Endocrine Society Releases Guidelines on Treatment of Cushing’s Syndrome

To lessen the risk for comorbidity and death, the Endocrine Society’s newly published guidelines on the treatment of Cushing’s syndrome focus on surgical resection of the causal tumor with the goal of normalizing cortisol levels. Furthermore, there is increased emphasis on individualizing treatment options when choosing a second-line treatment.

In July 2015, the Endocrine Society published treatment guidelines to assist endocrinologists in appropriately initiating treatment or referring patients with Cushing’s syndrome to treatment. A task force of experts compiled evidence from systematic reviews and graded the strength of the recommendations.

“We hope that it will lead to improved treatment of comorbidities both before and after definitive treatment of the syndrome, and to increased individualization of patient treatment,” said chair of the task force Lynnette Nieman, MD, who is chief of the Endocrinology Consultation Service at the National Institutes of Health Clinical Center.

“There are two new drugs that were approved in 2012, and so I think that is what prompted the review. Still, medications are not the first line of treatment, but we have some new therapeutic options, and I think the idea was to help people understand where to use them,” Julie Sharpless, MD, assistant professor and director of the UNC Multidisciplinary Pituitary Adenoma Program, told Endocrinology Advisor.

“The primary treatment is surgical resection of the causal tumor(s). If that cannot be done (because the tumor is occult or metastatic) or is not successful, then the choice of secondary treatment should be individualized to the patient. The comorbidities of Cushing’s syndrome, for example hypertension and diabetes, should be treated separately as well,” Nieman said.

For example, the guidelines recommend surgical removal of the causative lesion, with the exception of cases which are unlikely to cause a drop in glucocorticoids or in patients who are not surgical candidates.

Likewise, in patients with benign unilateral adrenal adenoma, adrenalectomy by an experienced surgeon has a high rate of cure in children and adults. Because of the poor prognosis associated with adrenal carcinoma, the guidelines highlight the need for complete resection and possibly medical treatment to stabilize cortisol levels.

Other first-line treatment options include recommending surgical resection of ectopic ACTH-secreting tumors; referring to an experienced pituitary surgeon for transsphenoidal selective adenomectomy; treatments to block hormone receptors in bilateral micronodular adrenal hyperplasia; and surgical removal in bilateral adrenal disorders.

The elevated mortality rate seen in patients with Cushing’s syndrome is due to infection, venous thrombosis and cardiovascular disease (CVD). Appropriately lowering cortisol levels improves hypertension, insulin resistance, dyslipidemia and obesity in patients with Cushing’s syndrome. Therefore, the guidelines highlight the need for restoring cortisol levels and treating the associated comorbidities.

Nevertheless, the task force specifically recommends against treatment without an established diagnosis or when there are no signs of Cushing’s syndrome and hypothalamic-pituitary-adrenal laboratory studies are borderline.

In patients who are not surgical candidates or in cases of noncurative resection, the decision on whether to consider second-line treatment options such as medical therapy, radiation, bilateral adrenalectomy or repeat transsphenoidal surgery should be based on several factors. For instance, the guidelines recommend taking into consideration location and size of the tumor, patient desires, goals of treatment and level of biochemical control.

The guidelines note medical therapy should be based on cost, efficacy and individualization of treatment. Endocrinologists can approach medical therapy with a goal of establishing normal cortisol levels or reducing cortisol levels to very low levels and replacing to achieve desired levels.

Remission in Cushing’s syndrome is associated with notable improvement; however, long-term follow-up is recommended for osteoporosis, CVD and psychiatric conditions.

After treatment, patients may experience reductions in weight, blood pressure, lipids and glucose levels that may allow reduction or discontinuation of medications. Even so, patients with a history of Cushing’s syndrome tend to have higher rates of hypertension, hyperlipidemia and diabetes. Likewise, rates of myocardial infarction are higher in this population, further emphasizing the need for treatment and management of diabetes and hypertension.

Sharpless highlighted that Cushing’s syndrome is rare.

