Myth: “Each Person Requires the Same Dose of Steroid in Order to Survive…

Myth: “Each person requires the same dose of steroid in order to survive with Secondary or Primary Adrenal Insufficiency”

myth-busted

Fact: In simple terms, Adrenal Insufficiency occurs when the body does not have enough cortisol in it. You see, cortisol is life sustaining and we actually do need cortisol to survive. You have probably seen the commercials about “getting rid of extra belly fat” by lowering your cortisol. These advertisements make it hard for people to actually understand the importance of the function of cortisol.

After a Cushing’s patient has surgery, he/she goes from having very high levels of cortisol to no cortisol at all. For pituitary patients, the pituitary, in theory, should start working eventually again and cause the adrenal glands to produce enough cortisol. However, in many cases; the pituitary gland does not resume normal functioning and leaves a person adrenally insufficient. The first year after pit surgery is spent trying to get that hormone to regulate on its own normally again. For a patient who has had a Bilateral Adrenalectomy (BLA), where both adrenal glands are removed as a last resort to “cure” Cushing’s; his/her body will not produce cortisol at all for his/her life. This causes Primary Adrenal Insufficiency.

All Cushing’s patients spend time after surgery adjusting medications and weaning slowly from steroid (cortisol) to get the body to a maintenance dose, which is the dose that a “normal” body produces. This process can be a very long one. Once on maintenance, a patient’s job is not over. He/She has to learn what situations require even more cortisol. You see, cortisol is the stress hormone and also known as the Fight or Flight hormone. Its function is to help a person respond effectively to stress and cortisol helps the body compensate for both physical and emotional stress. So, when faced with a stressor, the body will produce 10X the baseline levels in order to compensate. When a person can not produce adequate amounts of cortisol to compensate, we call that Adrenal Insufficiency. If it gets to the point of an “Adrenal Crisis”, this means that the body can no longer deal and will go into shock unless introduced to extremely high levels of cortisol, usually administered through an emergency shot of steroid.

There are ways to help prevent a crisis, by taking more steroid than the maintenance dose during times of stress. This can be anything from going to a family function (good stress counts too) to fighting an infection or illness. Acute stressors such as getting into a car accident or sometimes even having a really bad fight require more cortisol as well.

It was once believed that everyone responded to every stressor in the exact same way. So, there are general guidelines about how much more cortisol to introduce to the body during certain stressors. For instance, during infection, a patient should take 2-3X the maintenance dose of steroid (cortisol). Also, even the maintenance dose was considered the same for everyone. Now a days, most doctors will say that 20 mg of Hydrocortisone (Steroid/Cortisol) is the appropriate maintenance dose for EVERYONE. Now, we know that neither is necessarily true. Although the required maintenance dose is about the same for everyone; some patients require less and some require more. I have friends who will go into an adrenal crisis if they take LESS than 30 mg of daily steroid. On the other hand, 30 mg may be way too much for some and those folks may even require LESS daily steroid, like 15 mg. Also, I want to stress (no pun intended) that different stressors affect different people differently. For some, for instance, an acute scare may not affect them. However, for others, receiving bad news or being in shock WILL put their bodies into crisis. That person must then figure out how much additional steroid is needed.

Each situation is different and each time may be different. Depending on the stressor, a person may need just a little more cortisol or a lot. Every person must, therefore, learn their own bodies when dealing with Adrenal Insufficiency. This is VERY important! I learned this the hard way. As a Clinical Psychologist; I assumed that my “coping skills” would be enough to prevent a stressor from putting me into crisis. That was FAR from the truth! I have learned that I can not necessarily prevent my body’s physiological response to stress. People often ask me, “BUT you are a psychologist! Shouldn’t you be able to deal with stress?!!!!” What they don’t realize is that my BODY is the one that has to do the job of compensating. Since my body can not produce cortisol at all, my job is to pay close attention to it so that I can take enough steroid to respond to any given situation. We all have to do that. We all have to learn our own bodies. This is vitally important and will save our lives!

To those we have lost in our community to Adrenal Insufficiency after treatment of Cushing’s, Rest in Peace my friends! Your legacies live on forever!

~ By Karen Ternier Thames

Elvis, steriod-induced Cushing’s

This is an interesting article…

From http://www.dailymail.co.uk/news/article-1243063/They-called-The-Man-Who-Killed-Elvis-Now-stars-doctor-finally-reveals-true-madness-Kings-final-days.html

..The doctor’s first thought was that Elvis had had a seizure and he injected him with a stimulant to improve his breathing. Then he and Elvis’s manager dragged him into the ensuite bathroom and managed to get him into the bath, which they filled with cold water. Soon they were dressing him in his stage clothes.

Incredibly Elvis managed to perform that night, leaving Dr Nick determined to find out what had caused the handsome man he first met to degenerate into the bloated figure he had become.

Elvis himself refused to give him any clues. Finally, one of his problems was revealed – he and Priscilla were getting divorced. Three days after the final decree was issued in California, the singer, in worse condition than he had ever been, chartered a plane back to Graceland and called for Dr Nick.

This time the doctor arrived to find his patient’s face puffy, pink and almost transparent, and his stomach distended. He suspected either an allergic reaction or heart failure, especially since heart disease ran in the family.

Hospital tests established that Elvis had hepatitis, an enlarged liver ( possibly from painkillers) and Cushing’s syndrome. The last was a hormonal disease that caused bloating, and was down to the many steroids he had been taking to combat the asthma that ran in the family and his ongoing colon problems.

When Dr Nick asked him why he was also covered in bruises, Elvis tried to tell him the marks were from acupuncture needles. Finally he confessed that a couple of Beverly Hills physicians had prescribed the narcotic Demerol to cure back and neck pain, and Novocaine to reduce the pain at the injection sites…

What do you think?

A Case 0f Hailey–Hailey Disease Accompanied by Cushing’s Syndrome and Adrenal Insufficiency Due to Long-Term Usage of Topical Steroids With Review of Literature

Abstract

Hailey–Hailey disease (HHD), or familial benign chronic pemphigus, is a rare autosomal dominant disorder characterized by recurrent vesicles and erosions in intertriginous areas. Topical corticosteroids are the primary treatment, but their potential systemic side effects are often overlooked. Prolonged use on compromised skin can lead to excessive absorption, increasing the risk of iatrogenic Cushing’s syndrome and adrenal insufficiency.

Here, we report the case of a 50-year-old woman with HHD who had been using topical clobetasol or betamethasone for over 10 years, reaching doses up to 50 g/day.

She developed Cushingoid features, metabolic abnormalities, and suppression of the hypothalamic–pituitary–adrenal (HPA) axis. After tapering off topical corticosteroids, she developed adrenal insufficiency and associated withdrawal symptoms. Following the initiation of hydrocortisone replacement therapy, psychiatric symptoms, impaired glucose tolerance, and osteoporotic fractures emerged, suggesting exacerbation of iatrogenic Cushing’s syndrome.

This case highlights the risk of systemic complications from chronic topical corticosteroid use, particularly in high-absorption areas. Gradual dose reduction, close endocrine monitoring, and individualized tapering strategies are essential to prevent severe outcomes.

Clinicians should be aware of potential adrenal suppression and consider endocrine evaluation in patients receiving prolonged, high-dose topical corticosteroid therapy.

Exogenous Cushing Syndrome and Hip Fracture Due to Over-the-Counter Supplement (Artri King)

Abstract

The most common cause of Cushing syndrome (CS) is exposure to exogenous glucocorticoids. There is an increasing incidence of adulterated over-the-counter (OTC) supplements containing steroids. We present a case of Artri King (AK)-induced CS in a 40-year-old woman who presented with an intertrochanteric fracture of her right femur. Laboratory testing revealed suppressed cortisol and adrenocorticotropic hormone, which was consistent with suppression of the hypothalamic-pituitary-adrenal (HPA) axis. Following the cessation of the AK supplement, the patient’s HPA axis recovered, and the clinical manifestations of CS improved. This case emphasizes the need for better regulation of OTC supplements and the need for cautious use.

Introduction

Cushing syndrome (CS) is a condition that occurs because of high blood levels of glucocorticoids (GCs). These patients can present with a variety of systemic signs and symptoms, including truncal obesity, easy bruising of the skin, violaceous abdominal striae, resistant hypertension, dysglycemia, as well as osteoporosis. CS can occur because of adrenal etiologies such as adrenal adenoma, adrenal cancer, or adrenal hyperplasia or from an adrenocorticotropic hormone (ACTH)-producing pituitary adenoma or ectopic tumor. However, the most common cause of CS is the exogenous administration of GCs [1]. While exogenous GCs are often medically prescribed for the treatment of inflammatory conditions, some patients may be accidentally exposed to exogenous GCs from over-the-counter (OTC) supplements. We present a case of a young woman who developed exogenous CS and suffered a hip fracture as a result of taking an OTC supplement, Artri King (AK), adulterated with GCs.

Case Presentation

A 40-year-old obese woman presented to the hospital following a fall at home. She reported a snapping noise and sudden right hip pain while trying to stand up, and subsequently fell to the floor. She had noted right-sided hip pain for several days preceding her fall. She was evaluated in the emergency department where computed tomography (CT) imaging of the right lower extremity showed an intertrochanteric fracture of the right femur (Figure 1). The patient underwent open reduction and internal fixation of her right femur. The patient reported an unexplained weight gain of approximately 40 lbs in the preceding five months with a peak weight of 223 lbs (101 kg) and a body mass index (BMI) of 37 kg/m2. The patient denied taking any medications or supplements at the time of hospitalization. The endocrinology team was consulted to evaluate for causes of secondary osteoporosis in this young woman.

A-CT-scan-showing-the-right-intertrochanteric-fracture-of-the-right-femur-(yellow-arrows)
Figure 1: A CT scan showing the right intertrochanteric fracture of the right femur (yellow arrows)

Diagnostic assessment

Her vital signs showed a blood pressure of 142/96 mmHg, heart rate of 68 beats per minute, temperature of 98.1°F (36.7°C), and 98% oxygenation on room air. Physical examination did not reveal abdominal striae or buffalo hump. She did have supraclavicular fat deposition and central obesity. No proximal muscle weakness was present.

Laboratory tests were pertinent for decreased 25-hydroxy vitamin D, increased parathyroid hormone (PTH), and normal calcium (Table 1). These findings were consistent with secondary hyperparathyroidism due to vitamin D deficiency. Dual-energy X-ray absorptiometry (DEXA) scan revealed osteoporosis (Figures 23 and Tables 23). Further testing showed normal thyroid-stimulating hormone (TSH), estradiol, follicle-stimulating hormone (FSH), and luteinizing hormone (LH), thus ruling out hyperthyroidism and primary ovarian insufficiency as possible causes of reduced bone mineral density (Table 1). Random cortisol was checked as hypercortisolism was suspected but it was found to be decreased along with decreased ACTH as well (Table 4). A cosyntropin stimulation test was performed, which showed decreased baseline cortisol with inappropriately decreased cortisol levels at 30 minutes and 60 minutes (Table 5). Given the discordance between the patient’s presentation and the lab results, assay interference was suspected, and further evaluation of the adrenal function was performed. Repeat labs using liquid chromatography-mass spectrometry (LCMS) assay again confirmed persistently low cortisol (Table 4). A 24-hour free urine cortisol was too low to quantify per assay despite the adequate volume. Further evaluation showed overall low adrenal steroids, including deoxycorticosterone, 17-hydroxyprogesterone, androstenedione, 11-deoxycortisol, pregnenolone, dehydroepiandrosterone sulfate, corticosterone, and progesterone.

Lab test Patient’s value Reference range
25-hydroxy vitamin D 12.8 ng/ml 30-100 ng/ml
Parathyroid hormone (PTH) 86.2 pg/ml 10-66 pg/ml
Serum calcium 9.5 ng/dl 8.8-10.5 mg/dl
Thyroid-stimulating hormone (TSH) 2.49 mIU/L 0.36-3.74 mIU/L
Estradiol 57.1 pg/ml 19.8-144.2 pg/ml
Follicle-stimulating hormone (FSH) 5.4 mIU/ml 2.5-10.4 mIU/ml
Luteinizing hormone (LH) 6 mIU/ml 1.9-12.5 mIU/ml
Table 1: Patient’s lab values on admission
Dual-energy-X-ray-absorptiometry-(DEXA)-scan-of-the-femoral-neck-showing-osteopenia
Figure 2: Dual-energy X-ray absorptiometry (DEXA) scan of the femoral neck showing osteopenia
Dual-energy-X-ray-absorptiometry-(DEXA)-scan-of-the-lumbar-spine-showing-osteoporosis
Figure 3: Dual-energy X-ray absorptiometry (DEXA) scan of the lumbar spine showing osteoporosis
Region Area (cm2) Bone mineral content (g) Bone mineral density (g/cm2) T-score Peak reference Z-score Age-matched
Femoral neck 4.76 3.53 0.742 -1.0 87 -0.7 91
Total 33.39 26.14 0.783 -1.3 83 -1.1 85
Table 2: Summary of dual-energy X-ray absorptiometry (DEXA) scan results of the femoral neck
Region Area (cm2) Bone mineral content (g) Bone mineral density (g/cm2) T-score Peak reference Z-score Age-matched
L1 10.79 7.56 0.701 -2.6 71 -2.4 73
L2 11.79 9.06 0.768 -2.4 75 -2.1 77
L3 12.70 9.98 0.786 -2.7 73 -2.4 75
L4 15.57 11.42 0.733 -3.0 69 -2.7 71
Total 50.86 38.03 0.748 -2.7 71 -2.5 73
Table 3: Summary of dual-energy X-ray absorptiometry (DEXA) scan results of the lumbar spine
Lab test Patient’s values while on Artri King Patient’s values four weeks off of Artri King Reference range
Random cortisol (routine assay) <0.64 μg/dL 7.3 μg/dL 5-25 μg/dL
Adrenocorticotropic hormone (ACTH) 1.5 pg/ml 12 pg/ml 7.2-63.3 pg/ml
Random cortisol (using liquid chromatography-mass spectrometry (LCMS) assay) 0.526 μg/dL N/A 5-25 μg/dL
Table 4: Patient’s cortisol and adrenocorticotropic hormone levels before and after stopping Artri King
Cosyntropin stimulation test Patient value Reference range
Baseline cortisol 1.64 μg/dL 5-25 μg/dL
Cortisol after 30 minutes 1.33 μg/dL >18 μg/dL
Cortisol after 60 minutes 6.48 μg/dL >18 μg/dL
Table 5: Results of cosyntropin test while on Artri King

Treatment

She was started on teriparatide as well as vitamin D and calcium supplementation for the treatment of osteoporosis. Based on the aforementioned testing and the apparent symptoms of hypercortisolism, the patient was questioned again about the potential intake of steroids. She then recalled that she had been taking AK, an OTC supplement promoted for joint pain and arthritis. She reported that she had been taking two tablets of the supplement three times a day intermittently for the past three years. The patient neglected to bring it to the medical team’s attention before because she was under the impression that it was a multivitamin and did not have implications on her diagnosis. She was asked to stop the supplement and was educated about potential adrenal insufficiency symptoms and GC withdrawal.

Outcome and follow up

Repeat labs after four weeks off AK showed improved cortisol and ACTH levels indicating recovery of her hypothalamic-pituitary-adrenal (HPA) axis (Table 4). She lost 25 lbs in this time span with lifestyle modification. She continues teriparatide for osteoporosis, and monitoring of her bone mineral density is planned.

Discussion

This patient initially presented with a pathological fracture of her right femoral head. Given her young age, causes of secondary osteoporosis, including CS, were explored. The prevalence of osteoporosis in CS patients is 50% [2]. The effects of GC on bone health have been well studied. The major mechanism by which GC affects bone mineral density is by impairment of bone formation. GCs increase osteoblast and osteocyte apoptosis and decrease osteoblast function through their catabolic effects, which result in a dramatic decrease in bone formation rate. A prolonged lifespan of osteoclasts is observed with GC. A decrease in bone formation markers such as P1NP and osteocalcin has been observed in patients treated with GC [3]. Long-term GC use is associated with increased risk for fractures with a reported global prevalence of fractures of 30-50%. The risk for vertebral fractures is even higher, particularly in the thoracic and lumbar vertebrae. Interestingly, the risk for fracture with GC use peaks early in the course of treatment, often as early as three months into treatment, and declines rapidly after GC discontinuation [4]. An increased fracture risk has been described even with relatively low doses of GC (2.5-7.5 mg of prednisone or other equivalently dosed GC) and even with short-term use of under 30 days [5].

Our patient’s initial labs confirmed adrenal suppression despite our initial suspicion of CS, given her ongoing weight gain, central obesity, and osteoporosis. However, no obvious source of exogenous GC was identified. In most cases, the source of exogenous GC is easily identified through medication reconciliation; however, in our case, the patient was inadvertently exposed to steroids from an unregulated supplement, AK. The supplement’s ingredients were listed as glucosamine, chondroitin, collagen, vitamin C, curcumin, methylsulfonylmethane, nettle, and omega-3 fatty acids, with no mention of any steroid components. In a letter to the editor of the Internal Medicine magazine, several doctors published their concerns about a recent increase in CS cases associated with the use of AK and other similarly unregulated products [6]. Based on our literature search, three similar cases were published [7,8]. The reported cases developed CS after taking Artri King for several months, but none of them presented with a fracture.

A warning by the U.S. Food & Drug Administration (FDA) was issued on April 20, 2022, indicating that FDA laboratory testing of this supplement confirmed the presence of undeclared drug ingredients, including dexamethasone, methocarbamol, and diclofenac. The FDA, however, was unable to confirm the exact amount of dexamethasone that these supplements contained [9]. Adverse events, including liver toxicity and death, were reported by the FDA.

One study revealed that between 2007 and 2016, the FDA had issued more than 700 warnings about the sale of dietary supplements that contained unlisted and potentially dangerous ingredients. The majority of these supplements included those marketed for sexual enhancement, weight loss, or muscle building [10]. This case highlights the risks of undisclosed ingredients in OTC supplements.

Conclusions

In conclusion, we recommend that a thorough reconciliation of medication and supplements be obtained for all patients with CS. Supplements should be stopped and HPA axis testing should be repeated in patients with suspected exogenous GC exposure, even if steroids are not declared in the ingredients. It is also important to monitor such patients for adrenal insufficiency due to GC withdrawal and consider GC tapering if necessary. Our patient showed improvement in cortisol levels with no overt symptoms of adrenal insufficiency without the need for GC therapy. This case demonstrates the first case of AK-induced CS resulting in a pathological fracture. Given the increased use and availability of OTC supplements, this case highlights on the importance of detailed history-taking and the role of supplements in causing CS. This case also stresses the need for further education and counseling of our patients as well as tighter control on the manufacturing and sale of these supplements.

References

  1. Lacroix A, Feelders RA, Stratakis CA, Nieman LK: Cushing’s syndrome. Lancet. 2015, 386:913-27. 10.1016/S0140-6736(14)61375-1
  2. Mancini T, Doga M, Mazziotti G, Giustina A: Cushing’s syndrome and bone. Pituitary. 2004, 7:249-52. 10.1007/s11102-005-1051-2
  3. Briot K, Roux 😄 Glucocorticoid-induced osteoporosis. RMD Open. 2015, 1:e000014. 10.1136/rmdopen-2014-000014
  4. Canalis E, Mazziotti G, Giustina A, Bilezikian JP: Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int. 2007, 18:1319-28. 10.1007/s00198-007-0394-0
  5. Waljee AK, Rogers MA, Lin P, et al.: Short term use of oral corticosteroids and related harms among adults in the United States: population based cohort study. BMJ. 2017, 357:j1415. 10.1136/bmj.j1415
  6. Del Carpio-Orantes L, Quintín Barrat-Hernández A, Salas-González A: Iatrogenic Cushing syndrome due to fallacious herbal supplements. The case of Ortiga Ajo Rey and Artri King. Med Int Mex. 2021, 37:599-602.
  7. Patel R, Sherf S, Lai NB, Yu R: Exogenous Cushing syndrome caused by a “Herbal” supplement. AACE Clin Case Rep. 2022, 8:239-42. 10.1016/j.aace.2022.08.001
  8. Mikhail N, Kurator K, Martey E, Gaitonde A, Cabrera C, Balingit P: Iatrogenic Cushing’s syndrome caused by adulteration of a health product with dexamethasone. JSM Clin Case Rep. 2022, 3:
  9. U.S. Food and Drug Administration. Public notification: Artri King contains hidden drug ingredients. (2022). Accessed: February 25, 2023: https://www.fda.gov/drugs/medication-health-fraud/public-notification-artri-king-contains-hidden-drug-ingredients.
  10. Tucker J, Fischer T, Upjohn L, Mazzera D, Kumar M: Unapproved pharmaceutical ingredients included in dietary supplements associated with US Food and Drug Administration warnings. JAMA Netw Open. 2018, 1:e183337. 10.1001/jamanetworkopen.2018.3337

From https://www.cureus.com/articles/153927-exogenous-cushing-syndrome-and-hip-fracture-due-to-over-the-counter-supplement-artri-king#!/

No Synthetic Steroid Version of Korlym at This Time

Teva Pharmaceuticals suffered a fresh legal setback on Tuesday in its effort to market a generic version of the synthetic steroid Korlym to treat Cushing’s syndrome.

The Israeli drugmaker failed to convince the U.S. Court of Appeals for the Federal Circuit that the Patent Trial and Appeal Board improperly denied its bid to cancel a patent held by Corcept Therapeutics covering a method for using Korlym to treat the hormone disorder.

Menlo Park, California-based Corcept last year made over $353 million from sales of Korlym, the company’s only drug, according to a filing with the U.S. Securities and Exchange Commission.

Corcept’s patent relates to using a specific dose of Korlym’s active ingredient mifepristone and another drug to treat Cushing’s syndrome, which creates an excess of the hormone cortisol and causes high blood sugar, among other things.

Corcept sued Teva in New Jersey in 2018, alleging its proposed generic version of Korlym infringed the patent and others, in a case that is still ongoing. Teva asked the Patent Trial and Appeal Board to cancel the patent because earlier publications made it obvious that Corcept’s method would work to treat the disorder.

The board ruled for Corcept last year, and Teva appealed. Teva told the Federal Circuit that the PTAB held it to an improperly high standard for proving that the patent was invalid based on prior art.

Chief U.S. Circuit Judge Kimberly Moore, joined by Circuit Judges Pauline Newman and Jimmie Reyna, rejected Teva’s argument on Tuesday. Moore said the board found that a person of ordinary skill wouldn’t have reasonably expected Corcept’s treatment to be safe and effective before Corcept created it.

Moore also rejected Teva’s argument that the prior art disclosed a range of potential dosages that covered Corcept’s treatment.

Teva, Corcept and lawyers for the two companies didn’t immediately respond to requests for comment.

The case is Teva Pharmaceuticals USA Inc v. Corcept Therapeutics Inc, U.S. Court of Appeals for the Federal Circuit, No. 21-1360.

For Teva: John Rozendaal of Sterne Kessler Goldstein & Fox

For Corcept: Eric Stops of Quinn Emanuel Urquhart & Sullivan

From https://www.reuters.com/legal/transactional/teva-loses-bid-cancel-corcept-drug-patent-federal-circuit-2021-12-07/