Research and Markets: Pituitary ACTH Hypersecretion (Cushing’s Disease) – Pipeline Review Report, H1 2013 Edition

Research and Markets(http://www.researchandmarkets.com/research/rdf6gm/pituitary_acth) has announced the addition of the “Pituitary ACTH Hypersecretion (Cushing’s Disease) – Pipeline Review, H1 2013” report to their offering.

‘Pituitary ACTH Hypersecretion (Cushing’s Disease) – Pipeline Review, H2 2013’, provides an overview of the indication’s therapeutic pipeline. This report provides information on the therapeutic development for Pituitary ACTH Hypersecretion (Cushing’s Disease), complete with latest updates, and special features on late-stage and discontinued projects. It also reviews key players involved in the therapeutic development for Pituitary ACTH Hypersecretion (Cushing’s Disease).

Scope

– A snapshot of the global therapeutic scenario for Pituitary ACTH Hypersecretion (Cushing’s Disease).

– A review of the Pituitary ACTH Hypersecretion (Cushing’s Disease) products under development by companies and universities/research institutes based on information derived from company and industry-specific sources.

– Coverage of products based on various stages of development ranging from discovery till registration stages.

– A feature on pipeline projects on the basis of monotherapy and combined therapeutics.

– Coverage of the Pituitary ACTH Hypersecretion (Cushing’s Disease) pipeline on the basis of route of administration and molecule type.

– Key discontinued pipeline projects.

– Latest news and deals relating to the products.

Companies Involved in Pituitary ACTH Hypersecretion (Cushing’s Disease) Therapeutics Development

 

  • Isis Pharmaceuticals, Inc.
  • Ipsen S.A.
  • Novartis AG
  • HRA Pharma, SA
  • Cortendo Invest AB

 

Drug Profiles: Product Description, Mechanism of Action and R&D Progress

 

  • LCI-699
  • mifepristone
  • ISIS-GCCRRx
  • Inhibitors of ACTH receptor
  • ketoconazole
  • Next Generation Cortisol Inhibitor
  • pasireotide Long Acting Release

 

For more information visit http://www.researchandmarkets.com/research/rdf6gm/pituitary_acth

MR Brain Spectroscopy Detects Damage In The Hippocampus Of Patients Exposed To Excess Cortisol

New research shows that patients who are “biochemically cured” of Cushing’s syndrome have levels of brain metabolites which are associated with neural damage. This will have implications for treatment of Cushing’s patients, but might also suggest that patients using high levels of glucocorticoid drugs may suffer similar long-term problems. The work was presented yesterday at the European Congress of Endocrinology in Copenhagen.

Cushing’s syndrome is an endocrine disease causing an overproduction of the stress hormone cortisol. Surgery and medical treatment can normalise cortisol levels, however recently it has been shown that “biochemically cured” patients continue to have memory problems. Now for the first time a group of researchers from the Sant Pau Hospital in Barcelona has scanned the brains of patients who had suffered from Cushing’s syndrome and found that they exhibit changed levels of brain metabolites, which are associated with memory and cognitive impairments. This finding may also have clinical implications for otherwise healthy patients who take high levels of glucocorticoid drugs for inflammatory, rheumatoid diseases, allergies and probably everyday chronic stress.

Cortisol (a glucocorticoid hormone), is naturally produced by the adrenal glands in response to stress. Long term exposure to high levels of cortisol is known to be associated with a range of cognitive impairments – this is true for Cushing’s syndrome patients, and probably would be also for those who take glucocorticoid drugs.

Eugenia Resmini and colleagues, working at the Centre for Biomedical Research on Rare Diseases (CIBERER), Sant Pau hospital in Barcelona, used proton magnetic resonance spectroscopy to measure a series of metabolites in the hippocampus of the brains of 18 patients who had been treated for Cushing’s syndrome, and compared these results to 18 healthy control subjects. They found that levels of the metabolite NAA (NAcetyl-aspartate) were significantly lower in the Cushing’s patients, indicating neural dysfunction, whereas Glx (Glutamate +Glutamine) levels were higher, suggesting that glial cells were proliferating as a repair mechanism.