“There are multiple studies that have shown that patients do better when they are treated in a specialty center where people see a lot of cases of this. So in that sense, treatment is not usually going to fall to the general practitioner,” she said.

She continued that the guidelines are helpful and provide guidance to endocrinologist who “can’t readily refer their patient to a pituitary center.”

Sharpless went on to describe the multidisciplinary care involved in Cushing’s syndrome including endocrinologists, neurosurgeons, radiologists, counselors and radiation oncologist.

“When the care is complicated, you want to ensure all of your providers have reviewed your case together and figured out the best plan.”

The guidelines were co-sponsored by the European Society of Endocrinology. Nieman received salary support for her work on the manuscript from the Intramural Research Program of the Eunice Kennedy Shiver Institute of Child Health and Human Development. Members of the task force reported multiple disclosures.

Reference

  1. Nieman LK et al. J Clin Endocrinol Metab. 2015;100(8):2807-2831.

From http://www.endocrinologyadvisor.com/adrenal/cushings-syndrome-endocrine-society-guidelines/article/434307/

Experts recommend tumor removal as first-line treatment for Cushing’s syndrome

The Endocrine Society today issued a Clinical Practice Guideline (CPG) on strategies for treating Cushing’s syndrome, a condition caused by overexposure to the hormone cortisol.

The CPG, entitled “Treatment of Cushing’s Syndrome: An Endocrine Society Clinical Practice Guideline,” was published online and will appear in the August 2015 print issue of the Journal of Clinical Endocrinology and Metabolism (JCEM), a publication of the Endocrine Society.

Cushing’s syndrome occurs when a person has excess cortisol in the blood for an extended period, according to the Hormone Health Network. When it is present in normal amounts, cortisol is involved in the body’s response to stress, maintains blood pressure and cardiovascular function, keeps the immune system in check, and converts fat, carbohydrates and proteins into energy. Chronic overexposure to the hormone can contribute to the development of cardiovascular disease, infections and blood clots in veins.

People who take cortisol-like medications such as prednisone to treat inflammatory conditions, including asthma and rheumatoid arthritis, can develop Cushing’s syndrome. The high cortisol levels return to normal when they stop taking the medication. This is called exogenous Cushing’s syndrome.

In other cases, tumors found on the adrenal or pituitary glands or elsewhere in the body cause the overproduction of cortisol and lead to the development of Cushing’s syndrome. The Clinical Practice Guidelines focus on this form of the condition, known as endogenous Cushing’s syndrome.

“People who have active Cushing’s syndrome face a greater risk of death – anywhere from nearly twice as high to nearly five times higher – than the general population,” said Lynnette K. Nieman, MD, of the National Institutes of Health’s Eunice Kennedy Shriver National Institute of Child Health and Human Development in Bethesda, MD, and chair of the task force that authored the guideline. “To reduce the risk of fatal cardiovascular disease, infections or blood clots, it is critical to identify the cause of the Cushing’s syndrome and restore cortisol levels to the normal range.”

In the CPG, the Endocrine Society recommends that the first-line treatment for endogenous Cushing’s syndrome be the removal of the tumor unless surgery is not possible or unlikely to address the excess cortisol. Surgical removal of the tumor is optimal because it leaves intact the hypothalamic-pituitary-adrenal axis, which is integral to the body’s central stress response.

Other recommendations from the CPG include:

  • Tumors should be removed by experienced surgeons in the following situations:— A tumor has formed on one or both of the two adrenal glands.— A tumor that secretes adrenocorticotropic hormone (ACTH) – the hormone that signals the adrenal glands to produce cortisol – has formed somewhere in the body other than the adrenal or pituitary gland.

    — A tumor has formed on the pituitary gland itself.

  • Patients who continue to have high levels of cortisol in the blood after surgery should undergo additional treatment.
  • People who had an ACTH-producing tumor should be screened regularly for the rest of their lives for high cortisol levels to spot recurrences.
  • If patients’ cortisol levels are too low following surgery, they should receive glucocorticoid replacement medications and be educated about adrenal insufficiency, a condition where the adrenal glands produce too little cortisol. This condition often resolves in 1-2 years.
  • Morning cortisol and/or ACTH stimulation tests, or insulin-induced hypoglycemia, can be used to test for the recovery of the hypothalamic-pituitary-adrenal axis in people who have low cortisol levels after surgery. Once the tests results return to normal, glucocorticoid replacement can be stopped.
  • People who have undergone pituitary surgery should be re-evaluated for other pituitary hormone deficiencies during the post-operative period.
  • Patients who have a pituitary tumor and have undergone surgery to remove both adrenal glands should be regularly evaluated for tumor progression using pituitary MRIs and tests for ACTH levels.
  • Radiation therapy may be used to treat a pituitary tumor, especially if it is growing. While awaiting the effect of radiation, which may take months to years, treatment with medication is advised.
  • To assess the effect of radiation therapy, the patient’s cortisol levels should be measured at 6- to 12-month intervals.
  • Medications may be used to control cortisol levels as a second-line treatment after surgery for a pituitary gland tumor, as a primary treatment for ACTH-secreting tumors that have spread to other parts of the body or suspected ACTH-secreting tumors that cannot be detected on scans. Medications also can be used as adjunctive treatment to reduce cortisol levels in people with adrenal cortical carcinoma, a rare condition where a cancerous growth develops in the adrenal gland.
  • People with Cushing’s syndrome should be treated for conditions associated with the disease, such as cardiovascular disease risk factors, osteoporosis and psychiatric symptoms.
  • Patients should be tested for recurrence throughout their lives except in cases where the person had a benign adrenal tumor removed.
  • Patients should undergo urgent treatment within 24 to 72 hours of detecting excess cortisol if life-threatening complications such as serious infection, pulmonary thromboembolism, cardiovascular complications and acute psychosis are present.

More information: The Hormone Health Network offers resources on Cushing’s syndrome at www.hormone.org/questions-and-answers/2012/cushing-syndrome

Genetics Research Demystifies Fatal Glandular Disease (Cushing’s)

Researchers at Tokyo Institute of Technology have identified genetic mutations responsible for Cushing’s disease, a potentially fatal glandular condition.

Symptoms of Cushing’s disease include weight gain, muscular weakness, mood and reproductive problems, and if untreated patients can die from the resulting infections and cardiovascular problems. Although first described by Harvey Cushing back in 1932, as Martin Reincke and colleagues in Germany and Japan point out in their latest Nature Genetics report, the mechanism causing the disease “has remained obscure since its first description”. Now by sequencing the tissues responsible the researchers have identified clusters of mutations that cause Cushing’s disease as well as how these mutations bring the disease into effect.

The disease arises from benign tumours on glandular pituitary tissue – corticotroph adenomas – which excessively secrete the hormone adrenocorticotropin (ACTH). Previous studies sought to identify mutations that might cause the disease through sequencing candidate genes and microarray studies, but these made little progress. Instead, the researchers applied a particular type of DNA sequencing known as ‘exome sequencing’ to the pituitary corticotroph adenoma.

The collaboration included researchers from Ludwig-Maximilians-Universität Munich, the University of Würzburg, the Max Planck Institute, the Helmholtz-Center Munich, Universität Hamburg , Universität Erlangen in Germany and Tokyo Institute of Technology in Japan. The research team exome-sequenced samples from 10 patients with Cushing’s disease and noticed a small number of protein altering mutations in the adenoma tissue. The researchers further identified the gene harbouring the mutations as ubiquitin-specific protease 8 (USP8), and were able to pinpoint the region of USP8 prone to mutation in Cushing’s disease.

Previous research observations of Cushing’s disease have highlighted strong expression of another gene, epidermal growth factor receptor (EGFR). By examining EGFR in HeLa cells expressing USP8, the researchers behind this latest research demonstrated that this was the result of USP8 mutations inhibiting downregulation of EGFR.

The researchers conclude that their results “not only identify the first of so far enigmatic driver mutations in corticotroph adenomas but also elucidate a novel mechanism by which the EGFR pathway is constitutively activated in human tumours.” Further research will be required for a more detailed understanding of genetic onset of the disease.

Reference

Martin Reincke etal, Nature Genetics, Advance Online Publication 9 December 2014

Background

Cushing’s disease adenomas

The adenomas that cause Cushing’s disease are benign tumours of epithelial tissue that grow on the pituitary gland. The tumours comprise corticotroph cells, a hormone producing cell that secretes asdrenocorticotropin (ACTH). While the pathological role of ACTH hypersecretion was already known, previous studies had been unable to identify the molecular mechanisms behind these hormone processes that lead to Cushing’s disease.

Exome sequencing

When RNA is processed by splicing, parts of the RNA – the introns – are removed. The remaining RNA, the exons, are collectively referred to as the exome.

While DNA sequencing finds the sequence of proteins for the whole DNA, by focusing on the exons, exome sequencing provides information specifically on the protein-coding genes. Changes to these genes are more likely to have significant ramifications on the organism.

Ubiquitination and USP8

Ubiquitination is a reversible protein modification process that occurs by means of a small protein called ubitquitin, which is found in all eukaryotic cells (cells containing a nucleus and other structures enclosed within a membrane). Ubiquitination regulates the fate and function of proteins.

USP8 is a ubiquitin-specific protease enzyme that can remove ubitquitin molecules from target proteins. The discovery of a high number of mutations in the USP8 gene in Cushing’s disease prompted the researchers to make further investigations on the mutant USP8 enzymes at biochemical and cellular levels. From these studies they could identify the mechanisms behind the mutations and the effect on epidermal growth factor receptor (EGFR), a gene that mediates the synthesis of an ACTH precursor.

Figure (click to view larger)

corticotroph

Figure caption: Schematic representation showing the proposed mechanisms how USP8 mutations lead to increased ACTH secretion and tumorigenesis in corticotroph.

Further information

Yukiko Tokida, Asuka Suzuki

Center for Public Affairs and Communications, Tokyo Institute of Technology

2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan

E-mail: media@jim.titech.ac.jp

URL: http://www.titech.ac.jp/english/

Tel: +81-3-5734-2975     Fax: +81-3-5734-3661

About Tokyo Institute of Technology

As one of Japan’s top universities, Tokyo Institute of Technology seeks to contribute to civilization, peace and prosperity in the world, and aims at developing global human capabilities par excellence through pioneering research and education in science and technology, including industrial and social management. To achieve this mission, we have an eye on educating highly moral students to acquire not only scientific expertise but also expertise in the liberal arts, and a balanced knowledge of the social sciences and humanities, all while researching deeply from basics to practice with academic mastery. Through these activities, we wish to contribute to global sustainability of the natural world and the support of human life.

 

Source: Tokyo Institute of Technology, Center for Public Affairs and Communications: http://www.healthcanal.com/genetics-birth-defects/58155-tokyo-institute-of-technology-research-genetics-research-demystifies-fatal-glandular-disease.html

Subclinical Cushing’s syndrome and cardiovascular disease

Guido Di Dalmazi and colleagues1 reported that in patients with adrenal incidentalomas and either stable mild hypercortisolism or worsening of cortisol hypersecretion, all-cause and cardiovascular disease-specific mortality was higher compared with in those with adrenal incidentalomas that did not secrete cortisol, after a mean follow-up of 7·5 years. Moreover, cortisol concentrations measured after dexamethasone-suppression test were associated with all-cause mortality independent of the presence of traditional cardiovascular disease risk factors.
Subclinical Cushing’s syndrome is the most common hormonal abnormality in patients with adrenal incidentalomas (prevalence 1—29%).2 The proportion of adrenal incidentalomas that progress to subclinical Cushing’s syndrome is low (1·7%) and most are lesions of 3 cm or larger.2 Progression to overt Cushing’s syndrome is controversial (because both spontaneous normalisation of hypersecretion and stable disease have been reported during follow-up) and spontaneous normalisation of hypersecretion has been reported in 50% of cases.2 Results of the study by Di Dalmazi and co-workers1 are important because they show, for the first time, that patients with subclinical Cushing’s syndrome are at increased risk of cardiovascular disease and all-cause mortality (mainly attributable to cardiovascular disease). The association of cortisol with all-cause mortality might also be attributable to its potential role in the pathogenesis of metabolic syndrome.3
Findings of previous studies have shown an increased prevalence of cardiovascular disease risk factors in patients with subclinical Cushing’s syndrome, but data for optimum management are conflicting. Some criteria—such as large (>4—6 cm) adrenal incidentalomas, features suggestive of malignancy (eg, heterogeneity, irregular shape, calcification or necrosis, invasion to adjacent tissues), or potentially lethal hormonal hypersecretion (ie, pheochromocytomas)—support the need for adrenalectomy. However, universal surgical management of patients with subclinical Cushing’s syndrome has not been accepted.24 Uncertainty about the most effective management strategy for subclinical Cushing’s syndrome is attributable to the variable definitions used, and the small sample size and retrospective nature of most studies.4 Only one prospective study has been published so far showing that laparoscopic adrenalectomy is more beneficial than is conservative management for the normalisation or improvement of cardiovascular disease risk factors, such as diabetes, dyslipidaemia, hypertension, and obesity.5
Prospective studies and registries are needed to document the effect of different approaches on the incidence of cardiovascular disease events and mortality in patients with adrenal incidentalomas and subclinical Cushing’s syndrome. Until then, individualised treatment seems prudent. Surgical management of subclinical Cushing’s syndrome can be suggested in young patients (age <50 years) and in those with cardiovascular disease risk factors or bone disease associated with hypercortisolism that are of recent onset, difficult to control with drugs, or show progression over time.4
Another message from Di Dalmazi’s study1 is that hormonal deterioration might develop even after 4—5 years, which most studies reported as a reasonable and safe follow-up.2 This possibility should be kept in mind for the management of patients with adrenal incidentalomas, especially if clinical signs of Cushing’s syndrome develop or if cardiovascular disease risk factors become evident or increase in severity (ie, hormonal hypersecretion).
We declare that we have no competing interests.

References

1 Di Dalmazi GVicennati VGarelli S, et alCardiovascular events and mortality in patients with adrenal incidentalomas that are either non-secreting or associated with intermediate phenotype or subclinical Cushing’s syndrome: a 15-year retrospective studyLancet Diabetes Endocrinol 2014published online Jan 29 http://dx.doi.org/10.1016/S2213-8587(13)70211-0.
2 Anagnostis PKaragiannis ATziomalos KKakafika AIAthyros VGMikhailidis DPAdrenal incidentaloma: a diagnostic challengeHormones (Athens) 20098163-184PubMed
3 Anagnostis PAthyros VGTziomalos KKaragiannis AMikhailidis DPClinical review: The pathogenetic role of cortisol in the metabolic syndrome: a hypothesisJ Clin Endocrinol Metab 200994:2692-2701PubMed
4 Terzolo MPia AReimondo GSubclinical Cushing’s syndrome: definition and managementClin Endocrinol (Oxf) 20127612-18PubMed
5 Toniato AMerante-Boschin IOpocher GPelizzo MRSchiavi FBallotta ESurgical versus conservative management for subclinical Cushing syndrome in adrenal incidentalomas: a prospective randomized studyAnn Surg 2009249388-391PubMed
a Division of Endocrinology, Police Medical Centre, Thessaloniki, 54 640, Greece
b Department of Endocrinology and Metabolism, Agios Pavlos General Hospital, Thessaloniki, Greece
c Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
d Department of Clinical Biochemistry (Vascular Prevention Clinic) Royal Free Hospital Campus, University College London Medical School, University College London, London, UK

Through The Art Of Makeup, People With Rare Pituitary Disorders Now Have Unique Resources To Help Address Common Physical And Emotional Changes

Did you know that applying contour powder on certain areas of your face, like the outer rim of the jaw, along the hairline or along the hollows of the cheek, can help make enlarged features less noticeable? Seems like a basic makeup tip, right? Well, to a person with a pituitary disorder that dramatically changes one’s facial features, this type of information may make a major difference – not only physically, but also psychologically.

This is why Novartis has teamed up with Kevyn Aucoin Beauty (KAB) to bring The Highlights Project to those living with acromegaly and Cushing’s disease. The program offers a variety of virtual tools such as makeup suggestions from professional artists and video demonstrations. These resources address common concerns expressed by patients while also educating about these rare, but serious pituitary disorders.

Kevyn Aucoin, founder of KAB and famed Hollywood makeup legend, was diagnosed with acromegaly in 2001 at the age of 40 and passed away less than 12 months later. Aucoin believed in the transformative nature of makeup and saw it as a reflection of both inner and outer beauty. In this spirit, The Highlights Project features a series of makeup tutorials, tips and inspirations designed to help enhance the self-image of pituitary patients. The program also includes the perspective of a psychotherapist who specializes in helping patients with acromegaly and Cushing’s disease.

Like so many other people with acromegaly and Cushing’s disease, Kevyn went undiagnosed for years and faced both emotional and physical challenges as a result of his condition. “Through Kevyn Aucoin Beauty’s partnership with Novartis on The Highlights Project, we hope that we can inspire others living with these pituitary disorders to see their own beauty and view makeup as Kevyn did, not as a mask, but as a tool for discovery,” said Desiree Tordecilla, Executive Vice President, Kevyn Aucoin Beauty.

Acromegaly and Cushing’s disease are pituitary disorders caused by the presence of a noncancerous tumor on the pituitary gland. The symptoms often include highly visual physical changes in the body. For people with acromegaly, enlarged facial features, jaw and brow protrusions, thickening of the skin and skin tags are common. People with Cushing’s disease frequently experience uncontrollable weight gain, facial fullness and redness, a buffalo hump, acne and oily skin. Beyond the external physical changes, these conditions often also cause serious health complications such as cardiovascular issues, fatigue, muscle weakness and cognitive changes. Those living with uncontrolled acromegaly and Cushing’s disease are also at an increased risk of death. Due to the rare nature of these diseases, receiving an accurate diagnosis can be difficult and may take several years – therefore, education and awareness is critical.

The Highlights Project aims to provide support and help those with acromegaly and Cushing’s disease manage the physical manifestations and psychosocial challenges often associated with these conditions.

“As someone who was self-conscious about how unfeminine my facial features appeared, I was amazed by the impact the simple makeup tricks I picked up from The Highlights Project had on my self-esteem,” said Shannon Goodson, who was diagnosed with acromegaly in 2008. “Staying positive, educating yourself about the condition and monitoring hormone levels to ensure the disease is under control are the first steps to empowering yourself and understanding that you are so much more than your diagnosis.”

The mission of The Highlights Project is to help put a face to the challenges those with acromegaly and Cushing’s disease may encounter and serve as a vessel for learning. Novartis is committed to helping to transform the care of rare pituitary conditions and bringing meaningful solutions to patients. To help support acromegaly and Cushing’s disease patients, and learn more about The Highlights Project, visit TheHighlightsProject.com. For more information about these diseases, visit AcromegalyInfo.com and CushingsDisease.com.
Read more from Journal Sentinel: http://www.jsonline.com/sponsoredarticles/health-wellness/through-the-art-of-makeup-people-with-rare-pituitary-disorders-now-have-unique-resources-to-help-address-common-physical-and-emotional-changes8087390808-251841151.html#ixzz2wtDUV9iF