Experimental Drug Improves Cushing’s Disease

International phase 3 trial is largest study ever of rare endocrine disorder

A new investigational drug significantly reduced urinary cortisol levels and improved symptoms of Cushing’s disease in the largest clinical study of this endocrine disorder ever conducted.

Results of the clinical trial conducted at centers on four continents appear in the March 8 issue of the New England Journal of Medicine and show that treatment with pasireotide cut cortisol secretion an average of 50 percent and returned some patients’ levels to normal.

“Cushing’s disease is a rare disorder, with three to five cases per million people. It can affect all ages and both genders but is most common in otherwise healthy young women,” says Harvard Medical School Professor of Medicine Beverly M.K. Biller of the Massachusetts General Hospital (MGH) Neuroendocrine Unit, senior author of the study.

“Often misdiagnosed, Cushing’s is associated with a broad range of health problems – causing physical changes, metabolic abnormalities, and emotional difficulties – and if not controlled, significantly increases patients’ risk of dying much younger than expected,” Biller says.

Cushing’s disease, one of several conditions that lead to Cushing’s syndrome, is characterized by chronically elevated secretion of the hormone cortisol. The disease is caused by a benign pituitary tumor that oversecretes the hormone ACTH, which in turn induces increased cortisol secretion by the adrenal glands.

Symptoms of Cushing’s syndrome include weight gain, hypertension, mood swings, irregular or absent periods, abnormalities of glucose processing (insulin resistance, glucose intolerance, and type 2 diabetes), and cardiovascular disease. Because those symptoms are associated with many health problems, physicians may not consider the rare possibility of Cushing’s. The diagnosis can be difficult to make and usually requires the expertise of an endocrinologist. Because cortisol levels normally fluctuate during the day, a single blood test is unlikely to identify chronic elevation, and thus the most common diagnostic test measures a patient’s 24-hour urinary output.

First-line treatment for Cushing’s disease is surgical removal of the ACTH-secreting tumor, which leads to remission in 65 to 90 percent of patients. But symptoms return in 10 to 30 percent of those patients, requiring repeat surgery, radiation therapy, or treatment with drugs that interfere with part of the cortisol control system. Until last month, there was no specific FDA-approved medical treatment for Cushing’s syndrome; the newly approved drug mifepristone should benefit some patients, but it does not affect the pituitary source of the condition or reduce cortisol levels.

The current phase 3 trial of pasireotide — the first drug that blocks ACTH secretion by binding to somatostatin receptors on the pituitary tumor — was sponsored by Novartis Pharma. The trial enrolled 162 patients at 62 sites in 18 countries. Nearly 85 percent of participants had either persistent disease that had not responded to surgery or had recurrent disease; the other 15 percent were recently diagnosed but not appropriate candidates for surgery.

Participants were randomly assigned to two groups, one starting at two daily 600-microgram injections of pasireotide and the other receiving 900-microgram doses. Three months into the 12-month trial, participants whose urinary cortisol levels remained more than twice the normal range had their dosage levels increased. During the rest of the trial, dosage could be further increased, if necessary, or reduced if side effects occurred.

At the end of the study period, many patients had a significant decrease in their urinary cortisol levels, with 33 achieving levels within normal range at their original dosage by month six of the trial. Participants whose baseline levels were less than five times the upper limit of normal were more likely to achieve normal levels than those with higher baseline levels, and the average urinary cortisol decrease across all participants was approximately 50 percent. Many Cushing’s disease symptoms decreased, and it became apparent within the first two months whether or not an individual was going to respond to pasireotide.

Transient gastrointestinal discomfort, known to be associated with medications in the same family as pasireotide, was an expected side effect. Another side effect was elevated glucose levels in 73 percent of participants, something not seen to the same extent with other medications in this family. These elevated levels will require close attention, because many Cushing’s patients already have trouble metabolizing glucose. Biller explains, “Those patients who already were diabetic had the greatest increases in blood sugar, and those who were pre-diabetic were more likely to become diabetic than those who began with normal blood sugar. However, elevations were even seen in those who started at normal glucose levels, so this is real and needs to be monitored carefully.”

Additional trials of pasireotide are in the works, and a phase 3 study of a long-acting version of the drug was recently announced. Biller notes that the potential addition of pasireotide to available medical treatments for Cushing’s disease would have a number of advantages. “It’s very important to have medications that work at different parts of the cortisol control system – which is the case for the currently used medications that work at the adrenal gland level; pasireotide, which works at the pituitary gland; and mifepristone, which blocks the action of cortisol at receptors in the body. Having more options that work in different ways is valuable because not all patients respond to one medicine and some may be unable to tolerate a specific drug’s side effects.

“As we have more drugs available to treat Cushing’s,” Biller adds, “I think in the long run we may start using combinations of drugs, which is the approach we use in some patients with acromegaly, another disorder in which a pituitary tumor causes excess hormone secretion. Ultimately, we hope to be able to give lower doses leading to fewer overall side effects, but that remains to be determined by future studies.”

Annamaria Colao, University of Naples, Italy, is the lead author of the report. Additional co-authors are Stephan Petersenn, University of Duisberg-Essen, Germany; John Newell-Price, University of Sheffield, U.K.; James Findling, Medical College of Wisconsin, Milwaukee; Feng Gu, Peking Union Medical College Hospital, Beijing; Mario Maldonado, Ulrike Schoenherr, and David Mills, Novartis Pharma; and Luiz Roberto Salgado, University of São Paulo Medical School, Brazil.

From http://dailyrecords.us/experimental-drug-improves-cushings-disease/

Video: Adrenalectomy for Cushing’s Syndrome Surgical Management

Adrenalectomy for Cushing Syndrome Surgical Management by Dr Anup Gulati

History of Patient
A 35 yrs old female with complaint of…
Weight Gain over last 2 years (weighing 115 kg at present)
Pulse 70, BP 124/76. No history of episodes of hypertension.
CECT whole abdomen suggestive of left adrenal 5×5 cm cystic mass
Dexamethasone suppression test positive for Cushing’s disease.
Rest all hormone profile normal.

Adrenal glands are attached with kidneys sometimes release excess hormones which cause cushing’s disease. Urologists do Adrenalectomy procedure which can cure Cushing’s disease.

 

Past News Items: My 37-year-old daughter has Addison’s disease.

old-news

 

Because, sometimes Old News is still valid!

From Tuesday, September 16, 2008

DEAR DR. DONOHUE: My 37-year-old daughter has Addison’s disease. Many doctors saw her when she was hospitalized a year ago. She had to go back to the hospital because of stomach upset, back pain and dehydration. Her skin has darkened. She was told she would be fine after she started steroids. This hasn’t happened. She is constantly sick. Do you have any good news? — L.K.

ANSWER: With Addison’s disease, the adrenal glands have stopped producing their many hormones. Those hormones include cortisone and aldosterone. Cortisone gives us energy, combats inflammation and figures into many of the body’s most important functions. Aldosterone is essential for blood pressure maintenance. Without adrenal gland hormones, the skin darkens, especially the elbow skin and the creases in the hands.

Treatment is straightforward: Replace the missing hormones. Maybe the dosage of her hormone medicines needs revision. If she’s hasn’t shortly turned the corner, she should get a second opinion from an endocrinologist, a specialist in this kind of illness.

From http://www.kilgorenewsherald.com/news/2008/0916/advice/009.html

HOME | Sitemap | Adrenal Crisis! | Abbreviations | Glossary | Forums | Donate | Bios | Add Your Bio | Add Your Doctor | MemberMap | CushieWiki

What a Hoot! Healing Cushing’s Syndrome Naturally

This guy must be nuts!

Healing Cushing’s Syndrome Naturally

by Dr. Paul Haider, Spiritual Teacher and Master Herbalist

Cushing’s Syndrome is the over production of cortisol by the adrenals glands and the resulting obesity, high blood pressure, fatigue, depression, muscle weakness, glucose intolerance, and more… are all part of the syndrome.

But there is hope, here are a few great herbs and other processes that can heal Cushing’s Syndrome naturally.

Read more of how you, too, can “Heal Your Cushing’s here: https://www.linkedin.com/pulse/healing-cushings-syndrome-naturally-dr-paul-haider

Endocrine Society experts call for expanded screening for primary aldosteronism

Washington, DC–The Endocrine Society today issued a Clinical Practice Guideline calling on physicians to ramp up screening for primary aldosteronism, a common cause of high blood pressure.

People with primary aldosteronism face a higher risk of developing cardiovascular disease and dying from it than other people with high blood pressure. As many as one in ten people with high blood pressure may have primary aldosteronism. Uncontrolled high blood pressure can put these individuals at risk for stroke, heart attack, heart failure or kidney failure.

The guideline, entitled “The Management of Primary Aldosteronism: Case Detection, Diagnosis, and Treatment: An Endocrine Society Clinical Practice Guideline,” was published online and will appear in the May 2016 print issue of The Journal of Clinical Endocrinology & Metabolism (JCEM), a publication of the Endocrine Society. The guideline updates recommendations from the Society’s 2008 guideline on primary aldosteronism.

“In the past eight years, we have come to recognize that primary aldosteronism, despite being quite common, frequently goes undiagnosed and untreated,” said John W. Funder, MD, PhD, of the Hudson Institute of Medical Research in Clayton, Australia, and chair of the task force that authored the guideline. “This is a major public health issue. Many people with primary aldosteronism are never screened due to the associated costs. Better screening processes are needed to ensure no person suffering from primary aldosteronism and the resulting risks of uncontrolled high blood pressure goes untreated.”

Primary aldosteronism occurs when the adrenal glands — the small glands located on the top of each kidney – produce too much of the hormone aldosterone. This causes aldosterone, which helps balance levels of sodium and potassium, to build up in the body. The resulting excess sodium can lead to a rise in blood pressure.

The Endocrine Society recommends primary aldosterone screening for people who meet one of the following criteria:

  • Those who have sustained blood pressure above 150/100 in three separate measurements taken on different days;
  • People who have hypertension resistant to three conventional antihypertensive drugs;
  • People whose hypertension is controlled with four or more medications;
  • People with hypertension and low levels of potassium in the blood;
  • Those who have hypertension and a mass on the adrenal gland called an adrenal incidentaloma;
  • People with both hypertension and sleep apnea;
  • People with hypertension and a family history of early-onset hypertension or stroke before age 40; and
  • All hypertensive first-degree relatives of patients with primary aldosteronism.

Other recommendations from the guideline include:

  • The plasma aldosterone-to-renin ratio (ARR) test should be used to screen for primary aldosteronism.
  • All patients diagnosed with primary aldosteronism should undergo a CT scan of the adrenal glands to screen for a rare cancer called adrenocortical carcinoma.
  • When patients choose to treat the condition by having one adrenal gland surgically removed, an experienced radiologist should take blood samples from each adrenal vein and have them analyzed. This procedure, called adrenal vein sampling, is the gold standard for determining whether one or both adrenal glands is producing excess aldosterone.
  • For people with primary aldosteronism caused by overactivity in one adrenal gland, the recommended course of treatment is minimally invasive surgery to remove that adrenal gland.
  • For patients who are unable or unwilling to have surgery, medical treatment including a mineralocorticoid receptor (MR) agonist is the preferred treatment option.

###

The Hormone Health Network offers resources on primary aldosteronism athttp://www.hormone.org/questions-and-answers/2012/primary-aldosteronism.

Other members of the Endocrine Society task force that developed this guideline include: Robert M. Carey, of the University of Virginia Health System in Charlottesville, VA; Franco Mantero of the University of Padova in Padua, Italy; M. Hassan Murad of the Mayo Clinic in Rochester, MN; Martin Reincke of the Klinikum of the Ludwig-Maximilians-University of Munich in München, Bavaria, Germany; Hirotaka Shibata of Oita University in Oita, Japan; Michael Stowasser of the University of Queensland in Brisbane, Australia; and William F. Young, Jr. of the Mayo Clinic in Rochester, MN.

The Society established the Clinical Practice Guideline Program to provide endocrinologists and other clinicians with evidence-based recommendations in the diagnosis and treatment of endocrine-related conditions. Each guideline is created by a task force of topic-related experts in the field. Task forces rely on evidence-based reviews of the literature in the development of guideline recommendations. The Endocrine Society does not solicit or accept corporate support for its guidelines. All Clinical Practice Guidelines are supported entirely by Society funds.

The Clinical Practice Guideline was co-sponsored by the American Heart Association, the American Association of Endocrine Surgeons, the European Society of Endocrinology, the European Society of Hypertension, the International Association of Endocrine Surgeons, the International Society of Hypertension, the Japan Endocrine Society and The Japanese Society of Hypertension.

The guideline was published online at http://press.endocrine.org/doi/10.1210/jc.2015-4061, ahead of print.

Endocrinologists are at the core of solving the most pressing health problems of our time, from diabetes and obesity to infertility, bone health, and hormone-related cancers. The Endocrine Society is the world’s oldest and largest organization of scientists devoted to hormone research and physicians who care for people with hormone-related conditions.

The Society, which is celebrating its centennial in 2016, has more than 18,000 members, including scientists, physicians, educators, nurses and students in 122 countries. To learn more about the Society and the field of endocrinology, visit our site at http://www.endocrine.org. Follow us on Twitter at @TheEndoSociety and @EndoMedia.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

From http://www.eurekalert.org/pub_releases/2016-04/tes-ese042616.php