According to Dr Resmini MD, PhD, Endocrinologist at the Centre for Biomedical Research on Rare Diseases (CIBERER), Hospital de Sant Pau, Barcelona, Spain:

“Patients with Cushing’s syndrome are exposed to abnormally high levels of glucocorticoids, which is associated with a wide range of cognitive impairments, as well as loss of brain volume. We studied the hippocampus, which is a critical area for learning and memory and, as it is rich in glucocorticoid receptors, is especially vulnerable to glucocorticoid overexposure. Cushing’s syndrome patients with severe memory impairment are known to have a smaller hippocampus. We have now found abnormal levels of metabolites in the hippocampi of Cushing’s patients with normal hippocampal volumes, indicating that these are early markers of glucocorticoid neurotoxicity, which would precede hippocampal volume reduction.

“Identifying these metabolites as a marker would be a way of allowing earlier diagnosis and treatment of cognitive impairments. This may also allow us to monitor patients taking glucocorticoid drugs, which have potentially damaging side effects. On the other hand, the fact that these markers are still present in Cushing’s patients after being “biochemically cured”, may show that once cognition has been damaged in Cushing’s syndrome, it may not be fully reversible. For this reason an earlier diagnosis of the disease and a rapid normalization of hypercortisolism would avoid the progression of hippocampal damage and of memory problems”.

From Medical News Today

Salk scientists find potential therapeutic target for Cushing’s disease

LA JOLLA, CA—Scientists at the Salk Institute for Biological Studies have identified a protein that drives the formation of pituitary tumors in Cushing’s disease, a development that may give clinicians a therapeutic target to treat this potentially life-threatening disorder.

The protein, called TR4 (testicular orphan nuclear receptor 4), is one of the human body’s 48 nuclear receptors, a class of proteins found in cells that are responsible for sensing hormones and, in response, regulating the expression of specific genes. Using a genome scan, the Salk team discovered that TR4 regulates a gene that produces adrenocorticotropic hormone (ACTH), which is overproduced by pituitary tumors in Cushing’s disease (CD). The findings were published in the May 6 early online edition of Proceedings of the National Academy of Sciences.

“We were surprised by the scan, as TR4 and ACTH were not known to be functionally linked,” says senior author Ronald M. Evans, a professor in Salk’s Gene Expression Laboratory and a lead researcher in the Institute’s Helmsley Center for Genomic Medicine. “TR4 is driving the growth and overexpression of ACTH. Targeting this pathway could therapeutically benefit treatment of CD.”

In their study, Evans and his colleagues discovered that forced overexpression of TR4 in both human and mouse cells increased production of ACTH, cellular proliferation and tumor invasion rates. All of these events were reversed when TR4 expression was reduced.

First described more than 80 years ago, Cushing’s disease is a rare disorder that is caused by pituitary tumors or excess growth of the pituitary gland located at the base of the brain. People with CD have too much ACTH, which stimulates the production and release of cortisol, a hormone that is normally produced during stressful situations.

While these pituitary tumors are almost always benign, they result in excess ACTH and cortisol secretion, which can result in various disabling symptoms, including diabetes, hypertension, osteoporosis, obesity and psychological disturbances. Surgical removal of the tumors is the first-line therapy, with remission rates of approximately 80 percent; however, the disease recurs in up to 25 percent of cases.

Drugs such as cabergoline, which is used to treat certain pituitary tumors, alone or in combination with ketoconazole, a drug normally used to treat fungal infections, have been shown to be effective in some patients with Cushing’s disease. More recently, mefipristone-best known as the abortion pill RU-486-was approved by the FDA to treat CD. Despite these advances in medical therapy, the Salk scientists say additional therapeutic approaches are needed for CD.

“Pituitary tumors are extremely difficult to control,” says Michael Downes, a senior staff scientist in the Gene Expression Laboratory and a co-author of the study. “To control them, you have to kill cells in the pituitary gland that are proliferating, which could prevent the production of a vital hormone.”

Previous studies have found that, by itself, TR4 is a natural target for other signaling molecules in the pituitary. Small-molecule inhibitors that have been developed for other cancers could be potentially applied to disrupt this signaling cascade. “Our discovery,” says Evans, a Howard Hughes Medical Institute investigator and holder of the March of Dimes Chair in Molecular and Developmental Biology, “might lead clinicians to an existing drug that could be used to treat Cushing’s disease.”

Diagnostic performance of salivary cortisol in the diagnosis of Cushing’s syndrome, adrenal incidentaloma and adrenal insufficiency

Source

F Ceccato, Department of Medicine – DIMED, University of Padova, Endocrinology Unit, Padova, Italy.

Abstract

OBJECTIVE:

Salivary cortisol has been recently suggested for studies on the hypothalamic-pituitary-adrenal (HPA) axis: lack of circadian rhythm is a marker of Cushing’s syndrome (CS), and some authors report that low salivary cortisol levels may be a marker of adrenal insufficiency. The aim of our study was to define the role of salivary cortisol in specific diagnostic setting of HPA axis disease.

SUBJECTS AND METHODS:

We analyzed morning salivary cortisol (MSC) and late night salivary cortisol (LNSC) in 406 subjects: 52 Cushing’s disease (CD), 13 ectopic-CS, 17 adrenal-CS, 27 CD in remission (mean follow-up of 66 ± 39 months), 45 adrenal incidentalomas, 73 patients assessed of CS and then ruled out for endogenous hypercortisolism, 75 patients with adrenal insufficiency and 104 healthy subjects.

RESULTS:

A LNSC value above 5.24 ng/mL differentiated CS from controls with high sensitivity (96.3%) and specificity (97.1%), we found higher LNSC in ectopic-CS than in CD. We found no difference in MSC and LNSC levels between CD in remission and healthy subjects. Both MSC and LNSC were higher in adrenal incidentaloma than in healthy controls. MSC below 2.65 ng/mL distinguished patients with adrenal insufficiency from controls with high sensitivity (97.1%) and specificity (93.3%).

CONCLUSIONS:

salivary cortisol is a useful tool to assess endogenous cortisol excess or adrenal insufficiency and to evaluate stable CD in remission.

PMID:

 

23610124

 

[PubMed – as supplied by publisher]
From PubMed

Cushing’s Syndrome, Prostate Cancer and Adrenocortical Carcinoma

Orphagen has identified and characterized small molecule antagonists to steroidogenic factor-1 (SF-1). SF-1 binds to and regulates DNA promoter elements in the major transporters and enzymes required for adrenal steroid synthesis. It is also required for development of the adrenal gland. SF-1 antagonists inhibit cortisol secretion in adrenal cells and have potential application in two orphan indications, Cushing’s syndrome and adrenocortical carcinoma. In addition, SF-1 appears to have an important role in the progression of advanced prostate cancer.

 

cushings-adrenocortical-crop

 

Cushing’s syndrome:
An estimated 20,000 people in the US have Cushing’s, with more than 3,000 new cases diagnosed each year. The incidence is similar in Europe. Cushing’s syndrome disproportionately affects females, who make up about 75% of the diagnosed cases. Symptoms of Cushing’s syndrome can include obesity, diabetes, psychiatric disorders, osteoporosis and immune suppression. Cushing’s syndrome is caused by elevated secretion of cortisol from the adrenal gland, in association with pituitary, adrenal or other cancers.

Orphagen has identified small molecule antagonists to SF-1 that have the potential to suppress cortisol levels in all Cushing’s patients without serious side effects.

Adrenocortical carcinoma (ACC):
ACC is a rare malignancy with an extremely poor prognosis (5-year overall survival: 37-47%). Complete surgical resection offers hope for long-term survival but surgery is not an option in up to two-thirds of patients because metastasis has usually occurred by the time of diagnosis.

SF-1 is recognized as a potential mechanism-based therapeutic target for control of ACC and an SF-1 antagonist could be used in the treatment of ACC.

Pediatric ACC:
Pediatric ACC is a very rare but aggressive cancer with a long-term survival rate of about 50%. Approximately 60% of children with adrenocortical tumors are diagnosed before the age of four. The SF-1 gene is amplified and SF-1 protein is overexpressed in the vast majority of childhood adrenocortical tumors strongly implicating SF-1 in pediatric adrenocortical tumorigenesis.

Castration resistant prostate cancer (CRPC):
CRPC is the most common cancer in males. Surgery is not an option if the cancer has spread beyond the prostate gland, at which point patients typically receive hormonal therapy, essentially chemical castration. This course of therapy usually fails within two years, resulting in castration resistant prostate cancer (CRPC). Most patients eventually succumb to CRPC, which is the second leading cause of cancer deaths in men.
SF-1 antagonists may: (1) block the adrenal androgens that circumvent chemical castration, and are a primary cause of CRPC; and (2) inhibit synthesis of androgens within the prostate tumor itself, where SF-1 may control induction of enzymes for de novo androgen synthesis in treatment-resistant cancers.

From http://www.orphagen.com/research_cushings.html