inferior vena cava was spared. Histopathology report was consistent with adrenal adenoma (Fig. 3) (see Fig. 4).

Fig. 3

Fig. 3. Cut section of tumour shows fleshy mass with fatty tissue.

Fig. 4

Fig. 4. Microphotograph (100 × 10) showing intact capsule and adrenal tumour cells, which are larger in size with nuclear pleomorphism, inconspicuous nucleoli, cytoplasm of the tumour cells are abundant, eosinophilic and vacuolated.

Fig. 5

Fig. 5. Physical appearance 4 months after adrenalectomy.

Post operative management: during post operative period hypokalemia and flaxuating blood sugar level was managed with oral potassium and oral glucose supplement. patient developed mild cough and respiratory distress on post op day 2, it was managed with salbutamol nebulization and respiratory physio therapy. Patient developed minor ssi and discharged on 10 th post operative day with oral prednisolone supplementation.

Follow up: the patient was followed up 2week after discharge and then every monthly, the oral prednisolone was gradually tapered and completely withdrawn on 2nd month after surgery.The patient experienced no post-surgical complications. After 4 months of surgery he reduces 6 kgs of his body weight with BMI of 16.5 (between median and 1SD) & BP 100/74 mm hg (within normal range), the moon face, buffalo hump, central obesity disappeared, morning 8am serum cortisol level was found within normal range 14 μg/dl (n value 6–23 μg/dl).

3. Discussion

Cushing’s syndrome is caused by prolonged exposure to supraphysiological levels of circulating glucocorticoids, which may be endogenously or exogenously derived. During infancy, CS is usually associated with McCune-Albright syndrome; adrenocortical tumours most commonly occur in children under four years of age and Cushing’s disease (ACTH dependent) is the commonest cause of CS after five years of age [5]. Primary adrenocortical tumours (ACTs) account for only 0.3–0.4% of all childhood neoplasms. Almost a third of these tumours manifests as Cushing syndrome and over 70% of the unilateral tumours in young children are often malignant [2,3,6,7]. There seems to be a bimodal incidence of these tumours, with one peak at under 5 years of age and the second one in the fourth or fifth decades of life. ACTs may be associated with other syndromes, such as, Li-Fraumeni syndrome, Beckwith-wiedemann syndrome, isolated hemihypertrophy, or even a germline point mutation of P53 tumour suppressor gene as reported in a series from Brazil [8]. In comparison to adult CS, growth failure with associated weight gain is one of the most reliable indicators of hypercortisolaemia in pediatric CS. The parents often fail to notice facial changes and growth failure and hence the diagnosis is often delayed. In one study, the mean time from appearing symptoms to diagnosis in 33 children with Cushing’s disease was 2.5 years [5]. More recently the comparison of height and BMI SDS measurements provided a sensitive diagnostic discriminator in pediatric patients with CD and those with simple obesity [9]. In the present case, the parents observed noticeable changes in his face and presence of body hair, which made them to bring the child to medical attention. A review of 254 children on the International Pediatric Adrenocortical Tumour Registry identified virilization as the most common manifestation [10]. About 10% of the tumours can be non-functional at presentation, and approximately one third of pediatric patients present with hypertension. Majority of patients (192/254) in the Registry had localized disease and metastatic disease was found in less than 5% of cases. Older children with CS or mixed androgen and cortisol secreting adrenocortical tumours had a worse prognosis compared to younger children [10]. The present case had mild hypertension as well as dyselectrolytemia at presentation, which could be controlled with medication. He had a single adenoma confined to the adrenal gland and there was no evidence of malignancy. After surgical excision of the tumour and the right adrenal gland, the patient made rapid improvement in clinical condition and has been on follow up for last 7 months.

4. Conclusion

Pediatric adrenocortical tumours (ACTs) are most commonly encountered in females and in children less than four years. But our case being an 4-year-old boy forms a rare presentation of endogenous Cushing’s syndrome due to adrenal adenoma. Cushing’s syndrome in this child was controlled after right adrenalectomy.

Patient consent

Informed written consent was taken.

Funding

No funding or grant support.

Authorship

All authors attest that they meet the current ICMJE criteria for authorship.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Adrenal Gland Lump Led to 5-year-old Developing Cushing’s, Starting Puberty

Non-cancerous adrenal gland tumors can lead to rare cases of Cushing’s syndrome in young children and puberty starting years before it should, a case study of a 5-year-old boy shows.

Removing his right adrenal gland eliminated the problems, the Saudi Arabian researchers said.

Their report dealt with tumors in epithelial cells, which line the surface of many of the body’s structures and cavities.

The research, “Testosterone- and Cortisol-secreting Oncocytic Adrenocortical Adenoma in the Pediatric Age-group,” appeared in the journal Pediatric and Developmental Pathology.

Most tumors in adrenal gland epithelial cells are benign and generate normal levels of hormones. But there are cases when the tumors over-produce steroids and other kinds of hormones, including sex hormones. Sometimes the over-production can lead to Cushing’s syndrome.

The 5-year-old boy’s over-production of adrenal gland hormones led to both symptoms of Cushing’s syndrome and signs that he was starting puberty, the researchers said.

One reason the case was rare is that the average age when Cushing’s develops is 40, doctors say. Another is that epithelial adrenal gland tumors account for only 0.2 percent of all tumors in children, the researchers said.

Signs that the boy was starting puberty began appearing eight months before his parents took him for treatment. Doctors discovered he had the weight gain and rounded face associated with Cushing’s, but a battery of tests detected no other problems. No family members were experiencing the symptoms he was, doctors added.

Biochemical tests showed that the boy had a high level of cortisol in his blood, which doctors were unable to lower with the corticosteroid suppression medication dexamethasone.

Physicians also discovered that the boy had elevated levels of the male hormone testosterone, the cortisol precursor 17-hydroxyprogestrone, the cortisol-releasing hormone adrenocorticotropin, and another male hormone that the adrenal gland produces — dehydroepiandrosterone sulfate

In contrast, doctors discovered a below-normal level of luteinising, a sex hormone that the pituitary gland generates.

Another unusual manifestation of the boy’s condition was that his bone growth was that of a child a year older than he.

Doctors discovered a non-cancerous tumor in his right adrenal gland that they decided to remove. When they did, they discovered no evidence of bleeding, tissue scarring or cell death.

They put the boy on a hydrocortisone supplement, which they reduced over time and finally ended.

Twenty-eight months after the surgery, the boy showed no signs of Cushing’s disease or early puberty. And his weight, cortisol and adrenocorticotropin hormone levels were normal.

“To the best of our knowledge, our patient represents the first male patient” with a benign epithelial-cell adrenal gland tumor “in the pediatric population, with clinical presentation of precocious [early] puberty and Cushing’s syndrome,” the researchers wrote.

“As these tumors are exceptionally rare, reporting of additional cases and investigation of clinicopathological [disease] data are needed for better characterization of these tumors,” they wrote.

From https://cushingsdiseasenews.com/2018/02/16/cushings-syndrome-early-puberty-5-year-old-boy-case-study/

ACTH-producing Lung Tumors Hard to Detect, But May Be Cured with Surgery

Ectopic Cushing’s syndrome can be challenging to diagnose, especially when it comes identifying the problem source. But appropriate hormone management protocols, used in combination with advanced imaging methods, may help physicians identify ectopic ACTH-producing tumors.

The findings in a case report of a young man with ectopic Cushing’s syndrome were published in the International Journal of Surgery Case Reports, under the title “Case report: Ectopic Cushing’s syndrome in a young male with hidden lung carcinoid tumor.”

Cushing’s syndrome is caused by high amounts of glucocoticosteroids in the blood. The most common cause is a malfunction of the glands that produce these hormones. In some cases, however, the disease may be caused by tumors elsewhere in the body that have the ability to produce adrenocorticotropic hormone (ACTH).

In half of all Cushing’s patients, ectopic ACTH is produced by small lung cell carcinomas or lung carcinoids (a type of slow-growing lung cancer). But some tumors in the thymus and pancreas also have been found to produce ACTH.

Researchers at Damascus University Hospital in Syria presented the case of a 26-year-old man who had ectopic Cushing’s syndrome due to lung carcinoids.

The patient presented with increased appetite and rapid weight gain for more than a year. These were associated with headache, fatigue, proximal muscle weakness, and easy bruising. He had no family history of hormonal disorder.

Based on the initial physical and symptom evaluation, the clinical team suspected Cushing’s syndrome. Blood analysis revealed high levels of cortisol and ACTH hormones, which supported the diagnosis.

Administration of dexamethasone, a treatment used to inhibit the production of glucocoticosteroids by the pituitary gland, reduced cortisol levels within normal range, but not ACTH levels. This led to the diagnosis of ectopic Cushing’s syndrome.

The next step was to identify the tumor causing the syndrome. The team conducted imaging studies of the brain, chest, and abdomen, but found no tumor.

Because ectopic ACTH is commonly produced by lung cancers, the team then analyzed the patient’s lungs. Again, they failed to detect a tumor.

The patient was discharged with prescription of 200 mg of Nizoral (ketoconazole) once-daily, calcium, and vitamin D. After three months of treatment, he remained stable, with no evidence of symptom improvement.

At this point, the team decided to surgically remove both adrenal glands in an attempt to reduce the hormone levels. Treatment with prednisolone 5 mg and fludrocortisone 0.1 mg once daily was initiated, along with calcium and vitamin D.

Eighteen months later, the patient’s condition worsened and he required hospitalization.

Imaging tests targeting the neck, chest, and abdomen were conducted again. This time, physicians detected a 2 cm mass in the middle lobe of the right lung, which was removed surgically. Detailed analysis of the small tumor confirmed that it was the source of the excessive ACTH.

“ACTH secreting tumors can be very hard to detect,” the researchers stated. “Initial failed localization is common in ectopic ACTH syndrome and it is usually due to carcinoid.”

Cases where the ectopic ACTH production is caused by a carcinoid tumor can be challenging to diagnose because tumors are small and relatively slow-growing. Imaging data is often hard to analyze and the tumors can be confused with pulmonary vessels, the researchers explained.

“In such cases we should first aim to lower blood cortisol medically or through bilateral adrenalectomy to avoid Cushing’s complications,” which should then “be followed up through imaging studies (CT, MRI, scintigraphy or PET) to detect the tumor and resect it, which is the definitive treatment of these patients,” the researchers concluded.

From https://cushingsdiseasenews.com/2017/12/12/case-report-ectopic-acth-producing-lung-tumors-can-hard-detect/

An unusual case of Cushing’s syndrome due to bihormonal ACTH–prolactin secreting pituitary macroadenoma with rapid response to cabergoline

  1. Shalini Kunasegaran1,2,
  2. Michael S Croxson1,
  3. Ian Holdaway1,
  4. Rinki Murphy1

+Author Affiliations


  1. 1Department of EndocrinologyAuckland District Health BoardAuckland, New Zealand

  2. 2Department of EndocrinologyWaitemata District Health BoardTakapuna, New Zealand
  1. Correspondence to Dr Shalini Kunasegaran, shal84@gmail.com
  • Accepted 13 July 2017
  • Published 7 August 2017

Summary

A 23-year-old man presenting with florid Cushing’s syndrome was found to have high plasma ACTH and very high serum prolactin. Pituitary MRI showed a large invasive macroadenoma.

Low-dose cabergoline promptly suppressed both ACTH and prolactin levels within 2 weeks, with unexpected clinical and biochemical hypocortisolism requiring hydrocortisone replacement. Secondary hypogonadism was reversed. Clinical and biochemical remission of his Cushing’s syndrome together with significant shrinkage of his macroadenoma has been maintained for 1 year on cabergoline 0.5 mg twice weekly. Reduction in pituitary

Reduction in pituitary tumour volume and brisk fall in serum prolactin in response to low-dose cabergoline is regularly observed in patients with macroprolactinomas, but the concurrent fall in the plasma ACTH level and hypocortisolism was a pleasant surprise.

We assume that he most likely has a single bihormonal adenoma that is enriched with dopamine-2 receptors.

From http://casereports.bmj.com/content/2017/bcr-2017-219921.short?rss=1

A Subtle Case of Cushing’s

English: "Dr. Harvey Cushing," oil o...

English: “Dr. Harvey Cushing,” oil on canvas, by the American artist Edmund Tarbell. Courtesy of the Dittrick Medical History Center. (Photo credit: Wikipedia)

Synopsis: 36 year old male who presented with weight gain, proximal muscle weakness, and excessive sweating. Among multiple 24-hour urine free cortisol and midnight salivary tests, a minority were minimally elevated.

The diagnosis of Cushing’s disease was questioned over an eight month evaluation period.

The challenges of diagnosing Cushing’s disease are discussed.

Clinical History

Pre-Operative Imaging

Operative Findings

Surgical Pathology

Post-Operative Course

Discussion, Part 1

Discussion, Part 2


References

Nieman LK, Biller BM, Findling JW, Newell-Price J, Savage MO, Stewart PM, Montori VM. The diagnosis of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2008 May;93(5):1526-40.

Mantero F, Terzolo M, Arnaldi G, Osella G, Masini AM, Alì A, Giovagnetti M, Opocher G, Angeli A. A survey on adrenal incidentaloma in Italy. Study Group on Adrenal Tumors of the Italian Society of Endocrinology. J Clin Endocrinol Metab. 2000 Feb;85(2):637-44.

Catargi B, Rigalleau V, Poussin A, Ronci-Chaix N, Bex V, Vergnot V, Gin H, Roger P, Tabarin A. Occult Cushing’s syndrome in type-2 diabetes. J Clin Endocrinol Metab. 2003 Dec;88(12):5808- 13.

Reimondo G, Pia A, Allasino B, Tassone F, Bovio S, Borretta G, Angeli A, Terzolo M. Screening of Cushing’s syndrome in adult patients with newly diagnosed diabetes mellitus. Clin Endocrinol (Oxf). 2007 Aug;67(2):225-9.

Omura M, Saito J, Yamaguchi K, Kakuta Y, Nishikawa T. Prospective study on the prevalence of secondary hypertension among hypertensive patients visiting a general outpatient clinic in Japan. Hypertens Res. 2004 Mar;27(3):193-202.

Chiodini I, Mascia ML, Muscarella S, Battista C, Minisola S, Arosio M, Santini SA, Guglielmi G, Carnevale V, Scillitani A. Subclinical hypercortisolism among outpatients referred for osteoporosis. Ann Intern Med. 2007 Oct 16;147(8):541-8.

Cushing H, Bull Johns Hopkins Hospital, 1932; 50:137-195

Ross EJ, Linch DC. Cushing’s syndrome–killing disease: discriminatory value of signs and symptoms aiding early diagnosis. Lancet. 1982 Sep 18;2(8299):646-9.

Plotz CM, Knowlton AI, Ragan C. The natural history of Cushing’s syndrome. Am J Med. 1952 Nov;13(5):597-614.

Lindholm J, Juul S, Jørgensen JO, Astrup J, Bjerre P, Feldt-Rasmussen U, Hagen C, Jørgensen J, Kosteljanetz M, Kristensen L, Laurberg P, Schmidt K, Weeke J. Incidence and late prognosis of cushing’s syndrome: a population-based study. J Clin Endocrinol Metab. 2001 Jan;86(1):117-23.

Newell-Price J, Bertagna X, Grossman AB, Nieman LK. Cushing’s syndrome. Lancet. 2006 May 13;367(9522):1605-17.

Nieman LK, Biller BM, Findling JW, Newell-Price J, Savage MO, Stewart PM, Montori VM. The diagnosis of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2008 May;93(5):1526-40. Epub 2008 Mar 11.

Liu H, Bravata DM, Cabaccan J, Raff H, Ryzen E. Elevated late- night salivary cortisol levels in elderly male type 2 diabetic veterans. Clin Endocrinol (Oxf). 2005 Dec;63(6):642- 9.

Qureshi AC, Bahri A, Breen LA, Barnes SC, Powrie JK, Thomas SM, Carroll PV. The influence of the route of oestrogen administration on serum levels of cortisol-binding globulin and total cortisol. Clin Endocrinol (Oxf). 2007 May;66(5):632-5.

Newell-Price J, Trainer P, Perry L, Wass J, Grossman A, Besser M. A single sleeping midnight cortisol has 100% sensitivity for the diagnosis of Cushing’s syndrome. Clin Endocrinol (Oxf). 1995 Nov;43(5):545-50.

Papanicolaou DA, Yanovski JA, Cutler GB Jr, Chrousos GP, Nieman LK. A single midnight serum cortisol measurement distinguishes Cushing’s syndrome from pseudo-Cushing states. J Clin Endocrinol Metab. 1998 Apr;83(4):1163-7.

Pecori Giraldi F, Ambrogio AG, De Martin M, Fatti LM, Scacchi M, Cavagnini F. Specificity of first-line tests for the diagnosis of Cushing’s syndrome: assessment in a large series. J Clin Endocrinol Metab. 2007 Nov;92(11):4123-9. Epub 2007 Aug 14.

From UCLA Pituitary Tumor Program

%d bloggers like this: