Osilodrostat for Cyclic Cushing’s Disease

Highlights

  • Cyclic Cushing’s syndrome (CCS) is a rare entity with significant comorbidities
  • It is defined by at least 3 peaks of hypercortisolism, 2 troughs of eucortisolism
  • Surgical cure is preferred, and medications are second-line
  • Our case is the first showing successful treatment of native CCS with osilodrostat
  • Osilodrostat showed rapid onset/offset and reversible inhibition of steroidogenesis

Abstract

Background/Objective

Cyclic Cushing’s syndrome is a rare subtype of Cushing’s syndrome with episodes of hypercortisolism, followed by spontaneous remission.

Case Report

Our patient was a 68-year-old male who presented with his third cycle of cyclic Cushing’s disease with facial swelling, buffalo hump, fatigue, proximal muscle weakness, and lower extremity edema. Laboratory tests showed the following: 24-hour urine free cortisol 12030.3 mcg/d (normal <= 60.0 mcg/d), morning adrenocorticotropic hormone (ACTH) 464 pg/mL (normal 6-59 pg/mL), morning serum cortisol 91 mcg/dL (normal 8-25 mcg/dL), and potassium 3.3 mmol/L (normal 3.6-5.3 mmol/L). MRI pituitary without/with contrast showed a partially empty sella. Prior inferior petrosal sinus sampling during the second cycle indicated a potential pituitary source of increased ACTH production, localized or draining to the right side. The patient was treated with osilodrostat with improvement in laboratory values and clinical symptoms by 2-3 weeks. After development of adrenal insufficiency (AI), osilodrostat was rapidly titrated off by 2 months of treatment. Subsequently, labs after 8 days off osilodrostat confirmed clinical remission and reversibility of medication-induced AI.

Discussion

Since hypercortisolism is associated with mortality risk and comorbidities, timely management is a priority. If a surgical cure is not possible, a medication that treats hypercortisolism with rapid onset, reversible inhibition, and minimal side effects would be ideal to address the cyclicity.

Conclusion

Our case is the first to our knowledge demonstrating osilodrostat’s use for native cyclic Cushing’s syndrome treatment and highlighted its reversibility and ability to preserve normal adrenal function.

Keywords

Osilodrostat
cyclic Cushing’s disease
cyclic Cushing’s syndrome

Introduction

Cyclic Cushing’s syndrome is a rare entity that represents a clinical challenge. It is defined by at least 3 peaks of biochemical hypercortisolism, which is clinically symptomatic in the majority though rarely asymptomatic, and 2 troughs with normalized cortisol production that can last from days to years.1 The phenomenon can arise from any potential source of Cushing’s syndrome, including pituitary (54%), ectopic (26%), adrenal (11%), and unclassified (9%) sources.1 Intermittent hypercortisolism can also occur after pituitary surgery for Cushing’s disease.2
The cyclicity interferes with a straightforward diagnosis. It can lead to paradoxical results from biochemical testing and inferior petrosal sinus sampling (IPSS),3 making determination of therapeutic outcomes more complicated.3 The goal of cyclic Cushing’s syndrome management, as in all types of Cushing’s syndrome, is early diagnosis and intervention to reduce the length of hypercortisolism.4 A surgical cure is preferred, as Cushing’s syndrome is associated with a five-fold increased standardized mortality risk.4 Cardiovascular, metabolic, bone, and cognitive comorbidities may persist despite remission and must be aggressively managed.4,5 For patients in whom surgical management is not possible or has not led to remission, medical therapy has a crucial role. We describe the first case to our knowledge of native cyclic Cushing’s syndrome treated successfully with osilodrostat. A case of exogenous cyclic ACTH-independent Cushing’s syndrome from pembrolizumab, with cyclicity attributed to the infusions, also demonstrated successful treatment with osilodrostat.6

Case Report

The patient was a 68-year-old male with hypertension, hyperlipidemia, and rheumatoid arthritis with a history of cyclical episodes of weight gain and facial swelling, occurring spontaneously without steroid treatments. The initial episode occurred at age 62 for 5 months, and returned at age 64 with facial swelling, buffalo hump, fatigue, proximal muscle weakness, sleep disturbances, and lower extremity edema. Laboratory tests showed the following (Table 1): 24-hour urine free cortisol >245 mcg/d (normal 11-84 mcg/d), morning adrenocorticotropic hormone (ACTH) 528.0 pg/mL (normal 7.2-63.3 pg/mL) and morning serum cortisol 91.7 mcg/dL (confirmed on dilution; normal 6.2-19.4 mcg/dL). Laboratory tests were also notable for a mildly low potassium level, low prolactin, low testosterone, and normal thyroid hormone, insulin-like growth factor-1 (IGF-1), and dehydroepiandrosterone sulfate (DHEA-S) levels. MRI pituitary without/with contrast showed no sellar and suprasellar masses. A prior CT abdomen/pelvis with contrast at age 62 noted unremarkable adrenal glands. The patient was referred for inferior petrosal sinus sampling (IPSS) (Table 2), which indicated a potential pituitary source of increased ACTH production, localized or draining to the right side. The central to peripheral gradient was >2 in the first pre-stimulation sample and >3 in all samples after providing 10mcg of desmopressin (DDAVP). There was a >1.4/1 gradient between the right and left sides, suggesting a potential pituitary source draining to the right side (Table 2). The inferior petrosal sinuses were normal and of similar size. Cushing’s symptoms receded spontaneously in 5 months, and the patient did not follow up until recurrence at age 67.

Table 1. Labs at time of onset of cyclical episodes

Empty Cell Labs at age 64 y/o (2nd episode) Labs at age 67 y/o (3rd episode)
24hr urine free cortisol level >245 mcg/24hr (normal 11-85 mcg/24hr) 12030.3 mcg/d (normal <= 60.0 mcg/d)
24hr urine creatinine 1495 mg/24hr (normal 1000-2000mg/24hr) 1868 mg/day (normal 800-2100 mg/day)
Morning ACTH 528.0 pg/mL (normal 7.2-63.3 pg/mL) 464 pg/mL (normal 6-59 pg/mL),
Morning cortisol 91.7 mcg/dL (normal 6.2-19.4 mcg/dL) 91 mcg/dL (normal 8-25 mcg/dL)
Thyroid-stimulating hormone level (TSH) 0.452 mcIU/mL (normal 0.450-4.500 mcIU/mL) 0.08 mcIU/mL (normal 0.3-4.7 mcIU/mL)
Free thyroxine (free T4) 1.34 ng/dL (normal 0.82-1.77 ng/dL) 1.30 ng/dL (normal 0.8-1.7 ng/dL)
Prolactin <1.0 ng/mL (normal 3.0-15.2 ng/mL) 8.05 ng/mL (normal 3.5-19.4 ng/mL)
Insulin-like growth factor-1 (IGF-1) 148 ng/mL (normal 64-240 ng/mL) 128 ng/mL (normal 41-279 ng/mL)_
Testosterone panel Total 66 ng/dL(11AM)
(normal 264-916 ng/dL)
Free 9.6 pg/mL (11AM)
(normal 6.6-18.1 pg/mL)
Total 107 ng/dL (8:30AM)
(normal 300-720 ng/dL)
Bioavailable 61 ng/mL (8:30AM)
(normal 131-682 ng/mL)
Follicle-Stimulation Hormone (FSH) 3.6 mIU/mL (normal 1.6-9 mIU/mL)
Luteinizing Hormone (LH) 1.6 mIU/mL (normal 2-12 mIU/mL)
Dehydroepiandrosterone sulfate (DHEA-S) 153 mcg/dL (normal 48.9-344.2 mcg/dL)
Potassium level 3.2 mmol/L (normal 3.4-4.8 mmol/L) 3.3 mmol/L (normal 3.6-5.3 mmol/L)
Creatinine level 0.92 mg/dL (normal 0.7-1.2 mg/dL) 0.89 mg/dL (normal 0.6-1.3 mg/dL)

Table 2. Inferior Petrosal Sinus Sampling (IPSS)

Empty Cell Time Right IPS
ACTH level (normal 6-59 pg/mL)
Left IPS
ACTH level (normal 6-59 pg/mL)
Inferior Vena Cava ACTH level (normal 6-59 pg/mL) Serum Cortisol (normal 8-25 mcg/dL)
Baseline 1 08:25 AM 32 23 14 7
Baseline 2 08:27 AM 19 16 13 7
Desmopressin (DDAVP) 08:30 AM
Post 2 min 08:32 AM 150 34 15
Post 5 min 08:35 AM 123 32 18
Post 10 min 08:40 AM 49 26 17
Post 15 min 08:45 AM 124 31 17
Post 30 min 09:00 AM 107 28 13
*These results may indicate a pituitary source for increased ACTH production, localized or draining to the right side. There is a Central:Peripheral gradient of >2 (right IPS) in the first pre-stimulation samples and >3 in all post-desmopressin (DDAVP) 10mcg samples. If due to an adenoma, it might drain into the right given the presence of a significant (greater than 1.4/1) gradient between right and left. The inferior petrosal sinuses were of similar size and normal. These results must take into account the patient’s clinical scenario, and there are false positives and possible overlap with normal results.
*Abbreviation: min = minutes
During the third and most recent cycle of Cushing’s syndrome, laboratory tests after 1 month of symptom development showed the following (Table 1): 24-hour urine free cortisol 12030.3 mcg/d (normal <= 60.0 mcg/d), morning ACTH 464 pg/mL (normal 6-59 pg/mL), morning serum cortisol 91 mcg/dL (normal 8-25 mcg/dL), potassium level 3.3 mmol/L (normal 3.6-5.3 mmol/L), and mild leukocytosis and erythrocytosis. Repeat MRI pituitary without/with contrast showed a partially empty sella and no pituitary mass (Figure 1).

  1. Download: Download high-res image (517KB)
  2. Download: Download full-size image

Figure 1. MRI pituitary without/with contrast at the time of the third cyclical episode of Cushing’s disease. The MRI showed a partially empty sella with no evidence of a pituitary mass. Left) Coronal view. Right) Sagittal view.

The patient was started on osilodrostat 2mg twice daily. By week 2 of treatment, the morning cortisol level improved to 9.5 mcg/dL (8-25 mcg/dL) and potassium level normalized, though facial and body swelling persisted. Significant improvement in symptoms and fatigue were noted by week 3 of treatment with the following labs: morning ACTH 145 pg/mL (normal 6-59 pg/mL), morning serum cortisol 5.4 mcg/dL (8-25 mcg/dL), and 24-hour urine free cortisol 7 mcg/d (normal 5-64 mcg/d). The osilodrostat dose was decreased to 1mg twice daily, then 1mg daily, and stopped by 2 months of treatment after development of adrenal insufficiency (AI), which was confirmed on laboratory results (Table 3), along with corresponding symptoms of nausea, abdominal pain, low appetite, and fatigue. By that time, the facial and body swelling had also resolved. Potassium levels remained normal throughout treatment. After eight days off osilodrostat, laboratory tests showed the following: Noon ACTH 67 pg/mL (normal 6-59 pg/mL), noon serum cortisol 7.24 mcg/dL (normal 8-25 mcg/dL), and 24-hour urine free cortisol 26.2 mcg/d (normal <=60.0 mcg/d). Nearly 3 months off osilodrostat, the patient had an 11 AM ACTH of 68.9 pg/mL (normal 7.2-63.3 pg/mL) and 11AM serum cortisol level of 11.0 ug/dL (6.2-19.4 ug/dL). The clinical course is summarized in Table 3 and Figure 2. A DOTATATE-PET scan was discussed, though the patient wished to reconsider in the future given clinical response.

Table 3. Labs during treatment (Tx) with osilodrostat

Empty Cell 1 month before Tx Week 2 on Tx Week 3 on Tx Week 7 on Tx Week 9 on Tx – Tx stopped Week 1 off Tx Month 3 off Tx
Treatment with osilodrostat None On 2mg BID since Week 0 of Tx Advised to decrease to 1mg BID but patient did not decrease dose. Decreased to 1mg BID Decreased to 1mg daily after serum lab resulted. Then discontinued Tx after 24hr UFC resulted in several days. None None
ACTH level (pg/mL) 464 145 126 135 67 68.9
Cortisol level (mcg/dL) 91
8:32AM
9.5
7:04AM
5.4
7:11AM
3.04
11:56AM
4.9
11:26AM
7.24
12:14PM
11
11:08AM
24hr urine free cortisol (UFC) level (mcg/day) 12030.3 7 14 26.2
*Normal reference ranges depending on assays:
ACTH: 6-59 pg/mL or 7.2-63.3 pg/mL
Serum morning cortisol: 8-25 mcg/dL or 6.2-19.4 mcg/dL
24hr urine free cortisol: <=60.0 mcg/day or 5-64 mcg/day
*Acronyms: Tx = treatment; BID = twice daily; UFC = urine free cortisol, ACTH = adrenocorticotropic hormone

  1. Download: Download high-res image (232KB)
  2. Download: Download full-size image

Figure 2. Trends of 24hr urine cortisol levels and serum cortisol levels with osilodrostat treatment (Tx)

Discussion

Cyclic Cushing’s syndrome is a rare subtype of Cushing’s and occurs in both ACTH-dependent and ACTH-independent cases.3,7 Cyclicity has been attributed to hypothalamic dysfunction exaggerating a normal variant of hormonal cyclicity, a dysregulated positive feedback mechanism followed by negative feedback, intra-tumoral bleeding, and ACTH-secretion from neuroendocrine tumors (ex carcinoid tumors, pheochromocytomas).7,8,9,10
Potentially curative pituitary surgery or unilateral adrenalectomy are the treatments of choice.4 For example, cases of cyclic Cushing’s in primary pigmented nodular adrenocortical disease have demonstrated cure in some patients with unilateral adrenalectomy.11 In florid Cushing’s syndrome that is not amenable or responsive to other treatments, bilateral adrenalectomy could be lifesaving, though risks significant comorbidities including Nelson’s syndrome.4,12 Pituitary radiotherapy/radiosurgery are treatment options, though risks progressive anterior pituitary dysfunction.4 Medical therapy can play an important role as a bridge to surgery or radiation, with recurrence, for poor surgical candidates, or when there is no identifiable source as in our patient.13 Cyclic Cushing’s syndrome, moreover, has a higher recurrence rate (63%) and lower remission rate (25%), compared to classic Cushing’s syndrome.8
Medical treatments of cyclic Cushing’s syndrome include steroidogenesis inhibitors (ketoconazole, levoketoconazole, metyrapone, and osilodrostat), adrenolytic agents (mitotane), glucocorticoid receptor blockers (mifepristone), and pituitary tumor-directed agents (pasireotide, cabergoline, and temozolomide).8,14,15 Treatment goal is normalization of 24-hour urine cortisol levels and morning serum cortisol levels, though block-and-replace regimens occasionally are used.13,14 A block-and-replace regimen with osilodrostat and dexamethasone was used in the case of exogenous cyclic Cushing’s from pembrolizumab, given need for the immunotherapy;6 however, this regimen would hinder assessment of remission in native cyclic Cushing’s.
As our patient had cyclic Cushing’s disease, pituitary tumor-directed medications could be used for treatment. Pasireotide and cabergoline, however, are limited by a significant percentage of non-responders, along with risk of hyperglycemia for pasireotide.15 We considered mifepristone, which is a competitive antagonist at the glucocorticoid receptor and progesterone receptor; however, mifepristone is limited by the inability to directly monitor cortisol response on labs, in addition to the risk of AI and mineralocorticoid side effects with overtreatment.16
Steroidogenesis inhibitors block one or more enzymes in the production of cortisol, with potential risk of AI. The new steroidogenesis inhibitor osilodrostat, like metyrapone, selectively inhibits CYP11B1 and CYP11B2, which are involved in the final steps of cortisol and aldosterone synthesis, respectively.13,14 Ketoconazole and levoketoconazole, on the other hand, block most enzymes in the adrenal steroidogenesis pathway, including CYP11B1 and CYP11B2, and are limited by their inhibition of CYP7A (with associated hepatotoxicity) and strong inhibition of cytochrome p450 CYP3A4 (leading to many drug-drug interactions, decreased testosterone production, and QTc prolongation).14
Osilodrostat and metyrapone do not affect CYP7A and less potently inhibit CYP3A4.13 However, they can lead to increased deoxycorticosterone levels, with associated risks of hypokalemia, hypertension, and edema, and increased androgen production (with metyrapone thus being considered second-line in women).13,14,17
Osilodrostat, compared to metyrapone and ketoconazole, has a higher potency in CYP11B1 and CYP11B2 inhibition and a longer half-life, with stronger effects in lowering cortisol levels, allowance of less frequent (twice daily) dosing, and possibly less side effects.13,14,17,18 Compared to metyrapone, studies have suggested osilodrostat leads to a lesser rise in 11-deoxycortisol levels and less hyperandrogenic effects.13,14 Osilodrostat is also rapidly absorbed with sustained efficacy up to 6.7 years.17,18 Though rare cases of prolonged AI following discontinuation exist, osilodrostat (like other steroidogenesis inhibitors) is generally considered a reversible inhibitor.19 Reversible inhibition of cortisol synthesis is particularly appealing to treatment of cyclic Cushing’s syndrome as patients will not suffer from prolonged AI after episodes subside.
We thus considered osilodrostat an attractive treatment of cyclic Cushing’s syndrome. In our patient, osilodrostat was efficacious and well-tolerated, consistent with the literature,17 with clinical effects within 2-3 weeks without significant mineralocorticoid side effects. Differentiation of AI as a side effect of osilodrostat or from remission of the cyclical episode is crucial. Our patient was carefully tapered off osilodrostat after developing AI, and reversal of AI and osilodrostat inhibition were clearly demonstrated after 8 days off osilodrostat. Off treatment, the patient demonstrated neither prolonged AI nor clinical hypercortisolism, confirming remission of cyclic Cushing’s.

Conclusion

We present the first case to our knowledge demonstrating successful treatment of cyclic Cushing’s syndrome with osilodrostat. Osilodrostat showed rapid and safe control of hypercortisolism and importantly exhibited quick reversible inhibition of steroidogenesis upon discontinuation, a virtue in cyclic Cushing’s syndrome management.

References

Cited by (0)

The authors declare the following:
This paper did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
All authors do not have any conflicts of interests regarding the manuscript.
Run Yu, MD, PhD runyu@mednet.ucla.edu
Clinical Relevance
Osilodrostat is a new steroidogenesis inhibitor. Our case demonstrates the first successful treatment of native cyclic Cushing’s syndrome with osilodrostat, which showed rapid onset/offset, clinical safety, and reversible inhibition of steroidogenesis and medication-induced adrenal insufficiency. Osilodrostat’s preservation of underlying adrenal function is key when the cyclic Cushing’s episode spontaneously remits.

Millennial Woman Hasn’t Slept the Night in 19 Months—Viewers Shocked Why

“I haven’t had a proper night’s sleep in 19 months,” Aleksa Diaz told Newsweek. “Even if I’m physically exhausted, I can’t fall asleep. I wake up more than ten times a night—fully conscious. I only get about two to four hours of broken sleep.”

The 30-year-old from Austin, Texas, has shared her experience on TikTok (@aleksaheals) earning 94,000 views. During the video, she points out that she has not “crashed” once and wonders how her body is continuing to function.

Diaz says that her insomnia began in January 2024 and is linked to a benign tumor in her pituitary gland—a small, hormone-producing gland at the base of the brain—known as a pituitary adenoma.

According to the American Brain Tumor Association (ABTA), about 13,770 pituitary tumors are diagnosed each year in the U.S., accounting for roughly 17 percent of all primary tumors in the central nervous system (CNS).

Symptoms of Pituitary Tumors

Pituitary tumors and cysts typically arise from two main causes: pressure on the gland and surrounding structures, or overproduction of hormones. The severity and type of symptoms depend on the tumor’s size and the specific hormones involved.

The ABTA notes that when the tumor presses on the pituitary gland or nearby structures, it can lead to:

  • Headaches
  • Visual loss
  • Hair loss
  • Diminished libido
  • Weight fluctuations
  • Skin changes
  • Fatigue or low energy

Symptoms Caused by Excess Hormone Production

Approximately 70 percent of pituitary tumors are “secreting,” meaning they release excess hormones. These include:

  • Growth hormone: Overproduction can cause localized excess growth (‘acromegaly’) in adults and gigantism in children.
  • Prolactin: Leads to menstrual changes and abnormal milk production.
  • Sex hormones: Can cause menstrual irregularities and sexual dysfunction.
  • Thyroid hormones: Can trigger hyperthyroidism, with symptoms such as weight loss, heart rhythm changes, anxiety, bowel changes, fatigue, thinning skin and sleep problems.
  • Adrenal hormones: Excess can lead to Cushing’s disease, characterized by a moon-shaped face, excess body hair, easy bruising, menstrual irregularities and high blood pressure.

A Long Road to Diagnosis

Diaz told Newsweek that she has experienced many of these symptoms, beginning with severe hair loss at just 18.

“I started to feel off and suddenly began losing hair,” she recalled. “I was shedding over 300 hairs a day—just brushing my hair or running my fingers through it.”

Initially, doctors diagnosed her with polycystic ovary syndrome (PCOS). “I didn’t have any other symptoms, but I just thought it must be what they said,” Diaz explained.

By the time she turned 22, the hair loss was severe and unrelenting.

“It wasn’t stopping,” she said. “I went to a dermatologist and had a brain MRI—then they found a 5mm tumor on my pituitary gland.”

Around the same time, Diaz began gaining weight that wouldn’t budge despite dieting and regular exercise.

“I developed depression and always had a puffy, inflamed face,” she said. “The hair loss was causing me a lot of self-esteem issues.”

Over the years, Diaz’s symptoms multiplied—dry skin, dry eyes, low libido, anxiety, twitching legs and hip pain after exercise. She estimates she has consulted around 40 doctors and spent 500–600 hours researching her condition.

In 2018, she was formally diagnosed with a pituitary adenoma and prescribed metformin to lower hormone levels. “They told me to wait and see,” she said. When her insomnia worsened, Diaz suspected the tumor was causing multiple hormone-related conditions, but doctors did not confirm it.

By January 2024, she noticed new symptoms: vaginal dryness, hip pain and worsening sleep. Tests revealed her estrogen was abnormally low for her age.

“I take medication for that now and progesterone too,” she said. After years of trying everything—dermatologists, supplements and expensive hair treatments—she finally saw some hair regrowth.

Still, Diaz’s diagnosis of hypopituitarism means her pituitary gland underproduces several critical hormones.

The ABTA notes that doctors often recommend monitoring small tumors, since they typically grow slowly and cause no symptoms. But Diaz, whose tumor is 5 mm, disagrees.

She said: “Doctors believe that because the tumor is under 1 cm it can’t possibly be causing enough symptoms to risk doing surgery. The main risk is developing another hormone deficiency post-op.

“However, surgeons who do this surgery say it’s routine and not super risky, so it’s confusing as a patient.

“Cases like mine of mild hypopituitarism are often ignored, leading to a slow progression of hormone deficiencies—the very thing that is a risk of surgery.”

When she was 29, Diaz started taking hormone replacement therapy (HRT)—a treatment that replaces female hormones, mainly estrogen and progesterone, which fall to low levels during menopause.

She told Newsweek: “Doctors don’t understand why I’m basically in menopause. We don’t know the risks of long-term HRT. The medications make me feel better, but it’s not safe as a long-term solution.”

Living with the Emotional Toll

Alongside her physical symptoms, Diaz has developed severe depression and feels “literally running on empty.”

“I feel like I have hope for the future only when I manage a decent night’s sleep,” she said. “I don’t want to see anyone or socialize. I haven’t gone out in six months. It’s affected my job—I was almost fired in March.

“I’ve become very forgetful, I miss meetings and tasks and I sometimes can’t remember what I did yesterday. It’s like I have severe ADHD, but it’s not.”

A Call for Change in Treatment

Now financially and emotionally exhausted, Diaz fears what will happen if she continues to be denied further testing or surgical treatment.

“I’m worried something will happen to me,” she said. “I’ve reached my limit financially. My physical and mental health are exhausted.”

Diaz believes her struggle is far from unique. “From the time you have symptoms to when you get a diagnosis it can take 10 years,” she said.

“A lot of women have expressed they don’t feel like they are being taken seriously—and that has been my experience. Being young is a disadvantage. I’m on six medications now to manage my hormones. I’ve lost weight and my hair is growing back, so doctors think I must be fine. But they don’t see what’s really going on.”

Do you have a tip on a health story that Newsweek should be covering? Do you have a question about pituitary tumors? Let us know via health@newsweek.com.

https://www.newsweek.com/millennial-woman-sleep-insomnia-pituitary-tumor-10821739

The Neurosurgical Outcome of Pediatric Cushing’s Disease in a Single Center From China: A 20-Year Experience

Objective: Pediatric Cushing’s disease (CD) is exceptionally rare and poses significant diagnostic and therapeutic challenges. This study aimed to review the diagnostic features and to evaluate the long-term surgical outcomes of transsphenoidal surgery (TSS) in Pediatric CD patients at a single tertiary center in China over two decades.

Methods: A retrospective analysis included 22 pediatric CD patients (10 male, 12 female; mean age 15.8 ± 2.5 years) who underwent TSS between 2002 and 2022. Diagnosis was established through a multidisciplinary protocol involving standardized biochemical testing (LDDST, HDDST), bilateral inferior petrosal sinus sampling (BIPSS) with desmopressin stimulation (n=19), and high-resolution pituitary MRI. Microscopic TSS (MTSS) was performed before 2016 (n=11) and endoscopic TSS (ETSS) thereafter (n=11). Surgical strategy was guided by MRI and BIPSS findings. Immediate remission was defined as a postoperative serum cortisol nadir <5 μg/dL or normal 24-h urinary free cortisol (UFC). Recurrence was defined as the reappearance of hypercortisolism after remission. Mean follow-up was 29.4 months (range 2-129).

Results: MRI identified the adenoma in 18/22 patients (81.8%; 16 microadenomas, 2 macroadenomas). BIPSS indicated lateralization in 14/19 patients (73.7%), with concordance between BIPSS and MRI lateralization in 57.9% (11/19) of cases. Immediate postoperative remission was achieved in 20 patients (90.9%). The two non-remitters (one macroadenoma, one MRI- and pathology-negative) received additional therapies. Among the 20 patients with initial remission, 2 (10.0%) developed recurrence (one microadenoma, one MRI-negative) during follow-up. The sustained long-term remission rate was 81.8% (18/22).

Conclusion: Transsphenoidal surgery represents a highly effective first-line treatment for pediatric CD, achieving high rates of immediate (90.9%) and long-term remission (81.8%) in a specialized center. A meticulous diagnostic approach incorporating BIPSS is crucial, particularly for MRI-negative cases. While recurrence occurred in a minority of patients, primarily those with microadenomas, durable disease control is attainable for the majority with appropriate surgical management. The transition to endoscopic techniques was feasible and effective.

Introduction

Cushing’s disease (CD), caused by excessive ACTH secretion from a pituitary corticotroph adenoma, is a rare disorder with an estimated prevalence of approximately 10 cases per 100,000. Its incidence is even lower in children, representing about 5% of adult cases (1). CD accounts for 75-80% of Cushing’s syndrome in pediatric patients (23). Clinical manifestations include weight gain, facial rounding (“moon facies”), hypertension, fatigue, and pubertal arrest. If untreated, pediatric CD can severely impair quality of life and lead to significant morbidity and mortality.

Diagnosis of pediatric CD is frequently delayed due to atypical symptoms and remains significantly challenging for pediatricians and pediatric endocrinologists (4). It relies on standardized biochemical evaluation and neuroimaging. Transsphenoidal pituitary surgery (TSS), encompassing both microscopic and endoscopic approaches, remains the preferred treatment for pediatric CD. However, as the majority of pituitary adenomas in pediatric CD are microadenomas or radiologically occult, TSS poses significant technical challenges for neurosurgeons (5).

Here, we present a review of the diagnostic features and surgical outcomes of 22 pediatric CD patients treated at a single center in China over a 20-year period.

Patients and methods

Between 2002 and 2022, 519 patients underwent TSS for CD performed by a single neurosurgical team in the Department of Neurosurgery, Ruijin Hospital. Twenty-six patients aged 18 years or younger were initially identified as pediatric; four were excluded due to incomplete data or insufficient follow-up. Clinical features of the remaining 22 pediatric patients (10 male, 12 female) were retrospectively reviewed. Mean age at surgery was 15.8 ± 2.5 years (range 9-18), and mean symptom duration prior to diagnosis was 32.0 ± 30.8 months (range 3-108). Mean BMI was 26.4 ± 6.4 (range 18.0-39.7) (Table 1). Presenting symptoms included weight gain (18/22), acne (13/22), hirsutism (12/22), moon facies (18/22), striae (19/22), central obesity (10/22), pubertal delay or arrest (4/22), irregular menses (3/12 females), headaches (3/22), visual deficits (2/22), hypertension (7/22), and type 2 diabetes mellitus (2/22) (Table 2).

Table 1

www.frontiersin.org

Table 1. The demographic information of 22 patients at diagnosis of CD.

Table 2

www.frontiersin.org

Table 2. Clinical signs and symptoms of 22 patients at diagnosis of CD.

Diagnosis of CD was confirmed by a multidisciplinary team comprising radiologists, endocrinologists, interventional radiologists, pediatricians, and neurosurgeons. Clinical manifestations, plasma cortisol circadian rhythm, low-dose dexamethasone suppression test (LDDST, 2 mg dexamethasone), and high-dose dexamethasone suppression test (HDDST, 8 mg dexamethasone) were assessed by pediatricians or endocrinologists. Following the 2mg LDDST, the 48-hour serum cortisol level exceeded 1.8 μg/dL, indicating inadequate suppression. In contrast, after the 8mg HDDST, the 48-hour cortisol level was suppressed to <50% of baseline, demonstrating significant suppression. Bilateral inferior petrosal sinus sampling (BIPSS) with or without desmopressin (DDAVP) stimulation was performed by experienced interventional radiologists. Samples were immediately placed on ice after collection. All biochemical analyses were conducted in a College of American Pathologists-accredited laboratory (No. 7217913).

Preoperative pituitary magnetic resonance imaging (MRI) was performed at 1.5 T or 3.0 T in all patients. T1-weighted and T2-weighted spin-echo images were obtained in coronal and sagittal planes (2-mm slice thickness) before and after gadolinium injection. A dynamic coronal sequence was also acquired within 2 minutes post-injection (Table 3).

Table 3

www.frontiersin.org

Table 3. Preoperative endocrinological evaluation and neuroimaging results of 22 patients at diagnosis of CD.

The same surgical team performed TSS on all patients using a mononostril approach. Microscopic TSS (MTSS) was utilized in 11 patients treated before 2016, while endoscopic TSS (ETSS) was employed in the subsequent 11 patients. For patients with concordant MRI-identified adenomas and BIPSS lateralization, exploration focused on the imaging-identified region, and a rim of pituitary tissue surrounding the tumor cavity was resected. If the tumor involved the cavernous sinus (CS), the inner CS wall was also inspected/explored. If BIPSS lateralization conflicted with MRI findings, the pituitary side indicated by BIPSS was explored first. For MRI-negative tumors, exploration commenced on the side with higher ACTH levels on BIPSS (when available) and proceeded to complete gland inspection. If no adenoma was identified intraoperatively, approximately half of the gland was resected, guided by BIPSS results.

Immediate remission was defined as a postoperative serum cortisol nadir <5 μg/dL or normal 24-hour UFC. Recurrent hypercortisolism was defined as the reappearance of biochemical hypercortisolism after a period of hypocortisolism or clinical adrenal insufficiency. The concordance of BIPSS lateralization with MRI localization refers to whether the tumor side indicated by BIPSS corresponds to the tumor side identified on MRI.

Patients were followed in the outpatient clinic at regular intervals. If endocrine evaluations were performed at local hospitals, results were communicated to the authors via WeChat. Mean follow-up duration was 29.4 months (range 2–129 months).

Results

Preoperative plasma cortisol levels measured at three time points were: mean 28.10 μg/dL at 8:00 AM (range 14.70-125.62 μg/dL), 22.39 μg/dL at 4:00 PM (range 6.4-79.44 μg/dL), and 20.62 μg/dL at midnight (range 11.9-72.25 μg/dL). Mean preoperative plasma ACTH level at 8:00 AM was 95.21 pg/mL (range 12.51-272.6 pg/mL), and mean 24-hour UFC was 979.18 μg/24h (range 119.20-7669.48 μg/24h). HDDST was positive in 19/22 patients. BIPSS with DDAVP was performed in 19 patients, demonstrating lateralization in 14 patients (4/14 left, 10/14 right).

MRI localized an adenoma in 18/22 patients (81.8%), comprising 16 microadenomas and 2 macroadenomas. Tumor location on MRI was: right sellar (n=5), left sellar (n=8), and central sellar (n=5). Concordance between BIPSS lateralization and MRI localization was 57.89% (11/19).

Immediate postoperative remission was achieved in 20 patients (90.9%). The two patients without immediate remission (Case 2: macroadenoma; Case 6: MRI- and pathology-negative) received additional treatments (Case2: gamma knife radiosurgery; Case 6: ketoconazole). Among the 20 patients with initial remission, 2 (10.0%) experienced recurrence (Case 3: microadenoma; Case 10: MRI-negative). Case3 received pasireotide after recurrence; Case 10 underwent repeat TSS, which did not achieve remission. Subsequent gamma knife treatment also ultimately failed. Ketoconazole therapy was then initiated. The sustained long-term remission rate for the cohort was 81.8% (18/22).

In these cases, intraoperative bleeding was controlled in all cases, and no patient required transfusion. Case 10 experienced a CSF leak following repeat transsphenoidal surgery (TSS). All patients who achieved postoperative remission were administered cortisone replacement therapy. The requirement for levothyroxine replacement differed between groups: one child in the ETSS group (1/11) versus five patients in the MTSS group (5/11). For diabetes insipidus, oral desmopressin was administered to three patients in the ETSS group and two in the MTSS group (Table 4).

Table 4

www.frontiersin.org

Table 4. The neurosurgical outcome and follow-up results of 22 patients of CD.

Discussion

This 20-year single-center experience represents one of the largest reported cohorts of surgically managed pediatric Cushing’s disease patients. Our findings demonstrate that transsphenoidal surgery (TSS), whether microscopic (MTSS) or endoscopic (ETSS), is a highly effective first-line treatment for pediatric CD, achieving an immediate remission rate of 90.9% and a sustained long-term remission rate of 81.8%.

The diagnostic complexity of pediatric CD is highlighted by the significant diagnostic delay observed (mean 32.0 months) and the occurrence of MRI-negative cases (4/22, 18.2%). This aligns with established literature emphasizing the challenges of pediatric CD diagnosis stemming from its rarity, atypical presentation, and the high proportion of microadenomas or radiologically occult tumors (3468). Our adherence to a rigorous multidisciplinary diagnostic protocol, incorporating standardized biochemical testing (LDDST, HDDST), BIPSS with DDAVP stimulation (performed in 19/22), and high-resolution dynamic pituitary MRI, reflects current best practices for confirming ACTH-dependent Cushing’s syndrome and tumor localization. The moderate concordance rate (57.89%) between BIPSS lateralization and MRI localization underscores their complementary roles, particularly in cases with equivocal imaging. BIPSS remains critical for guiding surgical exploration in MRI-negative or discordant cases, as evidenced by its use in our decision-making algorithm (910).

Our immediate remission rate (90.9%) compares favorably with contemporary pediatric CD surgical series, which typically report rates between 70% and 98% (1381113). The two immediate surgical failures occurred in patients with a macroadenoma (Case 2) or an MRI- and pathology-negative diagnosis (Case 6), profiles consistently associated with lower remission rates. The long-term remission rate of 81.8% (18/22) is robust, although the recurrence rate of 10% (2/20 initially remitted patients) merits attention. Both recurrences arose in patients with microadenomas, one of whom was MRI-negative (Case 10). This recurrence rate falls within the reported range (5-30%) for pediatric CD and reinforces the need for lifelong endocrine surveillance (11415). The relatively short mean follow-up (29.4 months) suggests that the true recurrence rate might be higher with extended observation, representing a limitation of this study.

Our experience reflects the evolution of surgical technique, with a transition from MTSS to ETSS after 2016. While the cohort size and follow-up duration preclude definitive conclusions regarding the comparative efficacy of MTSS versus ETSS in this specific pediatric population, both techniques yielded high success rates. In our group, no significant differences exist in remission or recurrence rates. However, regarding complications, ETSS demonstrates a lower incidence of hypopituitarism compared to MTSS, while the incidence of diabetes insipidus is similar. It should be noted, however, that this comparison remains limited by the small number of reported cases. The endoscopic approach offers theoretical advantages, such as wider panoramic visualization potentially aiding in the identification of small or laterally extending microadenomas, which are common in children. Larger, prospective studies with longer follow-up are warranted to directly compare outcomes between these surgical modalities in pediatric CD.

The spectrum of clinical manifestations observed (e.g., weight gain, moon facies, striae, hypertension, pubertal arrest/delay) demonstrates the profound multisystem impact of hypercortisolism in children. The notable prevalence of metabolic complications like hypertension (7/22) and type 2 diabetes mellitus (2/22), even in this young cohort, highlights the urgency of timely diagnosis and effective intervention to mitigate long-term morbidity (51618).

Limitations

This study shares the limitations inherent to retrospective, single-center designs. The modest sample size, though substantial for this rare condition, limits statistical power for subgroup analyses, such as rigorous comparison of MTSS vs. ETSS outcomes or identification of specific predictors of failure/recurrence. The mean follow-up period is relatively short for a disease with potential for late recurrence, long-term remission rates may be lower than reported, and the study could not capture long-term complications of TSS, particularly those affecting growth and development in pediatric patients. Detailed data on specific postoperative complications (e.g., diabetes insipidus, hypopituitarism) and pituitary function during follow-up would provide a more comprehensive assessment of treatment sequelae but were not the primary focus of this outcome report.

Conclusion

Despite the inherent diagnostic and therapeutic challenges of pediatric Cushing’s disease, transsphenoidal surgery performed in a specialized center achieves high rates of immediate and sustained remission. Our results support the efficacy of TSS as the primary treatment modality. A meticulous multidisciplinary diagnostic approach, including BIPSS when indicated, is crucial for success, particularly in MRI-negative cases. While recurrence remains a concern necessitating vigilant long-term follow-up, the majority of children with CD can attain durable disease control with appropriate surgical management. The transition to endoscopic techniques proved safe and effective, warranting further investigation in larger pediatric cohorts with extended follow-up.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material. Further inquiries can be directed to the corresponding authors.

Ethics statement

The studies involving humans were approved by The ethics committee of Ruijin hospital. The studies were conducted in accordance with the local legislation and institutional requirements. The participants provided their written informed consent to participate in this study. Written informed consent was obtained from the individual(s), and minor(s)’ legal guardian/next of kin, for the publication of any potentially identifiable images or data included in this article.

Author contributions

BW: Methodology, Writing – original draft. HZ: Conceptualization, Data curation, Formal Analysis, Writing – original draft. TS: Methodology, Project administration, Writing – review & editing. JR: Data curation, Formal Analysis, Writing – original draft. QS: Resources, Supervision, Writing – review & editing. YS: Supervision, Writing – review & editing. LB: Supervision, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Savage MO and Ferrigno R. Paediatric Cushing’s disease: long-term outcome and predictors of recurrence. Front Endocrinol (Lausanne). (2024) 15:1345174. doi: 10.3389/fendo.2024.1345174

PubMed Abstract | Crossref Full Text | Google Scholar

2. Tarcin G, Catli G, Cetinkaya S, Eren E, Kardelen AD, Akinci A, et al. Clinical features, diagnosis and treatment outcomes of Cushing’s disease in children: A multicenter study. Clin Endocrinol (Oxf). (2024) 100:19–28. doi: 10.1111/cen.14980

PubMed Abstract | Crossref Full Text | Google Scholar

3. Zheng X, Wang H, Zhang W, Feng S, Liu Y, Li S, et al. Diagnosis, manifestations, laboratory investigations, and prognosis in pediatric and adult cushing’s disease in a large center in China. Front Endocrinol (Lausanne). (2021) 12:749246. doi: 10.3389/fendo.2021.749246

PubMed Abstract | Crossref Full Text | Google Scholar

4. Joshi K, Taliou A, and Stratakis CA. Diagnostic and management challenges in paediatric Cushing’s syndrome. Clin Endocrinol (Oxf). (2024) 101:631–9. doi: 10.1111/cen.15096

PubMed Abstract | Crossref Full Text | Google Scholar

5. Ferrigno R, Hasenmajer V, Caiulo S, Minnetti M, Mazzotta P, Storr HL, et al. Paediatric Cushing’s disease: Epidemiology, pathogenesis, clinical management and outcome. Rev Endocr Metab Disord. (2021) 22:817–35. doi: 10.1007/s11154-021-09626-4

PubMed Abstract | Crossref Full Text | Google Scholar

6. Yanar EA, Makazan NV, Kareva MA, Vorontsov AV, Vladimirova VP, Bezlepkina OB, et al. Course of Cushing;s disease and treatment outcomes in correlation with pituitary MRI in children. Probl Endokrinol (Mosk). (2022) 68:93–104. doi: 10.14341/probl12854

PubMed Abstract | Crossref Full Text | Google Scholar

7. Maiter D, Chanson P, Constantinescu SM, and Linglart A. Diagnosis and management of pituitary adenomas in children and adolescents. Eur J Endocrinol. (2024) 191:R55–r69. doi: 10.1093/ejendo/lvae120

PubMed Abstract | Crossref Full Text | Google Scholar

8. Crock PA, Ludecke DK, Knappe UJ, and Saeger W. A personal series of 100 children operated for Cushing’s disease (CD): optimizing minimally invasive diagnosis and transnasal surgery to achieve nearly 100% remission including reoperations. J Pediatr Endocrinol Metab. (2018) 31:1023–31. doi: 10.1515/jpem-2018-0262

PubMed Abstract | Crossref Full Text | Google Scholar

9. Turan H, Catli G, Kardelen AD, Bober E, Akinci A, Cetinkaya S, et al. Diagnostic value of bilateral petrosal sinus sampling in children with cushing disease: A multi-center study. J Clin Res Pediatr Endocrinol. (2022) 14:29–36. doi: 10.4274/jcrpe.galenos.2021.2021.0152

PubMed Abstract | Crossref Full Text | Google Scholar

10. Chen S, Chen K, Lu L, Zhang X, Tong A, Pan H, et al. The effects of sampling lateralization on bilateral inferior petrosal sinus sampling and desmopressin stimulation test for pediatric Cushing’s disease. Endocrine. (2019) 63:582–91. doi: 10.1007/s12020-018-1779-x

PubMed Abstract | Crossref Full Text | Google Scholar

11. Lonser RR, Wind JJ, Nieman LK, Weil RJ, DeVroom HL, and Oldfield EH. Outcome of surgical treatment of 200 children with Cushing’s disease. J Clin Endocrinol Metab. (2013) 98:892–901. doi: 10.1210/jc.2012-3604

PubMed Abstract | Crossref Full Text | Google Scholar

12. Joshi SM, Hewitt RJ, Storr HL, Rezajooi K, Ellamushi H, Grossman AB, et al. Cushing’s disease in children and adolescents: 20 years of experience in a single neurosurgical center. Neurosurgery. (2005) 57:281–5. doi: 10.1227/01.NEU.0000166580.94215.53

PubMed Abstract | Crossref Full Text | Google Scholar

13. Kanter AS, Diallo AO, Jane JA Jr., Sheehan JP, Asthagiri AR, Oskouian RJ, et al. Single-center experience with pediatric Cushing’s disease. J Neurosurg. (2005) 103:413–20. doi: 10.3171/ped.2005.103.5.0413

PubMed Abstract | Crossref Full Text | Google Scholar

14. Pasternak-Pietrzak K, Moszczynska E, and Szalecki M. Treatment challenges in pediatric Cushing’s disease: Review of the literature with particular emphasis on predictive factors for the disease recurrence. Endocrine. (2019) 66:125–36. doi: 10.1007/s12020-019-02036-2

PubMed Abstract | Crossref Full Text | Google Scholar

15. Yordanova G, Martin L, Afshar F, Sabin I, Alusi G, Plowman NP, et al. Long-term outcomes of children treated for Cushing’s disease: a single center experience. Pituitary. (2016) 19:612–24. doi: 10.1007/s11102-016-0756-8

PubMed Abstract | Crossref Full Text | Google Scholar

16. Pasternak-Pietrzak K, Moszczyńska E, Jurkiewicz E, and Szalecki M. Paediatric Cushing’s disease – a literature review of epidemiology, pathogenesis, clinical symptoms, and diagnostics. Endokrynol Pol. (2020) 71:87–95. doi: 10.5603/EP.a2019.0040

PubMed Abstract | Crossref Full Text | Google Scholar

17. Storr HL and Savage MO. Management of endocrine disease: Paediatric Cushing’s disease. Eur J Endocrinol. (2015) 173:R35–45. doi: 10.1530/EJE-15-0013

PubMed Abstract | Crossref Full Text | Google Scholar

18. Tatsi C, Kamilaris C, Keil M, Saidkhodjaeva L, Faucz FR, Chittiboina P, et al. Paediatric Cushing syndrome: a prospective, multisite, observational cohort study. Lancet Child Adolesc Health. (2024) 8:51–62. doi: 10.1016/S2352-4642(23)00264-X

PubMed Abstract | Crossref Full Text | Google Scholar

Keywords: Cushing’s disease, pediatric, transsphenoidal surgery, surgical outcome, surgical strategy

Citation: Wang B, Zhang H, Su T, Ren J, Sun Q, Sun Y and Bian L (2025) The neurosurgical outcome of pediatric Cushing’s disease in a single center from China: a 20-year experience. Front. Endocrinol. 16:1663624. doi: 10.3389/fendo.2025.1663624

Received: 10 July 2025; Accepted: 22 August 2025;
Published: 03 September 2025.

Edited by:

Sadishkumar Kamalanathan, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), India

Reviewed by:

Aleksandra Zdrojowy-Wełna, Wroclaw Medical University, Poland
Medha Bhardwaj, Mahatma Gandhi University of Medical Sciences Technology, India

Copyright © 2025 Wang, Zhang, Su, Ren, Sun, Sun and Bian. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Yuhao Sun, syh11897@rjh.com.cn; Liuguan Bian, Blg11118@rjh.com.cn

These authors have contributed equally to this work

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Research Study for Patients Diagnosed with Cushing’s Disease and Their Caregivers

We’re looking for caregivers to loved ones diagnosed with Cushing’s Disease or patients diagnosed with Cushing’s Disease to participate in a research study.

✅ Who: Patients and caregivers of loved ones

⏳ What: 30-minute Online Survey

💰 Compensation: $60.00

Sign up here: https://rarepatientvoice.com/CushingsHelp/

 

The Outcome of Abnormal Glucose Metabolism and Its Clinical Features in Patients With Cushing’s Disease After Curative Surgery

Abstract

Objective

To investigate the outcomes of abnormal glucose metabolism and its clinical characteristics in patients with Cushing’s disease (CD) who achieved biochemical remission after surgery.

Methods

Patients diagnosed with CD who achieved biochemical remission and underwent regular follow-up after surgery were enrolled. Pre- and postoperative clinical data were collected and analyzed.

Result

151CD patients were included, of whom 80 (53 %) had preoperative abnormal glucose metabolism, including 56 with diabetes mellitus (DM) and 24 with impaired glucose regulation (IGR). At one year after surgery, 57 patients exhibited improved glucose metabolism, accompanied by a significant reduction in the homeostasis model assessment of insulin resistance (HOMA-IR). Improvements were mainly observed at 3 and 6 months after surgery. At one-year after surgery, there were 20 patients with diabetes and 16 with IGR. Compared to those with NGT, these individuals exhibited a higher prevalence of hypertension, hyperlipidemia, fatty liver, and abnormal bone metabolism.

Conclusion

CD patients demonstrated a high incidence of abnormal glucose metabolism. Notably, approximately two-thirds demonstrated improved glucose metabolism one year after curative surgery, with the greatest improvements observed at 3- to 6-month postoperative follow-up.

Introduction

Cushing’s disease (CD) is characterized by excessive endogenous cortisol production caused by pituitary adrenocorticotropic hormone adenoma and is the main cause of Cushing’s syndrome (CS). Surgical resection of the tumor is the preferred treatment. Prolonged exposure to hypercortisolism increases the risk of metabolic abnormalities, including obesity, hypertension, glucose and lipid abnormalities, osteoporosis, etc. Additionally, it significantly elevates the risk of infection, thrombosis, and hypokalemia. Abnormal glucose metabolism is a common complication of CS, with an incidence ranging from 13.1 % to 47 %[1], and diabetes is an independent risk factor for mortality in CD patients[2].
Previous clinical studies have found that metabolic abnormalities such as diabetes, hypertension, and hyperlipidemia improve in CS patients who achieve biochemical remission after surgical treatment. However, the concept of improvement in glucose metabolism, the incidence of improvement, and its related factors are inconsistent in various reports. Previous studies primarily assessed the outcome of glucose metabolism based on plasma glucose results at a single fixed follow-up time after surgery. The lack of regular follow-up data makes it difficult to clearly understand the trend of postoperative plasma glucose changes, and there are no clinical data on when glucose metabolism begins to improve or change. Therefore, this study retrospectively analyzed the follow-up data of patients with Cushing’s disease in our hospital before and after surgery, and monitored the changes in glucose metabolism, to explore the characteristics and clinical features of such changes in patients with Cushing’s disease who achieved remission from CD following surgery..

Access through your organization

Check access to the full text by signing in through your organization.

Access through your organization

Section snippets

Subjects

This study enrolled hospitalized patients with Cushing’s disease at Huashan Hospital, Fudan University from January 2014 to February 2020. Inclusion criteria were as follows: (1) Age ≥ 18 years; (2) diagnosis of Cushing’s disease according to the 2021 Consensus on the Diagnosis and Management of Cushing’s Disease, confirmed by pathology[3]; (3) biochemical remission after transsphenoidal surgery; (4) complete preoperative data and regular follow-up visits (including visits at 1, 3, 6, and

Patients’ baseline characteristics

A total of 168 patients with CD were admitted to Huashan Hospital from 2014 to 2020 with pathological diagnosis and regular postoperative follow-up; however, 17 patients were excluded due to no biochemical remission after surgery or relapse during follow-up (Fig. 1). Ultimately, 151 patients (32 males and 119 females) were included in this study. The baseline characteristics of the included patients were shown in Table 1. There were 80 cases (53 %) complicated with abnormal glucose metabolism

Discussion

CD was a rare disease often associated with abnormal glucose metabolism. Based on medical history and OGTT screening, we found that over half (53 %) of CD patients exhibited abnormal glucose metabolism before surgery, with 37.1 % being diagnosed with diabetes. Previous studies have shown that the prevalence of diabetes in CS patients ranged from 13.1 % to 47 %, and most reports falling between 35 % and 45 %, which is consistent with our findings [1,12,13]. However, it should be noted that CD

Author contributions

Q.C. analyzed the data and wrote the manuscript. Q.C., Y.L., X.L., Q.S., W.S., and H.Z. collected the data. Y.L., Z.Z., M.H., S.Z., and H.Y. recruited patients. J.Z., Y.S., and S.Z. conducted the study design and revised the manuscript. All authors read and approved the final manuscript.

CRediT authorship contribution statement

Qiaoli Cui: Writing – review & editing, Writing – original draft, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Yujia Li: Writing – original draft, Investigation, Formal analysis, Data curation. Xiaoyu Liu: Investigation, Formal analysis, Data curation. Quanya Sun: Investigation, Data curation. Wanwan Sun: Investigation, Formal analysis, Data curation. Min He: Project administration, Investigation. Jie Zhang: Writing – review & editing, Supervision, Funding

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We are indebted to the patients who participated in this study and all the doctors who contributed to the diagnosis and treatment of these patients. This work was supported by grants from the Multidisciplinary Diagnosis and Treatment (MDT) demonstration project in research hospitals (Shanghai Medical College, Fudan University, NO: DGF501069/017), National Science and Technology Major Project (NO: 2023ZD0506800,2023ZD0506802), 2023 Ningbo International Cooperation Program (NO: 2023H024).

References (16)

  • R.N. Clayton et al.

    Mortality in patients with Cushing’s disease more than 10 years after remission: a multicentre, multinational, retrospective cohort study

    Lancet Diabetes Endocrinol

    (2016)
  • M. Fleseriu et al.

    Consensus on diagnosis and management of Cushing’s disease: a guideline update

    Lancet Diabetes Endocrinol

    (2021)
  • C. Scaroni et al.

    Glucose Metabolism Abnormalities in Cushing Syndrome: from Molecular Basis to Clinical Management

    Endocr Rev

    (2017)
  • C. Dai et al.

    Surgical outcome of transsphenoidal surgery in Cushing’s disease: a case series of 1106 patients from a single center over 30 years

    Endocrine

    (2022)
  • E. Valassi et al.

    Delayed remission after transsphenoidal surgery in patients with Cushing’s disease

    J Clin Endocrinol Metab

    (2010)
  • X. He et al.

    Glucocorticoid Withdrawal Syndrome following treatment of endogenous Cushing Syndrome

    (2022)
  • E.V. Varlamov et al.

    Perioperative Management of a Patient with Cushing Disease

    J Endocr Soc

    (2022)
  • Q. Cui et al.

    The recovery time of hypothalamic-pituitary-adrenal axis after curative surgery in Cushing’s disease and its related factor

    Endocrine

    (2023)
There are more references available in the full text version of this article.