Hydrocortisone in Granule Form Effectively Treats Childhood Adrenal Insufficiency

The treatment of adrenal insufficiency with hydrocortisone granules in children with congenital adrenal hyperplasia (CAH) was associated with an absence of adrenal crises and normal growth patterns over a 2-year period, according to study findings published in The Journal of Clinical Endocrinology and Metabolism.

The study included a total of 17 children with CAH and 1 child with hypopituitarism. All included participants were <6 years old who were receiving current adrenocortical replacement therapy, including hydrocortisone with or without fludrocortisone. Hydrocortisone medications used in this population were converted from pharmacy compounded capsules to hydrocortisone granules without changing the dose.

These study participants were followed by study investigators for 2 years. Glucocorticoid replacement therapy was given three times a day for a median treatment duration of 795 days. Treatment was adjusted by 3 monthly 17-hydroxyprogesterone (17-OHP) profiles in children with CAH.

There were a 150 follow-up visits throughout the study. At each visit, participants underwent assessments that measured hydrocortisone dose, height, weight, pubertal status, adverse events, and incidence of adrenal crisis.

A total of 40 follow-up visits had changes in hydrocortisone doses based on salivary measurements (n=32) and serum 17-OHP levels (n=8).

At time of study entry, the median daily doses of hydrocortisone were 11.9 mg/m2 for children between the ages of 2 to 8 years, 9.9 mg/m2 for children between 1 month and 2 years, and 12.0 mg/m2 for children <28 days of age. At the end of the study, the respective doses for the 3 age groups were 10.2, 9.8, and 8.6.

The investigators observed no trends in either accelerated growth or reduced growth; however, 1 patient with congenital renal hypoplasia and CAH did show reduced growth. While 193 treatment-emergent adverse events, including pyrexia, gastroenteritis, and viral upper respiratory tract infection, were reported in 14 patients, there were no observed adrenal crises.

Limitations of this study included the small sample size as well as the relatively high drop-out rate of the initial sample.

The researchers concluded that “hydrocortisone granules are an effective treatment for childhood adrenal insufficiency providing the ability to accurately prescribe pediatric appropriate doses.”

Disclosure: Several study authors declared affiliations with the pharmaceutical industry. Please see the original reference for a full list of authors’ disclosures.

Reference

Neumann U, Braune K, Whitaker MJ, et al. A prospective study of children 0-7 years with CAH and adrenal insufficiency treated with hydrocortisone granules. Published online September 4, 2020. J Clin Endocrinol Metab. doi:10.1210/clinem/dgaa626

Cushing’s Testing at NIH

Rank Status Study
1 Recruiting Study to Evaluate CORT125134 in Patients With Cushing’s Syndrome

Condition: Cushing’s Syndrome
Intervention: Drug: CORT125134
2 Recruiting Cushing’s Disease Complications

Condition: Cushing’s Disease
Intervention: Other: Exams and questionnaires
3 Recruiting The Accuracy of Late Night Urinary Free Cortisol/Creatinine and Hair Cortisol in Cushing’s Syndrome Diagnosis

Condition: Cushing Syndrome
Intervention:
4 Recruiting Treatment for Endogenous Cushing’s Syndrome

Condition: Endogenous Cushing’s Syndrome
Intervention: Drug: COR-003
5 Recruiting Saliva Cortisol Measurement as a Screening Test for Suspicious Cushings Syndrome in Children.

Condition: Cushings Syndrome
Intervention: Other: Children refered to the obesity clinic
6 Recruiting Safety and Efficacy of LCI699 for the Treatment of Patients With Cushing’s Disease

Condition: Cushing’s Disease
Intervention: Drug: LCI699
7 Recruiting Treatment of Cushing’s Disease With R-roscovitine

Condition: Cushings Disease
Intervention: Drug: R-roscovitine
8 Recruiting A Study of ATR-101 for the Treatment of Endogenous Cushing’s Syndrome

Condition: Cushing Syndrome
Interventions: Drug: ATR-101;   Drug: Placebos
9 Recruiting Evaluation of 68Ga-DOTATATE PET/CT, Octreotide and F-DOPA PET Imaging in Patients With Ectopic Cushing Syndrome

Condition: Cushing Syndrome
Interventions: Drug: F-DOPA PET Scan;   Drug: Mifepristone;   Drug: Ga-DOTATATE;   Drug: Octreoscan;   Other: CT, MRI
10 Not yet recruiting Endocrine Cardiomyopathy in Cushing Syndrome: Response to Cyclic GMP PDE5 inhibitOrs

Condition: Cushing’s Syndrome Cardiomyopathy
Intervention: Drug: Tadalafil
11 Recruiting Long-term Beneficial Metabolic Effects of Adrenalectomy in Subclinical Cushing’s Syndrome of Adrenal Incidentaloma

Condition: Cushing Syndrome
Intervention: Procedure: surgery
12 Recruiting Long Term Safety and Efficacy of Pasireotide s.c. in Patients With Cushing’s Disease

Condition: Cushings Disease
Intervention: Drug: SOM230
13 Recruiting New Imaging Techniques in the Evaluation of Patients With Ectopic Cushing Syndrome

Condition: Cushing Syndrome
Interventions: Drug: Pentetreotide;   Drug: 18-F-fluorodeoxyglucose;   Drug: (18F)-L-3,4-dihydroxyophenylalanine (18F-DOPA)
14 Not yet recruiting Targeting Iatrogenic Cushing’s Syndrome With 11β-hydroxysteroid Dehydrogenase Type 1 Inhibition

Condition: Iatrogenic Cushing’s Disease
Interventions: Drug: AZD4017 and prednisolone;   Drug: Placebo Oral Tablet and prednisolone
15 Not yet recruiting Assessment of Persistent Cognitive Impairment After Cure of Cushing’s Disease

Condition: Cushing’s Disease
Intervention: Device: Virtual radial task in 3D
16 Recruiting Biomarker Expression in Patients With ACTH-Dependent Cushing’s Syndrome Before and After Surgery

Condition: Cushing’s Syndrome
Intervention:
17 Recruiting Efficacy and Safety Evaluation of Osilodrostat in Cushing’s Disease

Condition: Cushing’s Disease
Interventions: Drug: osilodrostat;   Drug: osilodrostat Placebo
18 Recruiting Effects of Metyrapone in Patients With Endogenous Cushing’s Syndrome

Condition: Cushing’s Syndrome
Intervention: Drug: metyrapone
19 Recruiting Adrenal Venous Sampling in Patients With Overt or Subclinical Cushings Syndrome, and Bilateral Adrenal Tumors

Condition: Cushing Syndrome
Intervention: Radiation: Adrenal venous sampling
20 Recruiting Glycemic Fluctuations in Newly Diagnosed Growth Hormone-Secreting Pituitary Adenoma and Cushing Syndrome Subjects

Condition: Pituitary Adenoma
Intervention: Device: continuous glucose monitoring
Rank Status Study
21 Recruiting Targeted Therapy With Gefitinib in Patients With USP8-mutated Cushing’s Disease

Conditions: Cushing’s Disease;   Corticotrophin Adenoma
Intervention: Drug: Gefitinib
22 Recruiting Cardiac Steatosis in Cushing’s Syndrome

Conditions: Endocrine System Disease;   Cardiovascular Imaging
Intervention: Other: 1H magnetic resonance spectroscopy and CMRI
23 Recruiting Study of Management of Pasireotide-induced Hyperglycemia in Adult Patients With Cushing’s Disease or Acromegaly

Conditions: Cushing’s Disease;   Acromegaly
Interventions: Drug: Pasireotide s.c.;   Drug: Sitagliptin;   Drug: Liraglutide;   Drug: Insulin;   Drug: Pasireotide LAR;   Drug: Metformin
24 Recruiting Study of Efficacy and Safety of Osilodrostat in Cushing’s Syndrome

Conditions: Cushing’s Syndrome;   Ectopic Corticotropin Syndrome;   Adrenal Adenoma;   Adrenal Carcinoma;   AIMAH;   PPNAD
Intervention: Drug: Osilodrostat
25 Recruiting Effects of Hormone Stimulation on Brain Scans for Cushing s Disease

Condition: Pituitary Neoplasm
Intervention: Drug: Acthrel
26 Recruiting Does Serum-DXM Increase Diagnostic Accuracy of the Overnight DXM Suppression Test in the Work-up of Cushing’s Syndrome?

Conditions: Cushing’s Syndrome;   Adrenal Incidentalomas;   Alcoholism;   Obesity
Intervention:
27 Recruiting Adrenalectomy Versus Follow-up in Patients With Subclinical Cushings Syndrome

Condition: Adrenal Tumour With Mild Hypercortisolism
Intervention: Procedure: Adrenalectomy
28 Recruiting Study of Adrenalectomy Versus Observation for Subclinical Hypercortisolism

Conditions: Hypercortisolism;   Cushing Syndrome
Interventions: Procedure: Adrenalectomy;   Other: Observation
29 Not yet recruiting Dynamic Hormone Diagnostics in Endocrine Disease

Conditions: Adrenal Insufficiency;   Congenital Adrenal Hyperplasia;   Cushing Syndrome;   Growth Hormone Deficiency;   Acromegaly;   Primary Hyperaldosteronism
Intervention: Other: 27 hour subcutaneous fluid sampling
30 Recruiting An Investigation of Pituitary Tumors and Related Hypothalmic Disorders

Conditions: Abnormalities;   Craniopharyngioma;   Cushing’s Syndrome;   Endocrine Disease;   Pituitary Neoplasm
Intervention:
31 Recruiting Ga-68-DOTATOC -PET in the Management of Pituitary Tumours

Condition: Pituitary Tumours
Intervention: Procedure: Gallium-68 DOTATOC PET
32 Recruiting Efficacy of Mifepristone in Males With Type 2 Diabetes Mellitus

Conditions: Type 2 Diabetes Mellitus;   Insulin Resistance
Interventions: Drug: Mifepristone 600 mg daily;   Drug: Placebo
33 Recruiting Targeted Therapy With Lapatinib in Patients With Recurrent Pituitary Tumors Resistant to Standard Therapy

Conditions: Pituitary Adenomas;   Prolactinomas
Intervention: Drug: Lapatinib
34 Recruiting Mutations of Glucocorticoid Receptor in Bilateral Adrenal Hyperplasia

Condition: General Glucocorticoid Resistance
Intervention: Genetic: blood collection for mutation characterization
35 Recruiting Defining the Genetic Basis for the Development of Primary Pigmented Nodular Adrenocortical Disease (PPNAD) and the Carney Complex

Conditions: Cushing’s Syndrome;   Hereditary Neoplastic Syndrome;   Lentigo;   Neoplasm;   Testicular Neoplasm
Intervention:
36 Not yet recruiting Reduction by Pasireotide of the Effluent Volume in High-output Enterostomy in Patients Refractory to Usual Medical Treatment

Condition: Enterostomy
Interventions: Drug: Pasireotide;   Drug: Placebo
37 Recruiting Mifepristone for Breast Cancer Patients With Higher Levels of Progesterone Receptor Isoform A Than Isoform B.

Condition: Breast Cancer
Intervention: Drug: Mifepristone
38 Recruiting SOM230 Ectopic ACTH-producing Tumors

Condition: Ectopic ACTH Syndrome
Intervention: Drug: Pasireotide
39 Recruiting Decreasing Rates of Intraurethral Catheterization Postoperatively in Spine Surgery

Condition: Post-operative Urinary Retention
Interventions: Drug: Tamsulosin;   Drug: Placebo
40 Recruiting Adrenal Tumors – Pathogenesis and Therapy

Conditions: Adrenal Tumors;   Adrenocortical Carcinoma;   Cushing Syndrome;   Conn Syndrome;   Pheochromocytoma
Intervention:

Primary Adrenal Insufficiency (PAI)

 Al-Jurayyan NA
Background: Primary adrenal insufficiency (PAI) in children is an uncommon, but potentially fatal. The current symptoms include weakness, fatigue, anorexia, abdominal pain, weight loss, orthostatic hypotension, salt craving and characterized by hyperpigmentation.
Material and Methods: This is a retrospective, hospital based-study, conducted at King Khalid University Hospital (KKUH), during the period January 1989 and December 2014. Review of medical record of patient diagnosed with primary adrenal insufficiency. The diagnosis was based on medical history, physical examination and low levels of glucocorticoids and raised adrenocorticotropic hormone (ACTH). Appropriate laboratory and radiological investigations were also reviewed.
Results: During the period under review, January 1989 and December 2014, a total of 125 patients with the diagnosis of primary adrenal insufficiency were seen. Inherited disorders like congenital adrenal hyperplasia and hypoplasia were common, 85.5%. However, variable autoimmune mediated etiologic diagnosis accounted for, 13%, were also seen. The appropriate various laboratory and radiological investigations should be planned.
Conclusion: Although, congenital adrenal hyperplasia was the commonest etiology, however, congenital adrenal hypoplasia should not be over looked. The diagnosis of PAI can be challenging in some patients, and therefore appropriate serological and radiological investigations should be done.

Health Care Expenditure Burden High in Adrenal Insufficiency

Patients with adrenal insufficiency may accrue substantial health care costs and have more hospital stays and outpatient visits compared with healthy controls, according to findings published in the Journal of the Endocrine Society.

Candace Gunnarsson, PhD, vice president of health economics and outcomes research at CTI Clinical Trial and Consulting in Cincinnati, and colleagues evaluated data from a U.S.-based payer database on 10,383 patients with adrenal insufficiency to determine the estimated annual health care burden among them.

Participants were divided into groups based on their type of adrenal insufficiency: primary adrenal insufficiency (n = 1,014), adrenal insufficiency secondary to pituitary disease (n = 8,818) or congenital adrenal hyperplasia (n = 551). A group of matched controls was also evaluated for comparison.

Total annual health care expenditures were significantly higher in the primary adrenal insufficiency group ($18,624 vs. $4,320), adrenal insufficiency secondary to pituitary disease group ($32,218 vs. $6,956) and the congenital adrenal hyperplasia group ($7,677 vs. $4,203) compared with controls. The adrenal insufficiency secondary to pituitary disease group had the highest health care expenditure estimated with an incremental health care burden of $25,262, followed by the primary adrenal insufficiency group ($14,304) and the congenital adrenal hyperplasia group ($3,474).

Compared with controls, participants with adrenal insufficiency spent eight to 10 times more days in the hospital and had up to twice as many outpatient visits per year.

“When comparing [adrenal insufficiency] patients within each cohort based on their drug regimen, patients receiving prednisone therapy vs. hydrocortisone therapy had significantly higher total annual expenditures in the [primary adrenal insufficiency] and [congenital adrenal hyperplasia] and significantly lower total expenditures in the [pituitary disease] cohort,” the researchers wrote. “Patients taking only hydrocortisone and meeting the threshold of 50% adherence were found to have lower expenditures when medication adherence was 75% or higher.” – by Amber Cox

Disclosure: Gunnarsson reports being an employee of CTI Clinical Trial and Consulting. Please see the full study for a list of all other authors’ relevant financial disclosures.

From http://www.healio.com/endocrinology/adrenal/news/in-the-journals/%7B8f92bd0c-0c72-4902-beb5-663c356a61cb%7D/health-care-expenditure-burden-high-in-adrenal-insufficiency

Preclinical Data for ALD1613 at ENDO 2016

Alder BioPharmaceuticals, Inc. (“Alder”) (NASDAQ:ALDR), today announced that preclinical data on ALD1613, its anti-adrenocorticotropic hormone (ACTH) antibody for the treatment of congenital adrenal hyperplasia (CAH) and Cushing’s disease, were presented today by Andrew L. Feldhaus, Ph.D., in a poster presentation at ENDO 2016, the Endocrine Society’s 98th Annual Meeting in Boston, Mass. The presentation entitled “A Novel Anti-ACTH Antibody (ALD1613) Neutralizes ACTH Activity and Reduces Glucocorticoids in Rats and Nonhuman Primates” was presented as a late-breaking abstract.

Key Points:

  • In vitro, ALD1613 inhibits ACTH-induced cortisol secretion in a mouse adrenal cell line.
  • ALD1613 administration in rats with artificially elevated ACTH and corticosterone levels resulted in a rapid and durable reduction of plasma corticosterone levels.
  • In non-human primates, ALD1613 demonstrated stable and durable reductions in plasma cortisol levels by >50%.

Quote:

Randall C. Schatzman, Ph.D., President and Chief Executive Officer of Alder, said, “Existing therapeutic options for patients with congenital adrenal hyperplasia and Cushing’s disease comprise treatments that provide limited disease control and involve significant side effects. We believe these limitations indicate a clear need for new therapies such as ALD1613, which targets ACTH to diminish the overproduction of cortisol. The data presented today demonstrate the capacity of ALD1613 to reduce corticosteroid levels in preclinical settings. We intend to use these studies as part of an IND filing that we plan to submit to the FDA in the second half of 2016.”

From https://globenewswire.com/news-release/2016/04/03/825231/0/en/Alder-Presents-Preclinical-Data-for-ALD1613-at-ENDO-2016.html

%d bloggers like this: