What Is Adrenal Hyperplasia? – Yahoo News UK

Adrenal hyperplasia is a rare genetic condition that involves the adrenal glands, which lie just above the kidneys.

It results in a blockage in the assembly line that makes the stress hormone cortisol from its chemical precursors.

People with the condition have low levels of cortisol, which helps to regulate blood sugar levels. If they fall too low, it can result in a coma.

But in some cases, the blockage can also reduce the production of aldosterone, a hormone involved in the regulation of salt in the bloodstream.

If salt levels fall too low it can lead to dehydration, vomiting and death.

Regular treatment with steroid medicines can help to maintain normal hormone levels and although the condition is lifelong, the outlook is generally good.

via Missing Boy: What Is Adrenal Hyperplasia? – Yahoo News UK.

Genetics of adrenal diseases in 2014: Genetics improves understanding of adrenocortical tumours

2014 has seen advances in our understanding of benign and malignant tumours of the adrenal cortex, particularly in Cushing syndrome. Modern genetics has generated a flurry of data. The challenge is to give sense to them; however, the difficulties of collecting the clinical data must not be underestimated.

Download this information at http://www.nature.com/nrendo/journal/vaop/ncurrent/full/nrendo.2014.215.html

  • References
  1. Beuschlein, F. et al. Constitutive activation of PKA catalytic subunit in adrenal Cushing’s syndrome. N. Engl. J. Med. 370, 10191028 (2014).
  2. Goh, G. et al. Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors. Nat. Genet. 46, 613617 (2014).
  3. Sato, Y. et al. Recurrent somatic mutations underlie corticotropin-independent Cushing’s syndrome. Science 344, 917920 (2014).
  4. Cao, Y. et al. Activating hotspot L205R mutation in PRKACA and adrenal Cushing’s syndrome. Science 344, 913917 (2014).
  5. Assié, G. et al. ARMC5 mutations in macronodular adrenal hyperplasia with Cushing’s syndrome. N. Engl. J. Med. 369, 21052114 (2013).
  6. Assié, G. et al. Integrated genomic characterization of adrenocortical carcinoma. Nat. Genet. 46, 607612 (2014).
  7. Beuschlein, F. et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat. Genet. 45, 440444 (2013).
  8. Scholl, U. I. et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat. Genet. 45,10501054 (2013).
  9. Azizan, E. A. et al. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat. Genet. 45, 10551060 (2013).
  10. Fernandes-Rosa, F. L. et al. Genetic spectrum and clinical correlates of somatic mutations in aldosterone-producing adenoma. Hypertension 64, 354361 (2014).

Diagnosing and Treating Cortisol Excess and Deficiency

From Day 1 of the 16th International Congress of Endocrinology and the Endocrine Society’s 96th Annual Meeting and Expo »

Chicago, IL – June 21, 2014

A phase 2 study of Chronocort®, a modified release formulation of hydrocortisone, in the treatment of adults with classic congenital adrenal hyperplasia

A Mallappa, L-A Daley, N Sinaii, C Van Ryzin, H Huatan, D Digweed, D Eckland, M Whitaker, LK Nieman, RJ Ross, DP Merke

Summary: Classic congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is characterized by cortisol and aldosterone deficiency and androgen excess. Current conventional glucocorticoid therapy is suboptimal as it cannot replace the normal cortisol circadian rhythm and inadequate or inappropriate suppression of adrenal androgens are common. In the preliminary results of a phase 2 study of Chronocort®, a modified release hydrocortisone capsule formulation, researchers found that Chronocort®, a novel modified release hydrocortisone capsule formulation, approximates physiological cortisol secretion, and improves biochemical control of CAH. Further analyses are underway.

Methods:

  • The study objectives were to characterize pharmacokinetics and examine disease control following 6 months dose titration.
  • Serial profiling was obtained at baseline (conventional glucocorticoid) and every 2 months.
  • Twice-daily Chronocort® was initiated: 20 mg at 2300 h, 10 mg at 0700 h.
  • Dose titration was based on clinical status and optimal hormonal ranges (17OHP 300-1200 ng/dL, normal androstenedione (males: 40-150, females: 30-200 ng/dL), with androstenedione prioritized.
  • Chronocort® cortisol pharmacokinetic profile was the primary endpoint.
  • Secondary endpoints included biomarkers of disease control.

Results:

  • A total of 16 adults (8 females; age 29 ±13 years) with classic CAH (12 salt-wasting, 4 simple virilizing) participated.
  • Conventional therapy varied (5 dexamethasone, 7 prednisone, 4 hydrocortisone).
  • Chronocort® cortisol pharmacokinetic profile approximated physiological cortisol secretion.
  • Ten patients required Chronocort® dose adjustments (decrease in 8, increase in 2; mean hydrocortisone equivalent dose conventional vs 6 months: 16.1 ± 6.4 vs 14.7 ± 6.4 mg/m2).
  • Serial androstenedione levels were in the normal range in 8 (50%) of patients on conventional therapy compared with 12 (75%) on Chronocort® at 6 months.
  • The majority of patients on Chronocort® achieved 17O HP levels within the normal range, rather than within the mildly elevated range currently used for management.
  • At 6 months, Chronocort® resulted in lower 24-hr (P=0.02), morning (0700-1500; P=0.008), and afternoon (1500-2300; P=0.03) area-under-the-curve androstenedione compared with conventional therapy.
  • No serious adverse events occurred.
  • Common adverse events were headache, fatigue, early awakening, and anemia.
  • Three patients had unexpected carpal tunnel syndrome, which resolved with wrist splints.

From http://www.mdlinx.com/endocrinology/conference-abstract.cfm/ZZ5BA369FDE9DE4CED82CB6A7CD5BFD1BE/16521/?utm_source=confcoveragenl&utm_medium=newsletter&utm_content=abstract-list&utm_campaign=abstract-ICE/EN2014&nonus=0#

Adrenal Glands

adrenal-glandsAnatomy of the adrenal glands:

Adrenal glands, which are also called suprarenal glands, are small, triangular glands located on top of both kidneys. An adrenal gland is made of two parts: the outer region is called the adrenal cortex and the inner region is called the adrenal medulla.

Function of the adrenal glands:

The adrenal glands work interactively with the hypothalamus and pituitary gland in the following process:

  • the hypothalamus produces corticotropin-releasing hormones, which stimulate the pituitary gland.
  • the pituitary gland, in turn, produces corticotropin hormones, which stimulate the adrenal glands to produce corticosteroid hormones.

Both parts of the adrenal glands — the adrenal cortex and the adrenal medulla — perform very separate functions.

What is the adrenal cortex?

The adrenal cortex, the outer portion of the adrenal gland, secretes hormones that have an effect on the body’s metabolism, on chemicals in the blood, and on certain body characteristics. The adrenal cortex secretes corticosteroids and other hormones directly into the bloodstream. The hormones produced by the adrenal cortex include:

  • corticosteroid hormones
    • hydrocortisone hormone – this hormone, also known as cortisol, controls the body’s use of fats, proteins, and carbohydrates.
    • corticosterone – this hormone, together with hydrocortisone hormones, suppresses inflammatory reactions in the body and also affects the immune system.
  • aldosterone hormone – this hormone inhibits the level of sodium excreted into the urine, maintaining blood volume and blood pressure.
  • androgenic steroids (androgen hormones) – these hormones have minimal effect on the development of male characteristics.

What is the adrenal medulla?

The adrenal medulla, the inner part of the adrenal gland, is not essential to life, but helps a person in coping with physical and emotional stress. The adrenal medulla secretes the following hormones:

  • epinephrine (also called adrenaline) – this hormone increases the heart rate and force of heart contractions, facilitates blood flow to the muscles and brain, causes relaxation of smooth muscles, helps with conversion of glycogen to glucose in the liver, and other activities.
  • norepinephrine (also called noradrenaline) – this hormone has little effect on smooth muscle, metabolic processes, and cardiac output, but has strong vasoconstrictive effects, thus increasing blood pressure.

From: University of Maryland Center for Diabetes and Endocrinology

Classifying hypertension

HYPERTENSION is classified into two categories according to its cause: essential and secondary.

The vast majority of patients have essential or primary hypertension, while only about 5-10% of patients have secondary hypertension, which are mainly caused by kidney and hormonal conditions like renal artery stenosis, hyperthyroidism, Cushing’s syndrome, and even pregnancy, among others.

The exact cause of essential hypertension is still unknown, although it is certainly the result of a combination of factors, including increasing age, having relatives with high blood pressure (ie family history), a sedentary lifestyle, a poor diet with too much salt, drinking too much alcohol, smoking and too much stress.

Says Malaysian Society of Hypertension president and Universiti Malaya Department of Primary Care Medicine senior consultant Prof Datin Dr Chia Yook Chin: “Each factor increases blood pressure by just a little, but when you add them all together little by little, it raises it by quite a lot.”

Despite not knowing the root cause of hypertension, it has been established that there is overstimulation of the sympathetic nerves in people with this condition.

This in turn increases the secretion of certain hormones involved in the regulation of sodium and fluids in the body, called renin, angiotensin, and aldosterone.

The amount of salt and water in our body affects our blood pressure – the more salt and water present, the higher our blood pressure.

These two elements are regulated by our kidneys through the three hormones mentioned above, which are produced by the adrenal glands located on top of the kidneys.

The overstimulation of the sympathetic nerves also results in increased vascular tone, which causes our arteries to become constricted, thus, also raising blood pressure.

From The Star