Discussion
Patients with CS have higher morbidity and mortality (
Gadelha et al. 2023,
Loughrey et al. 2024), and it has been recently established that CS is associated with an increased cancer risk (
Rudman et al. 2024,
Wu et al. 2025). However, predictors of a new cancer diagnosis have not been studied. In this nationwide retrospective study, the 10-year cancer risk in 609 patients with CS was twice as high as in 3,018 matched controls. Importantly, the 10-year risk was notably higher in patients with CD (HR 1.92, 95% CI 1.23–3.00) and in those with adrenal CS (HR 2.63, 95% CI 1.79–3.87), compared to controls. Furthermore, the risk of cancer was higher in patients with CS, regardless of age and sex. On average, cancer development in patients with CS occurred at an age that was 5 years younger than that of controls who developed cancer (62.3 ± 15.0 vs 67.2 ± 12.3 years, respectively).
Our study is the first to identify predictors of new cancer diagnosis in patients with CS. A multivariate regression model showed that age ≥60 years at CS diagnosis (HR 1.75, 95% CI 1.01–2.68), male gender (HR 1.67, 95% CI 1.04–3.05), and adrenal-origin CS (HR 1.66, 95% CI 1.01–2.73) were identified as independent predictors of cancer development within 10 years. In addition, we found that patients with ≥4 CS-associated comorbidities at the time of CS diagnosis had an increased risk of cancer (HR 1.76, 95% CI 1.03–3.02; adjusted for age and sex). Interestingly, diabetes and obesity were not associated with malignancy development in patients with CS. Importantly, we found no association between UFC levels at the time of CS diagnosis and cancer development rates.
CS most commonly affects young women, a population not inherently at high risk for malignancy, with the exception of breast cancer (National Cancer Institute, Surveillance, Epidemiology, and End Results (SEER) Program, December 2024.
https://seer.cancer.gov/statfacts/html/aya.html). Our study demonstrates that young patients and female patients with CS are at an increased risk of cancer, as compared with matched controls from the general population. However, within the group of patients with CS, we found age and sex disparities in malignancy risk: men and elderly patients (over 60 years of age) showed a higher cancer risk (
Table 2). Advanced age is a universal risk factor for cancer (
Campisi 2013), and patients with CS are no exception. Previous studies found that male patients with CS are more susceptible to metabolic derangements than female patients (
Liu et al. 2015,
Broersen et al. 2019), a difference that likely results from gender disparity in response to glucocorticoid receptor activation (
Bourke et al. 2012).
In addition, our study found that CS of adrenal origin is associated with a higher risk of malignancy, as compared with CD, after adjustment for age, sex, and significant CS-related comorbidities. Notably, patients with a history of adrenal cancer or ectopic CS were excluded. This finding is difficult to explain, since most studies have found that patients with CD present with higher UFC levels (
Berr et al. 2015,
Rubinstein et al. 2019,
Schernthaner-Reiter et al. 2019) and a longer delay in diagnosis (
Rubinstein et al. 2019,
Schernthaner-Reiter et al. 2019) compared to those with adrenal CS. One potential explanation for this observation is that adrenal adenomas may be linked to a higher incidence of malignancy, as studies have shown that cancer mortality is increased with autonomic cortisol secretion, with malignancy being the most common cause of death in patients with mild autonomous cortisol secretion (
Patrova et al. 2017,
Deutschbein et al. 2022). Another conceivable explanation stems from previous research that reported higher rates of non-adrenal malignancies in patients with bilateral adrenal tumors and autonomous cortisol secretion (
Kawate et al. 2014), suggesting a possible genetic predisposition in patients with adrenal adenoma that may contribute to the development of overall cancer.
Interestingly, in our study, patients with adrenal CS had a history of malignancy at a higher rate than their individually matched controls at the time of CS diagnosis (
Table 1). In contrast, no difference in the rate of malignancy was found between patients with CD and controls. Although it is possible that a prior history of malignancy contributed to the higher risk of cancer observed in patients with adrenal CS, we did not find that a prior malignancy predicted subsequent cancer risk in this population when we analyzed our cohort of patients with adrenal CS (
Table 4).
In this study, we found no association between the cumulative exposure to excess glucocorticoids (measured as UFC levels) and the development of malignancy (
Fig. 2), but we did identify an association between the total number of CS-related comorbidities and cancer risk (adjusted for age and sex) (
Table 2). Previous studies have similarly shown no correlation between the degree of hypercortisolism and the presence of CS-related comorbidities in patients with CS (
Schernthaner-Reiter et al. 2019), including diabetes and obesity (
Giordano et al. 2014,
Bavaresco et al. 2024). Those findings support the hypothesis that individual sensitivity to glucocorticoids varies across tissues, such that UFC levels do not always correlate with symptom burden or comorbidities. Patients who are more sensitive to excess cortisol may experience a broader range of CS-associated comorbidities. Several genetic mutations and alterations have already been identified as causes of variation in cortisol sensitivity, including the genes encoding the human glucocorticoid receptor (NR3C1) (
Chrousos et al. 1982,
Riebold et al. 2015,
Laulhé et al. 2024), the chaperone protein that regulates proper folding of the glucocorticoid receptor (HSP90) (
Riebold et al. 2015), and the nuclear protein that modulates glucocorticoid receptor actions (NR2C2) (
Zhang et al. 2016). In addition, mutations in glucocorticoid response elements (
Vandevyver et al. 2013), variations in RNA-binding to the glucocorticoid receptor (
Lammer et al. 2023), and epigenetic changes (
Paes et al. 2024) may also play a role in inter-individual differences in response to cortisol excess.
In the univariate model we have performed, the total number of CS-related comorbidities was associated with cancer development, and the risk of malignancy increased with the number of comorbidities. However, after adjustment for age and sex, the HR was significantly moderated (mainly due to a strong correlation between age and comorbidity) but remained graded. We find this observation to support the concept that cancer is a CS-associated comorbidity, and suggest that patients with CS (especially older men with adrenal CS) suffering from multiple disease-related comorbidities require closer follow-up and a rigorous age-adjusted cancer screening, in accordance with guidelines for the general population.
We have previously reported an increased risk of genitourinary, thyroid, and gynecological cancers in patients with CS (
Rudman et al. 2024). A Taiwanese national cohort study reported that liver (27.7%), kidney (16.7%), and lung (13.0%) cancers were the most common cancers among patients with CS (
Wu et al. 2025). Despite the small absolute number of cases in each cancer type in this study, we found that the incidence in patients with CS was higher across all cancer groups, except for malignant melanoma. One might think that patients with CS underwent more imaging and laboratory tests, and therefore more cases of low-risk cancers (e.g., clinically insignificant prostate or thyroid cancer) were diagnosed in patients with CS than in controls. However, as we have shown, the overall 10-year malignancy-associated mortality was twice as high in patients with CS compared to controls, indicating that malignancies in this group were clinically significant.
Surgery for CS, especially for CD, improves some but not all comorbidities (
Dekkers et al. 2013,
Terzolo et al. 2014,
Papakokkinou et al. 2020,
Puglisi et al. 2024). Improvement of comorbidities with medical therapy have been noted in several clinical trials (
Fleseriu et al. 2012,
2022,
Petersenn et al. 2017); however, there are no prospectively collected data on the risk of cancer in these patients treated long-term. A retrospective study examining the course of several CS-related comorbidities showed that the risk of cancer in patients with CS who did not achieve remission was higher compared to the risk of cancer for patients in remission, yet these analyses did not reach statistical significance, partly due to the limited sample size (
Papakokkinou et al. 2020).
In order to successfully identify predictors of cancer in patients with CS, this research of an uncommon outcome (malignancy) in patients with a rare disease (CS) required a long-term follow-up of a large, population-representative cohort, paired with well-matched control group. Matching for socioeconomic status is another strength of this study, as its impact on morbidity has recently been demonstrated in several studies (
Ebbehoj et al. 2022,
Claudel & Verma 2024).
However, this study has limitations. Missing data prevented us from determining the specific CS etiology in some patients. Correct classification of all cases with an indeterminate diagnosis (as either CD or adrenal CS) would have allowed us to improve the power of subgroup analysis of patients with CD and adrenal CS; however, we had very strict criteria for determining the etiology of CS. Not all data regarding socioeconomic status, BMI, and smoking status were available. In addition, the impact of hypopituitarism and overreplacement of glucocorticoids in patients with CD could not be assessed.
Since the control group was drawn from the general population, ascertainment bias cannot be ruled out, as it is likely that patients with CS underwent more physician-initiated imaging and laboratory tests, and therefore more cases of cancer could have been diagnosed in patients with CS than in controls. However, we consider this bias to be unlikely for most cases of aggressive cancer, especially given our long follow-up period.
While this nationwide study includes a relatively large sample size, we acknowledge that it is likely that our current sample size was not sufficiently powered to detect risk predictors that are only modestly associated with malignancy risk. The small sample size of subgroups and the low frequency of the outcome in these subgroups meant we were unable to predict malignancy in patients with CD or adrenal CS, nor could we estimate the risk of specific malignancies. Moreover, we could not account for certain factors that may influence the risk of malignancy, such as family history of malignancy, duration of exposure to elevated cortisol levels, and the presence of genetic syndromes that predispose individuals to both CS and certain malignancies (e.g., multiple endocrine neoplasia type 1) (
Hernández-Ramírez & Stratakis 2018). Finally, the lack of systematic prospective assessment of comorbidities is an important limitation and should raise the standards for future clinical care of these patients and collecting data in new registries. While patients receiving treatment for a particular comorbidity were successfully identified, those without treatment were not systemically recorded, which may have led to underreporting. Such is the case with osteoporosis: only patients who received treatment or whose treating physician decided to send them for a bone density scan were diagnosed, while others without such evaluations were assumed to be free of osteoporosis.
In conclusion, this large nationwide retrospective matched-cohort study found that the risk of cancer was consistently higher in patients with CS, regardless of age or sex, and on average, cancer development occurred 5 years earlier in patients with CS than in controls. The multivariate regression model we developed identified age ≥60 years at CS diagnosis, male gender, and CS of adrenal-origin as independent predictors of malignancy during the 10 years following CS diagnosis. Importantly, we found no association between UFC levels at CS diagnosis and cancer development rates. However, patients with ≥4 CS-associated comorbidities at CS diagnosis were more likely to develop cancer, after adjusting for age and sex. Given previous studies that identified overall cancer as a CS-related comorbidity and as one of the leading causes of death in this population, the results of the current study will help identify patients at high risk of malignancy, emphasize the importance of timely screening tests, in accordance with guidelines for the general population, and highlight the need for larger international cohorts to establish specific cancer screening recommendations for patients with CS.