Mutation of ARMC5 gene characterized as the cause of meningeal tumour growth

Scientists at the Luxembourg Centre for Systems Biomedicine (LCSB) of the University of Luxembourg have published their findings that mutations in a gene known as “ARMC5” promote the growth of benign tumours in the adrenal glands and on the meninges: ARMC5 appears to belong to the group of so-called tumour suppressor genes. It is the first time in years that scientists have characterized such a gene.

The ARMC5 gene was discovered by independent workgroups studying – so-called adrenal adenomas – in connection with Cushing’s syndrome. In this disease, the body produces too much of the . Now, for the first time, a mutation of ARMC5 has been characterized as the cause behind the growth of meningeal tumours. The results on this tumour syndrome, obtained by the group of Dr. Patrick May and PD. Dr. Jochen Schneider together with colleagues from Charité Berlin (Dr. Ulf Elbelt) and the Universities of Würzburg (Prof. Dr. Bruno Allolio) and Cologne (Dr. Michael Kloth), have been published recently in the Journal of Clinical Endocrinology Metabolism.

Cortisol is an important hormone. It influences many metabolic pathways in the body and has a suppressing effect on the immune system. Accordingly, it is commonly employed as an anti-inflammatory medication. Prolonged, elevated levels of cortisol in the body can lead to obesity, muscular dystrophy, depression and other symptoms. To maintain the correct concentration in the blood, the body has a refined regulation system: Certain areas of the brain produce the hormone corticotropin as a stimulator of cortisol release; the actual formation of cortisol takes place in the . As the concentration of cortisol in the blood rises, the brain reduces the production of corticotropin.

In search of the causes of Cushing’s syndrome, scientists recently encountered certain genetic causes of benign tumours of the adrenal cortex. Growth of these adrenal cortex adenomas is based on a combination of hereditary and spontaneous mutations: It affects people in whom one of two “alternative copies” – one of the so-called alleles – of the ARMC5 gene is mutated from birth. If the second allele of ARMC5 later also undergoes a spontaneous mutation in the adrenal cortex, then the gene no longer functions. “What is interesting is that the failure of ARMC5 has no direct influence on cortisol production. However, because the tumour cells multiply faster than other body cells, and the number of cells in the tumour increases, the blood cortisol level rises in the course of the disease”, says Dr Schneider. Then, the level in the body rises and ultimately results in the onset of Cushing’s syndrome.

When other scientific workgroups discovered that further benign tumours – in this case meningeal tumours – occur more often in ARMC5-Cushing families, the group of Patrick May and Jochen Schneider sequenced the ARMC5 gene and studied it using bioinformatic techniques. “We demonstrated for the first time, in a patient with an adrenal cortex tumour and simultaneously a meningeal tumour, that somatic, that is non-hereditary, ARMC5 mutations are present in both tumours. This observation suggests that ARMC5 is a true tumour-suppressor gene.”

It must now be explored, Schneider continues, to what extent patients with adrenal cortex tumours ought to be screened for simultaneous presence of meningioma, and in which other types of tumour ARMC5 mutations are responsible for tumour growth: “Building upon that, we can learn whether the gene and the metabolic pathways it influences offer new approaches for treating the tumour syndrome.”

More information: “Molecular and Clinical Evidence for an ARMC5 Tumor Syndrome: Concurrent Inactivating Germline and Somatic Mutations are Associated with both Primary Macronodular Adrenal Hyperplasia and Meningioma.” Journal of Clinical Endocrinology Metabolism, October 2014. DOI: 10.1210/jc.2014-2648

Journal reference: Journal of Clinical Endocrinology & Metabolism search and more info website

Provided by University of Luxembourg search and more info

From http://medicalxpress.com/news/2014-10-mutation-armc5-gene-characterized-meningeal.html

Are you carrying adrenal Cushing’s syndrome without knowing it?

Genetic research that will be published tomorrow in the New England Journal of Medicine suggests to Dr. André Lacroix, professor at the University of Montreal, that clinicians’ understanding and treatment of a form of Cushing’s syndrome affecting both adrenal glands will be fundamentally changed, and that moreover, it might be appropriate to begin screening for the genetic mutations that cause this form of the disease.

“Screening family members of bilateral adrenal Cushing’s syndrome patients with  may identify affected silent carriers,” Lacroix said in an editorial in the Journal. “The development of drugs that interrupt the defective genetic chemical link that causes the syndrome could, if confirmed to be effective in people, provide individualized specific therapies for hypercortisolism, eliminate the current practice of removing both , and possibly prevent disease progression in genetically affected .”

Adrenal glands sit above the kidneys are mainly responsible for releasing cortisol, a stress hormone. Hypercortiolism means a high level of the adrenal hormone cortisol, which causes many symptoms including weight gain, , diabetes, osteoporosis, concentration deficit and increased cardiovascular deaths.

Cushing’s syndrome can be caused by corticosteroid use (such as for asthma or arthritis), a tumor on the adrenal glands, or a  that releases too much ACTH. The pituitary gland sits under the brain and releases various hormones that regulate our bodies’ mechanisms.

Jérôme Bertherat is a researcher at Cochin Hospital in Paris. In the study he published today, he showed that 55% of Cushing’s Syndrome patients with bilaterally very enlarged adrenal glands have mutations in a gene that predisposes to the development of adrenal tumours. This means that bilateral adrenal Cushing’s is much more hereditary than previously thought. The new knowledge will also enable clinicians to undertake genetic screening. Hervé Lefebvre is a researcher at the University Hospital in Rouen, France. His research shows that the adrenal glands from the same type of patients with two large adrenal glands can produce ACTH, which is normally produced by the pituitary gland. Hormone receptors are the chemical link that cause a cell to behave differently when a hormone is present. Several misplaced hormone receptors cause the ACTH to be produced in the enlarged benign adrenal tissue. Knowing this means that researchers might be able to develop drugs that interrupt the receptors for these hormones and possibly even prevent the benign tissue from developing in the first place.

 Explore further: Scientists discover a curable cause for some cases of high blood pressure

More information: André Lacroix, M.D., Heredity and Cortisol Regulation in Bilateral Macronodular Adrenal Hyperplasia, New England Journal of Medicine 369;22, November 28, 2013

Estelle Louiset, Ph.D., Céline Duparc, Ph.D., Jacques Young, M.D., Ph.D., Sylvie Renouf, Ph.D., Milène Tetsi Nomigni, M.Sc., Isabelle Boutelet, Ph.D., Rossella Libé, M.D., Zakariae Bram, M.Sc., Lionel Groussin, M.D., Ph.D., Philippe Caron, M.D., Antoine Tabarin, M.D., Ph.D., Fabienne Grunenberger, M.D., Sophie Christin-Maitre, M.D., Ph.D., Xavier Bertagna, M.D., Ph.D., Jean-Marc Kuhn, M.D., Youssef Anouar, Ph.D., Jérôme Bertherat, M.D., Ph.D., and Hervé Lefebvre, M.D., Ph.D., Intraadrenal Corticotropin in Bilateral Macronodular Adrenal Hyperplasia, New England Journal of Medicine 369;22, November 28, 2013

Guillaume Assié, M.D., Ph.D., Rossella Libé, M.D., Stéphanie Espiard, M.D., Marthe Rizk-Rabin, Ph.D., Anne Guimier, M.D., Windy Luscap, M.Sc., Olivia Barreau, M.D., Lucile Lefèvre, M.Sc., Mathilde Sibony, M.D., Laurence Guignat, M.D., Stéphanie Rodriguez, M.Sc., Karine Perlemoine, B.S., Fernande René-Corail, B.S., Franck Letourneur, Ph.D., Bilal Trabulsi, M.D., Alix Poussier, M.D., Nathalie Chabbert-Buffet, M.D., Ph.D., Françoise Borson-Chazot, M.D., Ph.D., Lionel Groussin, M.D., Ph.D., Xavier Bertagna, M.D., Constantine A. Stratakis, M.D., Ph.D., Bruno Ragazzon, Ph.D., and Jérôme Bertherat, M.D., Ph.D., ARMC5 Mutations in Macronodular Adrenal Hyperplasia with Cushing’s Syndrome, New England Journal of Medicine 369;22, November 28, 2013

%d bloggers like this: