Laparoscopic Removal of Adrenal Glands Safe for Obese Cushing’s Patients

Laparoscopic adrenalectomy — a minimally invasive procedure that removes the adrenal glands through a tiny hole in the abdomen — can be safely performed in obese patients with Cushing’s syndrome, a retrospective study reports.

The surgery resolved symptoms in 95% of cases, reducing cortisol levels, lowering blood pressure, and leading to a significant loss of weight in morbidly obese patients.

The study, “Minimally invasive approach to the adrenal gland in obese patients with Cushing’s syndrome,” was published in the journal Minimally Invasive Therapy & Allied Technologies.

Cushing’s syndrome results from the prolonged secretion of excess cortisol, the major glucocorticoid hormone. While most cases are caused by tumors in the pituitary gland, up to 27% result from tumors in the adrenal glands.

In these cases, the standard therapeutic strategy is to remove one or both adrenal glands, a surgical procedure called adrenalectomy. However, because glucocorticoids are key hormones regulating fat metabolism, Cushing’s syndrome patients are known to be prone to obesity, a feature that is often associated with post-operative complications.

In this study, researchers aimed to compare the outcomes of morbidly obese patients versus the mildly obese and non-obese who underwent a minimally invasive procedure to remove their adrenal glands.

The approach, called laparoscopic adrenalectomy, inserts tiny surgical tools through a small hole in the abdomen, along with a camera that helps guide the surgeon.

The study included 228 patients (mean age 53.4 years). Of them, 62 were non-obese, 87 were moderately obese, and 79 were considered morbidly obese. There were 121 patients with tumors in the right adrenal gland, 96 in the left gland, and 11 in both glands.

High blood pressure was the most common symptom, affecting 66.7% of the participants.

Surgery lasted 101 minutes on average, and patients remained in the hospital for a median 4.3 days afterward. Six patients had to be converted into an open surgery because of uncontrollable loss of blood or difficulties in the procedure. Post-surgery complications, most of which were minor, were seen in seven patients.

One patient had blood in the peritoneal cavity and had to have surgery again; another patient had inflammation of the pancreas that required a longer admission.

The analysis showed no statistical differences among the three groups regarding the length of surgery, length of stay in the hospital, or the rate of conversion into open surgery.

However, in obese women, surgeons chose a different surgical incision when removing the left adrenal gland, “suggesting that the distribution of visceral fat in these patients could constitute a drawback for the [standard] approach,” researchers said.

After the surgery, 95% of patients saw their symptoms resolve, including cortisol levels, high blood pressure, and glucose metabolism, and none had a worsening of symptoms in the 6.3 years of follow-up. Obese patients also showed a significant reduction in their weight — 2 kg by 18 months, and 5 kg by the end of follow-up.

Overall, “laparoscopic adrenalectomy is safe and feasible in obese patients affected with Cushing’s disease and it can lead to the resolution of the related symptoms,” researchers said.

The benefits of the surgery in patients with Cushing’s syndrome “could be extended to the improvements and in some cases to the resolution of hypercortisolism related symptoms (i.e. hypertension or even morbid obesity),” the study concluded.

Adapted from https://cushingsdiseasenews.com/2019/02/07/laparoscopic-removal-of-adrenal-glands-safe-for-obese-cushings-patients/

Late-night Salivary Cortisol a Poor Approach for Detecting Cushing’s in Obese Patients

Assessment of late-night salivary cortisol (LNSC) levels is a poor diagnostic tool for detecting Cushing’s disease in obese patients, a new study from Germany shows.

The test demonstrated a particularly poor sensitivity in obese people, meaning it will often suggest a patient has Cushing’s disease when that is not the case — called a false-positive.

The study, “Specificity of late‑night salivary cortisol measured by automated electrochemiluminescence immunoassay for Cushing’s disease in an obese population,” appeared in the Journal of Endocrinological Investigation.

Although excessive weight gain is a common symptom of Cushing’s disease, existing indications advise clinicians to test for Cushing’s in obese people only if the disease is clinically suspected.

The utility of measuring LNSC for Cushing’s disease screening is well established. However, differences in assays, sample collection methods, and controls have led to a great variability in the proposed reference ranges and cut-off values. Also, according to the Endocrine Society, the influence of gender, age, and co-existing medical conditions on LNSC concentrations is still unclear.

Regarding obesity, data on the specificity of assessing late-night salivary cortisol levels is contradictory, as some studies found no differences while others reported lower specificity compared to healthy individuals.

An additional factor complicating LNSC measures in obese people is the prevalence of type 2 diabetes mellitus (T2DM), which may also lead to elevated cortisol levels.

Research showed a high rate of false-positive LNSC measurements in obese patients with poorly controlled type 2 diabetes. Also, in patients with recently diagnosed diabetes, investigators found that LNSC had very low specificity — the proportion of patients with Cushing’s who test positive — and a poor predictive value.

Recent reports showed a high diagnostic accuracy using automated electrochemiluminescent assays (ECLIA) in patients with Cushing’s disease. These methods use special labels conjugated to antibodies that produce light when they bind to a specific target.

The research team used an ECLIA assay to test the specificity of LNSC in obese patients both with and without diabetes. The investigators also intended to establish a reference range and cut-off value for this diagnostic approach.

Adults who requested weight loss treatment were included in the study, including 34 patients with a confirmed diagnosis of Cushing’s and 83 obese people, defined as having a body mass index (BMI) of at least 35 kg/m2. Forty healthy individuals were also analyzed.

Eight out of the 34 Cushing’s patients had a BMI within the obese range, which correlates with an overlap in patients awaiting bariatric surgery for weight loss, the investigators observed.

All subjects underwent LNSC assessment at 11 p.m. Results revealed significant differences in mean LNSC values — 19.9 nmol/L in Cushing’s disease patients, 10.9 nmol/L in obese subjects, and 4.7 nmol/L in those of normal weight.

Compared to healthy and obese participants, measuring LNSC in Cushing’s disease patients had a maximum sensitivity of 67.6% and a specificity of 85.4%. This was lower than prior data from obese patients with two features of Cushing’s disease.

The cut-off value for detecting Cushing’s was 12.3 nmol/L, which is in line with other studies “and underlines the importance of an evaluation with an obese cohort vs. [Cushing’s disease],” the investigators wrote.

Results did not show an association between BMI, type 2 diabetes, and LNSC for all groups.

“In our obese cohort, we found that LNSC assayed by ECLIA had a low specificity in the diagnosis of [Cushing’s disease],” the researchers wrote. “However, the clear advantage of LNSC over other tests is the simple and stress-free sampling method.”

From https://cushingsdiseasenews.com/2018/03/29/nighttime-salivary-cortisol-poor-approach-detect-cushings-disease-obese-patients/

The burden of Cushing’s disease: clinical and health-related quality of life aspects


Thanks to Robin Ess for the easy to read chart!

Abstract

Objective Cushing’s disease (CD) is a rare endocrine disorder characterized by excess secretion of ACTH due to a pituitary adenoma. Current treatment options are limited and may pose additional risks. A literature review was conducted to assess the holistic burden of CD.

Design Studies published in English were evaluated to address questions regarding the epidemiology of CD, time to diagnosis, health-related quality of life (HRQoL), treatment outcomes, mortality, prevalence of comorbidities at diagnosis, and reversibility of comorbidities following the treatment.

Methods A two-stage literature search was performed in Medline, EMBASE, and Science Citation Index, using keywords related to the epidemiology, treatment, and outcomes of CD: i) articles published from 2000 to 2012 were identified and ii) an additional hand search (all years) was conducted on the basis of bibliography of identified articles.

Results At the time of diagnosis, 58–85% of patients have hypertension, 32–41% are obese, 20–47% have diabetes mellitus, 50–81% have major depression, 31–50% have osteoporosis, and 38–71% have dyslipidemia. Remission rates following transsphenoidal surgery (TSS) are high when performed by expert pituitary surgeons (rates of 65–90%), but the potential for relapse remains (rates of 5–36%). Although some complications can be partially reversed, time to reversal can take years. The HRQoL of patients with CD also remains severely compromised after remission.

Conclusions These findings highlight the significant burden associated with CD. As current treatment options may not fully reverse the burden of chronic hypercortisolism, there is a need for both improved diagnostic tools to reduce the time to diagnosis and effective therapy, particularly a targeted medical therapy.

Introduction

Cushing’s disease (CD) is a rare condition caused by a pituitary adenoma that secretes excess ACTH (1), which promotes excess cortisol production from the adrenal glands. Excess cortisol induces a clinical phenotype that harbors all components of the metabolic syndrome, such as central obesity, diabetes mellitus, dyslipidemia, and hypertension, as well as muscle weakness, hirsutism, increased bruisability, psychological dysfunction, and osteoporosis (1234567891011).

Patients with CD experience a significant clinical burden due to comorbidities, increased mortality, and impaired health-related quality of life (HRQoL) due to prolonged exposure to elevated cortisol levels (3511121314151617181920). In particular, patients with CD often experience severe fatigue and weakness, physical changes, emotional instability, depression, and cognitive impairments, which have a profound impact on daily life (1321).

Although there have been several consensus statements published recently on the definition of remission, diagnosis, and the management of CD, the severity and diversity of the clinical scenario and associated morbidities continue to present a management challenge (12223). Additionally, there is recent evidence of persistent deleterious effects after remission, most notably persistent elevated cardiovascular risk (322). The main objective of the current literature review is to describe the current burden of the disease and to summarize data on specific aspects of this burden, which underscores the need for improved diagnostic and therapeutic approaches.

Materials and methods

Available literature were evaluated to address questions regarding the epidemiology of CD, time to diagnosis, mortality, prevalence of comorbidities at diagnosis, reversibility of comorbidities after treatment (in particular, after disease remission), outcomes and complications of current treatment options, and HRQoL associated with CD and interventions.

The literature search was performed in Medline, EMBASE, and Science Citation Index, using keywords related to the epidemiology, treatment, and outcomes of CD. It was conducted in two stages: i) articles published between 2000 and 2012 were identified through a PubMed search using the following keywords: CD, incidence, prevalence, mortality, treatment, remission, cure, excess cortisol, outcomes, cost, QoL, morbidities, transsphenoidal surgery (TSS), adrenalectomy, radiotherapy, steroidogenesis inhibitors, ketoconazole, mitotane, aminoglutethimide, etomidate, metyrapone, pasireotide, and cortisol receptor antagonists; and ii) an additional hand search was conducted on the basis of the bibliographies of identified articles. All studies that provided data (regardless of publication year) related to these research questions were retained.

Definitions

Different criteria for defining the remission of hypercortisolism have been proposed, ranging from the occurrence of definitive or transient postoperative hypocortisolemia to the adequate suppression of cortisol after dexamethasone administration. According to a recent consensus statement (23), persistent postoperative morning serum cortisol levels of <2 μg/dl (∼50 nmol/l) are associated with remission and a low recurrence rate of ∼10% at 10 years. Persistent serum cortisol levels above 5 μg/dl (∼140 nmol/l) for up to 6 weeks following surgery require further evaluation. When serum cortisol levels are between 2 and 5 μg/dl, the patient can be considered in remission and can be observed without additional treatment for CD. A subset of patients can even develop complete adrenal insufficiency (serum cortisol levels below 2 μg/dl (∼50 nmol/l)) up to 12 weeks postsurgery (2425). Therefore, repeated evaluation in the early postoperative period is recommended. However, long-term follow-up is necessary for all patients because no single cortisol cutoff value excludes those who later experience disease recurrence, and up to 25% of patients develop a recurrent adenoma within 10 years after surgery (262728).

Results

Incidence and prevalence of CD

Although epidemiologic data on CD are limited, several population-based studies indicate an incidence of 1.2–2.4 per million (1419) and the prevalence of diagnosed cases to be ∼39 per million population (14). Lindholm et al(19) used the case definition as either the presence of a corticotroph adenoma or remission after neurosurgery, which yielded an estimated incidence rate of 1.2–1.7 per million per year. Etxabe & Vazquez (14) reported an incidence of 2.4 per million in Vizcaya, Spain. A large-scale retrospective survey carried out in New Zealand by Bolland et al(29) found the approximate prevalence of all forms of Cushing’s syndrome (CS) (the majority of these cases were of pituitary origin) to be 79 per million and the incidence to be 1.8 per million per year. Differences in epidemiologic estimates may be attributable to varying case definitions (for instance, the study by Lindholm excluded cases in which the adenoma could not be localized or those that could not achieve remission from surgery), geographical differences, and temporal effects. The prevalence of CD may be underestimated due to unrecognized patients with mild symptoms and patients with a cyclic form of CD (30).

Time to diagnosis

Data on the time from onset of symptoms to diagnosis are also limited. In a prospective study by Flitsch et al(31) of 48 patients with pituitary adenomas, including 19 who had ACTH-secreting adenomas causing CD, the reported time from onset of symptoms to diagnosis was 4.3 years. A study by Martinez Ruiz et al(32), which was based on only four pediatric CD patients, reported the time between onset of symptoms and diagnosis as ranging from 2.5 to 5 years. Etxabe & Vazquez (14) estimated that the average time from onset of clinical symptoms to diagnosis in 49 CD patients was 45.8±2.7 months (6–144 months), thus 3.8 years. This is corroborated by the findings from a Belgian cross-sectional study on pituitary adenomas including CD, which estimated that patients experienced symptoms for an average of 45 months before diagnosis (33). However, the reliability and generalizability of these data are limited by small sample sizes and the retrospective nature of the studies. Indeed, the New Zealand data from Bolland et al(29) report that on presentation, patients experienced symptoms for a median of 2.0 years (but ranging up to 20 years) before diagnosis. On the basis of data from the prospective European Registry on Cushing’s syndrome (ERCUSYN) (total number of patients=481, of whom 66% of patients had CD), median delay in diagnosis was 2 years (34).

Mortality in patients with CD

Mortality in patients with CD has been analyzed in several small studies, with overall rates reported as standardized mortality ratio (SMR) ranging from 1.7 to 4.8 (Table 1) (14151719). In studies in which mortality was assessed among those in remission and those with persistent disease separately, patients with persistent hypercortisolemia consistently had the highest mortality risk (15193536). In addition, TSS as a first-line treatment has been an important advance as high remission rates after initial surgery have been accompanied by mortality rates that mirror those observed in the general population (173537). In a case series from the UK, it was found that the majority of deaths occurred before 1985, which was before TSS was employed as the routine first-line treatment at the center (36). In a recent retrospective study, 80 patients undergoing TSS for CD between 1988 and 2009 were evaluated, and long-term cure (defined as ongoing absence of hypercortisolism at last follow-up) was reported in 72% of patients. However, overall elevated mortality persisted in patients (SMR 3.17 (95% CI: 1.70–5.43)), including those who achieved ‘cure’ (SMR 2.47 (95% CI: 0.80–5.77)), although even higher mortality was seen in those with postoperative recurrence/persistent disease (SMR 4.12 (95% CI: 1.12–10.54) (38). Additionally, a nationwide, retrospective study in New Zealand reported significant persistently increased mortality both in macro- and microadenomas (SMR 3.5 (1.3–7.8) and 3.2 (2.0–4.8) respectively), despite long-term biochemical remission rates of 93 and 91% of patients, respectively (29).

Read more at http://m.eje-online.org/content/167/3/311.full

Bruising easily and gaining weight? Don’t mistake high blood pressure for this syndrome

By Olivia Lerche June 30th, 2017

Cushing’s sydnrome [sic]: Condition can have the same symptoms as high blood pressure

The condition is a hormonal disorder caused by prolonged exposure to the hormone cortisol – which can be caused by taking steroids. Cortisol regulates metabolism and immune response in the body.

Other people develop Cushing’s syndrome because their bodies produce too much cortisol.

It is most common in adults aged between 20 and 50 although women are almost three time [sic] as likely to be diagnosed.

While the condition is rare and only affects around one in every 50,000 people – the syndrome can affect people with type 2 diabetes, obese and have poorly controlled blood sugar levels.

The condition is also more common in people with high blood pressure.

Cushing’s syndrome – also called hypercortisolism – can cause a number of symptoms.These can include:
Weight gain
Thinning skin which can bruise easily
Reddish-purple stretch marks on the arms, legs, breasts, thighs, stomach and buttocks
It can also cause the face to become rounder – causing fat to deposit on the face
Muscle or bone weakness is also a sign of the condition
A loss of libido – decreased interest in sex – is also a symptom

Cushing's sydnrome: Condition can have the same symptoms as high blood pressureGETTY

Cushing’s sydnrome [sic]: Condition has similar symptoms as high blood pressure and metabolic syndrome

However, other symptoms can include excess hair on the face, irregular periods, severe fatigue, high blood pressure, high blood sugar irritability or depression and even a fatty deposit between the shoulders.The National Institute of Diabetes and Digestive and Kidney Diseases said: “Metabolic syndrome – a combination of problems that includes excess weight around the waist, high blood pressure, abnormal levels of cholesterol and triglycerides in the blood, and insulin resistance-also mimics the symptoms of Cushing’s syndrome.”Cushing’s syndrome often develops as a side effect of treatment with corticosteroids.

Corticosteroids are widely used to reduce inflammation and treat autoimmune conditions  – where the immune system malfunctions and attacks healthy tissue – such as rheumatoid arthritis, Crohn’s disease and lupus.

Cushing's sydnrome: Condition can have the same symptoms as high blood pressureGETTY

Cushing’s sydnrome [sic]: Condition can have the same symptoms as high blood pressure

Metabolic syndrome also mimics the symptoms of Cushing’s syndrome

However, the condition can be hard to diagnose because of the similarity to high blood pressure.To diagnose the disease, patients will usually need to have a saliva test, urine test and blood test to measure cortisol levels in the body.To treat the condition, patients will usually have to decrease the levels of steroids they are taking.

However, there are complications if the condition is left untreated.

It can lead to high blood pressure and increase the risk of heart disease and stroke.

Salivary cortisol performs better than urinary free cortisol to diagnose Cushing’s syndrome

Late-night salivary cortisol has a better performance than urinary free cortisol in the diagnosis of Cushing’s syndrome.

Salimetrics highlights a recent study:  Abstract

Context: The comparison of variability, reproducibility, and diagnostic performance of late-night salivary cortisol (LNSF) and urinary free cortisol (UFC) using concurrent and consecutive samples in Cushing’s syndrome (CS) is lacking.

Objectives, Patients and Methods: In a prospective study, we evaluate three simultaneous and consecutive samples of LNSF by RIA and UFC by LC-MS/MS in Cushing’s disease (CD; n=43), adrenal CS patients (n=9) and obese subjects (n=18) in order to compare their diagnostic performances. In CS patients we also performed a modified Cushing’s syndrome severity index (CSI).

Results: There was no difference in the coefficient of variation (%) between LNSF and UFC among the three samples obtained for each patient with CD (35±26vs31±24), adrenal CS (28±14vs22±14) and obesity (39±37vs48±20). LNSF confirmed the diagnosis of hypercortisolism even in the presence of normal UFC in 17.3% of CS, whereas the inverse situation was not observed for UFC. The area under the ROC curves for LNSF was 0.999 (95%CI 0.990-1.00) and for UFC was 0.928 (95%CI 0.809- 0.987). The ratio between AUCs was 0.928 (95%CI 0.810-0.988) indicating better performance of LNSF than UFC in diagnosing CS. There was no association between the severity of CSI and the degree of biochemical hypercortisolism.

Conclusion: Our data show that despite similar variability between both methods, LNSF has a superior diagnostic performance than UFC and should be used as the primary biochemical diagnostic test for Cushing’s syndrome diagnosis.

Authors Elias P, Martinez E, Barone B, Mermejo L, Castro M, Moreira A
Division of Endocrinology-Department of Medicine and Division of Statistics- Department of Social Medicine, Ribeirao Preto Medical School – University of Sao Paulo, Ribeirao Preto, SP- Brazil
LINK to Paper
Salimetrics guide to Cortisol
LINK to Salimetrics Diagnostic Salivary Cortisol Assay

%d bloggers like this: