The Impact of Prolonged High-Concentration Cortisol Exposure on Cognitive Function and Risk Factors: Evidence From Cushing’s Disease Patients

Abstract

Background

Prolonged high-concentration cortisol exposure may impair cognitive function, but its mechanisms and risk factors remain unclear in humans.

Objective

Using Cushing’s disease patients as a model, this study explores these effects and develops a predictive model to aid in managing high-risk patients.

Methods

This single-center retrospective study included 107 Cushing’s disease patients (January 2020–January 2024) at the First Medical Center of the PLA General Hospital. Cognitive function, assessed using the Montreal Cognitive Assessment, revealed 58 patients with cognitive impairment and 49 with normal cognitive function. Patients were divided into training (n = 53) and validation cohorts (n = 54) for constructing and validating the predictive model. Risk factors were identified via univariate analysis and least absolute shrinkage and selection operator regression, and a nomogram prediction model was developed. Performance was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA).

Results

Cortisol AM/PM ratio, 8 a.m. cortisol concentration, body mass index, and fasting plasma glucose were significant risk factors for cognitive impairment. The nomogram demonstrated strong predictive ability, with ROC values of 0.80 (training) and 0.91 (validation). DCA indicated superior clinical utility compared to treating all or no patients.

Conclusions

This study confirms the significant impact of prolonged high cortisol exposure on cognitive function and identifies key risk factors. The nomogram model offers robust performance, providing a valuable tool for managing Cushing’s disease patients’ cognitive health and informing strategies for other cortisol-related disorders.

Introduction

Chronic stress and prolonged pressure increasingly pose significant burdens on individual health and social systems, particularly on a global scale. Their impact on cognitive function, mental health, and physical well-being cannot be ignored.1 Long-term stress responses and sustained exposure to pressure not only elevate the risk of multiple diseases but also result in considerable socioeconomic burdens. According to the World Health Organization (WHO), approximately 300 million people worldwide suffer from depression, with stress and emotional disorders being critical contributing factors.2 This phenomenon may be associated with prolonged exposure to high concentrations of cortisol induced by chronic stress.3 Such long-term elevated cortisol exposure is thought to exert adverse effects on multiple systems, including the nervous system, leading to anxiety, depression, and cognitive impairment. While the roles of anxiety and depression have been well established,4 the specific impact on cognitive function remains unclear.
Research suggests that abnormally elevated cortisol levels significantly affect brain structure and function. The hippocampus, a key target highly sensitive to cortisol and central to learning and memory, is particularly affected. High cortisol exerts its effects through glucocorticoid receptors and mineralocorticoid receptors in the hippocampus, mediating neurophysiological responses. Prolonged activation may lead to neuronal damage, reduced neuroplasticity, and cognitive impairment.5,6 Additionally, brain regions such as the prefrontal cortex and amygdala are also impacted, potentially causing attentional deficits, impaired executive function, and emotional regulation disturbances.7 Furthermore, abnormal diurnal cortisol rhythms are closely linked to neuroinflammation, oxidative stress, and cerebrovascular lesions.8,9 These mechanisms may interact synergistically to exacerbate cognitive impairment. While animal studies provide substantial evidence for cortisol’s effects on cognitive function, human studies face ethical constraints and experimental limitations. The lack of models for long-term stress and pressure in humans, coupled with challenges in conducting long-term follow-ups, highlights the need for suitable research subjects.
Cushing’s disease is an endocrine disorder caused by excess adrenocorticotropic hormone (ACTH) secretion by anterior pituitary adenomas, leading to abnormally elevated cortisol levels.10 The unique pathological features of Cushing’s disease offer a natural model for studying the effects of prolonged high cortisol exposure on human cognitive function. Patients with Cushing’s disease often experience cognitive impairments, with clinical manifestations including memory decline, attention deficits, and impaired executive function.1113 However, the specific mechanisms and risk factors underlying these impairments remain unclear.
Against this backdrop, this study uses Cushing’s disease patients as subjects to systematically evaluate the impact of prolonged high cortisol exposure on cognitive function and analyze associated risk factors. Additionally, we develop a nomogram prediction model aimed at improving the identification of high-risk patients, providing a reference for clinical interventions, and offering new perspectives and evidence for the cognitive management and research of cortisol-related disorders.

Methods

Study subjects

This study is a single-center retrospective study that included 107 patients diagnosed with Cushing’s disease at the First Medical Center of the PLA General Hospital between January 2017 and January 2024. Inclusion criteria were as follows: (i) meeting the WHO diagnostic criteria for Cushing’s disease; (ii) disease duration >3 months; (iii) no prior surgical treatment; (iv) complete laboratory and imaging data; (v) no other neurological or psychiatric disorders that could cause cognitive impairment (e.g., dementia, depression, stroke). Exclusion criteria included: (i) disease duration ❤ months; (ii) prior surgical treatment; (iii) missing critical baseline or laboratory data; (iv) severe visual or hearing impairments that could affect cognitive testing results. A total of 107 patients were included in the study, among whom 58 had cognitive impairment and 49 exhibited mild cognitive decline. Cognitive function was classified as follows: Montreal Cognitive Assessment (MoCA) score ≤26 was defined as cognitive impairment, 27–29 as mild cognitive decline, and 30 as normal cognitive function.

Study design

A random allocation method was used to divide all patients into a training cohort (n = 53) and a validation cohort (n = 54) at a 5:5 ratio. The training cohort was used for variable selection and predictive model development, while the validation cohort was used for performance evaluation of the model. The study was approved by the hospital ethics committee (approval number: [S2021-677-01]).

Clinical data collection

Clinical characteristics and laboratory data of patients were obtained from the hospital’s electronic medical record system and included the following: (i) Demographic and clinical characteristics: age, sex, disease duration, years of education, body mass index (BMI), systolic blood pressure, and diastolic blood pressure; (ii) Laboratory indicators: fasting plasma glucose (FPG), 24-h urinary free cortisol, serum cortisol concentrations (0 a.m., 8 a.m., 4 p.m.), ACTH concentrations (0 a.m., 8 a.m., 4 p.m.), total cholesterol, triglycerides, alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, cortisol AM/PM ratio (CORT AM/PM), and results of low-dose dexamethasone suppression tests and high-dose dexamethasone suppression tests; (iii) Cognitive function assessment: conducted using the MoCA scale.

Statistical analysis and model development

Categorical variables were expressed as numbers (%), and continuous variables as mean ± standard deviation (SD) or median (interquartile range, IQR). Intergroup comparisons were performed using the chi-square test or Fisher’s exact test for categorical variables. A nomogram was constructed to predict the risk factors for cognitive impairment in patients exposed to prolonged high cortisol levels. Significant clinical features associated with cognitive function were identified through univariate analysis and least absolute shrinkage and selection operator (LASSO) regression analysis.
Based on the final results, a novel nomogram was developed, incorporating all independent prognostic factors to predict the presence or absence of cognitive impairment in individuals exposed to prolonged high cortisol levels. The performance of the nomogram was evaluated using the concordance index (C-index), area under the receiver operating characteristic (ROC) curve (AUC), calibration curves, and decision curve analysis (DCA). The C-index was calculated using 1,000 bootstrap samples to assess the internal validity of the model. Each patient’s total score was calculated using the nomogram approach.
Statistical analysis was performed using R programming language and version 4.2.3 of the R environment (http://cran.r-project.org). The main R packages used in this study included gtsummary (version 1.7.0), survival (version 3.5-3), RMS (version 6.3-0), time ROC (version 0.4), and ggplot2 (version 3.4.0).

Results

Patient characteristics

A total of 107 patients with Cushing’s disease were included in this study. MoCA scores revealed that all patients exhibited either cognitive decline or impairment. Among them, 58 patients (54.2%) were classified into the cognitive impairment group, and 49 patients (45.8%) were categorized into the cognitive decline group. Significant differences were observed in demographic characteristics and clinical indicators between the two groups. Detailed information is presented in Table 1.
Table 1. General characteristics of patients.
Variables Total (n = 107) 0 (n = 49) 1 (n = 58) p
sex, n (%) 1
1 10 (9) 5 (10) 5 (9)
2 97 (91) 44 (90) 53 (91)
age, Mean ± SD 41.22 ± 11.19 39.16 ± 11.21 42.97 ± 10.96 0.08
Education y, Median (Q1,Q3) 12 (8, 16) 12 (8, 16) 12 (8.25, 15) 0.835
BMI, Mean ± SD 27.01 ± 3.46 25.49 ± 2.25 28.29 ± 3.79 <0.001
Illness duration, Median (Q1,Q3) 26 (12, 48) 24 (12, 48) 33 (12, 48) 0.6
COR-0am, Mean ± SD 565.86 ± 207.53 513.69 ± 185.87 609.94 ± 216.06 0.015
COR-8am, Mean ± SD 725.63 ± 259.03 612.26 ± 197.79 821.41 ± 267.29 <0.001
COR-4pm, Median (Q1,Q3) 619.19 (491.14, 744.17) 598.3 (472.49, 678.18) 650.43 (503.34, 803.88) 0.109
ACTH0am, Median (Q1,Q3) 12.4 (9.02, 18.4) 11 (8.46, 17.2) 13.95 (9.57, 19.51) 0.114
ACTH8am, Median (Q1,Q3) 15.2 (11.1, 23.5) 13.3 (10.6, 19.4) 17.4 (13.33, 26.27) 0.027
ACTH4pm, Median (Q1,Q3) 15.9 (10.45, 22.75) 13.6 (10.4, 22.6) 16.6 (10.95, 25.15) 0.275
UFC, Median (Q1,Q3) 1644.9 (1146.2, 2501.75) 1483 (1092.3, 2020.6) 1931 (1168.85, 2793.02) 0.131
LDDST-ACTH, Median (Q1,Q3) 16.9 (9.31, 21.15) 16.1 (8.35, 20.6) 17.25 (10.12, 21.17) 0.555
LDDST-CORT, Median (Q1,Q3) 532.95 (390.46, 787.61) 501.63 (360.4, 792.18) 568.37 (398.76, 781.7) 0.606
LDDST-UFC, Median (Q1,Q3) 1050.8 (531.9, 2077.2) 880.6 (454.4, 2419.9) 1200 (580.62, 2010.23) 0.589
HDDST-ACTH, Median (Q1,Q3) 8.81 (5.2, 15.7) 8.48 (4.91, 16.6) 9.12 (5.42, 14.45) 0.837
HDDST-CORT, Median (Q1,Q3) 222.3 (62.41, 354.31) 222.3 (61.7, 348.84) 217.56 (76.25, 356.78) 0.662
HDDST-UFC, Median (Q1,Q3) 336.9 (130.9, 870.86) 281.2 (128.4, 791.7) 391.4 (140.25, 923.43) 0.488
SBP, Mean ± SD 159.09 ± 26.08 157.76 ± 26.67 160.22 ± 25.75 0.629
DBP, Median (Q1,Q3) 105 (92, 116.5) 105 (90, 119) 102.5 (94.5, 114) 0.927
TC, Median (Q1,Q3) 5.13 (4.46, 6.17) 4.92 (4.47, 5.72) 5.24 (4.44, 6.31) 0.386
TG, Median (Q1,Q3) 1.42 (0.99, 2.04) 1.39 (0.99, 2.41) 1.42 (0.99, 1.97) 0.861
ALT, Median (Q1,Q3) 23 (17.55, 33.7) 20.7 (15.8, 33) 23.85 (18.45, 34.3) 0.35
AST, Median (Q1,Q3) 15.2 (13, 18.5) 14.1 (12.7, 18.5) 16.35 (13.62, 18.45) 0.184
GGT, Median (Q1,Q3) 27.6 (21.75, 44.25) 26.7 (22.6, 45.9) 28.95 (21.32, 41.9) 0.913
FPG, Median (Q1,Q3) 7.62 (5.43, 9.66) 5.7 (4.83, 7.49) 8.95 (7.05, 10) <0.001
CORT AM/PM, Median (Q1,Q3) 1.19 (0.99, 1.34) 1.05 (0.88, 1.2) 1.25 (1.15, 1.4) <0.001
ACTH: adrenocorticotropic hormone; ALT: alanine aminotransferase; AST: aspartate aminotransferase; BMI, body mass index; COR/CORT: cortisol; DBP: diastolic blood pressure; FPG: fasting plasma glucose; GGT: gamma-glutamyl transferase; HDDST: high-dose dexamethasone suppression tests; LDDST: low-dose dexamethasone suppression tests; SBP: systolic blood pressure; TC: total cholesterol; TG: triglycerides; UFC: urinary free cortisol.

Open in viewer

Model development

In the modeling cohort, LASSO regression analysis was used for variable selection. The regression coefficient path diagram and cross-validation curve are shown in Figure 1A and 1B. To ensure a good model fit, the λ corresponding to the minimum mean squared error was chosen through cross-validation. Four variables were identified through LASSO regression analysis: CORT AM/PM, COR-8am, FPG, and BMI. These variables were ultimately deemed risk factors for cognitive impairment associated with prolonged high cortisol exposure. Based on these four significant variables, a nomogram was developed to predict cognitive impairment under prolonged high cortisol exposure, and the model was visualized using a nomogram (Figure 2).
Figure 1. LASSO Cox regression model construction. (A) LASSO coefficient of 27 features. (B) Selection of tuning parameter (k) for the LASSO model.

Open in viewer

Figure 2. Nomogram predicting cognitive impairment in patients with prolonged high cortisol exposure.

Open in viewer

Model performance and validation

To comprehensively evaluate the model’s performance, multiple metrics were employed to verify its accuracy, stability, and clinical utility, including the concordance index (C-index), AUC, calibration curves, and DCA. The AUC values for the training cohort (Figure 3A) and the internal validation cohort (Figure 3B) were 0.80 and 0.91, respectively. These results indicate that the nomogram model effectively distinguishes patients with cognitive impairment in different sample datasets and demonstrates strong predictive accuracy. Calibration curves showed a high level of agreement between the predicted and actual probabilities of cognitive impairment in both the training cohort (Figure 4A) and the validation cohort (Figure 4B), further confirming the model’s stability and utility.
Figure 3. The ROC curve of the predictive model for cognitive impairment in patients with prolonged high cortisol exposure. (A) Derivation cohort. (B) Validation cohort.

Open in viewer

Figure 4. Calibration curves of the nomogram. (A) Derivation cohort. (B) Validation cohort.

Open in viewer

To assess the clinical utility of the model, DCA was performed (Figure 5). The results demonstrated that the clinical benefit of using the model to predict cognitive impairment was significantly higher than strategies of treating all patients or treating none (Figure 5). This finding suggests that the nomogram model provides substantial net benefit in clinical decision-making, effectively aiding clinicians in identifying high-risk patients and implementing appropriate interventions.
Figure 5. DCA curves of the nomogram in the training cohort and test cohort.

Open in viewer

Discussion

This study used patients with Cushing’s disease as a model to investigate the effects of prolonged high-concentration cortisol exposure on human cognitive function. The findings revealed that individuals exposed to long-term high cortisol levels generally experienced cognitive decline, with the CORT AM/PM, COR-8am, BMI, and FPG identified as major risk factors for cognitive impairment. Additionally, the developed nomogram model demonstrated excellent predictive performance in both the training (AUC = 0.80) and validation (AUC = 0.91) cohorts, highlighting its strong discriminative ability and clinical utility. These findings provide a foundation for mechanistic research and clinical management of prolonged high cortisol exposure.
BMI, FPG, CORT AM/PM, and COR-8am, as risk factors, are closely related to cortisol levels and its effects on the nervous system. Increased BMI was identified as an independent risk factor for cognitive impairment, likely due to chronic inflammation and oxidative stress caused by metabolic disorders.1416 Obesity and elevated cortisol levels may form a vicious cycle, further exacerbating damage to the nervous system. Studies have shown that reduced cerebral blood flow and neuronal damage in obese individuals are directly linked to cognitive impairment,17 underscoring the importance of monitoring metabolic status in Cushing’s disease patients. High blood glucose was another critical risk factor, potentially affecting cognitive function through various mechanisms: prolonged hyperglycemia can lead to cerebrovascular damage and impaired blood supply to the brain;18 it may also directly harm neurons through oxidative stress and inflammatory responses.19 Moreover, chronic hyperglycemia alters insulin signaling pathways, disrupting glucose metabolism in the brain and further aggravating cognitive decline.20 Additionally, the study showed that disrupted cortisol circadian rhythms (elevated CORT AM/PM) and increased morning cortisol peaks (COR-8am) were closely associated with cognitive impairment. Circadian rhythm disruption may accelerate hippocampal atrophy and prefrontal cortex dysfunction by affecting the regulation of the hypothalamic-pituitary-adrenal (HPA) axis.21 Excessive morning cortisol peaks may exacerbate neuroinflammation and synaptic dysfunction,22 a finding also supported by previous animal studies.
Cushing’s disease serves as an effective model for studying high cortisol states induced by chronic stress, given the high similarity in pathophysiological mechanisms between the two. Cushing’s disease results from tumor-induced HPA axis hyperactivation, causing sustained cortisol overproduction,23 while chronic stress similarly activates the HPA axis, maintaining cortisol at persistently high levels. Although the etiology of Cushing’s disease is endogenous and pathological, whereas high cortisol in chronic stress is environmentally induced, both share similar features such as metabolic disturbances (e.g., insulin resistance, central obesity), immunosuppression (e.g., increased infection susceptibility), osteoporosis, and psychological disorders (e.g., anxiety and depression).24 Therefore, Cushing’s disease provides an effective model for studying metabolic, immune, and neurological changes in high cortisol states, offering experimental evidence for understanding chronic stress-related disorders and developing intervention strategies.
The results of this study align with previous animal experiments. For instance, animal studies have shown that prolonged cortisol exposure leads to hippocampal atrophy and neuronal damage, impairing cognitive function.25 This study provides supportive evidence in human samples. Furthermore, prior research has found that disrupted cortisol circadian rhythms are often associated with executive function decline in patients with depression,26 consistent with our findings that CORT AM/PM is significantly associated with cognitive impairment in Cushing’s disease patients. Unlike earlier studies focusing primarily on cortisol’s direct neurotoxic effects, this study integrated metabolic indicators (e.g., BMI, FPG) to comprehensively analyze the interaction between cortisol and metabolic disturbances, expanding the understanding of mechanisms underlying cortisol-induced cognitive impairment.
Moreover, unlike previous research that was predominantly based on animal models, this study systematically analyzed data from 107 Cushing’s disease patients, further validating these mechanisms in humans. The construction of the nomogram model significantly enhanced predictive accuracy, providing a practical tool for clinical application.
Despite providing important evidence for the impact of prolonged high cortisol exposure on cognitive function, this study has limitations. First, as a single-center retrospective study with a limited sample size, the results may lack generalizability and require prospective validation. Although Cushing’s disease serves as a model for high cortisol exposure, further validation in populations experiencing chronic stress or prolonged pressure is needed. Second, the lack of long-term follow-up data prevents evaluation of the effects of surgical treatment or other interventions on cognitive function. Third, this study did not consider the impact of sex hormones on cortisol levels and cognitive function. Sex hormones (such as estrogen and testosterone) may regulate cortisol and influence the central nervous system.

Conclusion

This study, using patients with Cushing’s disease as a model, explored the impact of prolonged high-concentration cortisol exposure on human cognitive function. The findings revealed that individuals with prolonged high cortisol exposure commonly experience cognitive decline, with CORT AM/PM, COR-8am, BMI, and FPG identified as major risk factors for cognitive impairment. The nomogram model developed based on these risk factors demonstrated excellent predictive performance and clinical applicability in both the training and validation cohorts, providing an effective tool for the early identification of high-risk patients. These results not only confirmed the significant impact of prolonged high cortisol exposure on the central nervous system but also highlighted the critical role of metabolic factors in this process, emphasizing the multifactorial mechanisms of cognitive impairment. These findings offer a scientific basis for managing the cognitive health of Cushing’s disease patients and provide important insights for prevention and treatment strategies for other cortisol-related conditions, such as chronic stress and metabolic syndrome.

Acknowledgments

We thank the patient for granting permission to publish this information. We appreciate all the team members who have shown concern and provided treatment advice for this patient the Chinese People’s Liberation Army (PLA) General Hospital.

Ethical considerations

This study was approved by the Ethics Committee of the Chinese PLA General Hospital (Approval No. [S2021-67701]).

Consent to participate

All participants provided written informed consent prior to inclusion in the study.

Declaration of conflicting interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the National Natural Science Foundation of China (Grant Nos. 82001798 to Xinguang Yu; Grant Nos. 81871087 to Yanyang Zhang) and the Young Talent Project of Chinese PLA General Hospital (Grant Nos. 20230403 to Yanyang Zhang).

ORCID iDs

Data availability statement

Data are available from the corresponding authors on reasonable request.

References

1. Wu JL, Li ZM, Chen H, et al. Distinct septo-hippocampal cholinergic projections separately mediate stress-induced emotional and cognitive deficits. Sci Adv 2024; 10: eado1508.
2. Cathomas F, Lin HY, Chan KL, et al. Circulating myeloid-derived MMP8 in stress susceptibility and depression. Nature 2024; 626: 1108–1115.
3. Kinlein SA, Phillips DJ, Keller CR, et al. Role of corticosterone in altered neurobehavioral responses to acute stress in a model of compromised hypothalamic-pituitary-adrenal axis function. Psychoneuroendocrinology 2019; 102: 248–255.
4. Hales CA, Stuart SA, Griffiths J, et al. Investigating neuropsychological and reward-related deficits in a chronic corticosterone-induced model of depression. Psychoneuroendocrinology 2023; 147: 105953.
5. McEwen BS. Glucocorticoids, depression, and mood disorders: structural remodeling in the brain. Metabolism 2005; 54: 20–23.
6. Pruessner M, Pruessner JC, Hellhammer DH, et al. The associations among hippocampal volume, cortisol reactivity, and memory performance in healthy young men. Psychiatry Res 2007; 155: 1–10.
7. Tournikioti K, Alevizaki M, Michopoulos I, et al. Differential association of cortisol with visual memory/learning and executive function in bipolar disorder. Psychiatry Res 2022; 307: 114301.
8. Knezevic E, Nenic K, Milanovic V, et al. The role of cortisol in chronic stress, neurodegenerative diseases, and psychological disorders. Cells 2023; 12: 2726.
9. Xing C, Zhou Y, Xu H, et al. Sleep disturbance induces depressive behaviors and neuroinflammation by altering the circadian oscillations of clock genes in rats. Neurosci Res 2021; 171: 124–132.
10. Nie D, Wang D, Wang Z, et al. The gut microbiome in patients with Cushing’s disease affects depression- and anxiety-like behavior in mice. Microbiome 2024; 12: 225.
11. Katragadda A, Kunadia J, Kirsch P, et al. Cognitive decline in Cushing’s syndrome: a systematic review. J Neuroendocrinol 2025; 37: e13466.
12. Ragnarsson O, Berglund P, Eder DN, et al. Long-term cognitive impairments and attentional deficits in patients with Cushing’s disease and cortisol-producing adrenal adenoma in remission. J Clin Endocrinol Metab 2012; 97: E1640–1648.
13. Fernandes MA, Hickle SD, Penna S, et al. Comparative analysis of cognitive and psychiatric functioning in people with Cushing’s disease in biochemical remission and people with nonfunctioning adenomas. Behav Neurol 2024; 2024: 4393169.
14. Yun SY, Yun JY, Lim C, et al. Exploring the complex link between obesity and intelligence: evidence from systematic review, updated meta-analysis, and Mendelian randomization. Obes Rev 2024; 25: e13827.
15. Le GH, Kwan A, Guo Z, et al. Impact of elevated body mass index (BMI) on cognitive functioning and inflammation in persons with post-COVID-19 condition: a secondary analysis. Acta Neuropsychiatr 2024; 36: 211–217.
16. Monserrat-Mesquida M, Quetglas-Llabrés M, Bouzas C, et al. Peripheral blood mononuclear cells oxidative stress and plasma inflammatory biomarkers in adults with normal weight, overweight and obesity. Antioxidants (Basel) 2021; 10: 813.
17. Neto A, Fernandes A, Barateiro A. The complex relationship between obesity and neurodegenerative diseases: an updated review. Front Cell Neurosci 2023; 17: 1294420.
18. Jing J, Liu C, Zhu W, et al. Increased resting-state functional connectivity as a compensatory mechanism for reduced brain volume in prediabetes and type 2 diabetes. Diabetes Care 2023; 46: 819–827.
19. González P, Lozano P, Ros G, et al. Hyperglycemia and oxidative stress: An integral, updated and critical overview of their metabolic interconnections. Int J Mol Sci 2023; 24: 9352.
20. Zhang S, Zhang Y, Wen Z, et al. Cognitive dysfunction in diabetes: abnormal glucose metabolic regulation in the brain. Front Endocrinol (Lausanne) 2023; 14: 1192602.
21. Logan RW, McClung CA. Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat Rev Neurosci 2019; 20: 49–65.
22. Chan KL, Poller WC, Swirski FK, et al. Central regulation of stress-evoked peripheral immune responses. Nat Rev Neurosci 2023; 24: 591–604.
23. Arnaldi G, Angeli A, Atkinson AB, et al. Diagnosis and complications of Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab 2003; 88: 5593–5602.
24. Agorastos A, Chrousos GP. The neuroendocrinology of stress: the stress-related continuum of chronic disease development. Mol Psychiatry 2022; 27: 502–513.
25. Shin HS, Lee SH, Moon HJ, et al. Prolonged stress response induced by chronic stress and corticosterone exposure causes adult neurogenesis inhibition and astrocyte loss in mouse hippocampus. Brain Res Bull 2024; 208: 110903.
26. de Leeuw M, Verhoeve SI, van der Wee N, et al. The role of the circadian system in the etiology of depression. Neurosci Biobehav Rev 2023; 153: 105383.

From Weight Gain To Diabetes

Cushing’s syndrome happens when the body has too much cortisol, the stress hormone. It can cause weight gain, high blood pressure, and diabetes. So how to keep your health in check and what are the treatment options available? In an exclusive interview with Times Now, an Endocrinologist explains its symptoms, causes, and treatments.
We often blame stress for everything—from sleepless nights to stubborn weight gain. But did you know your body’s stress hormone, cortisol, could be at the root of more serious health issues like high blood pressure and diabetes? Yes, you read that right! But how? We got in touch with Dr Pranav A Ghody, Endocrinologist at Wockhardt Hospital, Mumbai Central, who explains how excessive cortisol levels can lead to a condition known as Cushing’s Syndrome.
What Exactly is Cortisol, and Why is it Important?
Hormones are the body’s chemical messengers, travelling through the bloodstream to regulate essential functions. Among them, cortisol, produced by the adrenal glands (tiny glands sitting above the kidneys), plays a crucial role in controlling blood pressure, blood sugar, energy metabolism, and inflammation. The pituitary gland, located at the base of the brain, regulates cortisol through another hormone called Adrenocorticotropic Hormone (ACTH).
Often referred to as the “stress hormone,” cortisol spikes when we’re under stress. However, when levels remain high for too long, it can lead to Cushing’s Syndrome, a disorder first identified in 1912 by Dr Harvey Cushing.

What Causes Cushing’s Syndrome?

Dr Ghody explains that Cushing’s Syndrome occurs when the body is exposed to excessive cortisol, which can happen in two ways:

1. Exogenous (External) Cushing’s Syndrome
This is the most common form and results from prolonged use of steroid medications (such as prednisone) to treat conditions like asthma, rheumatoid arthritis, and lupus, or to prevent transplant rejection. Since steroids mimic cortisol, long-term use can disrupt the body’s hormone balance.
2. Endogenous (Internal) Cushing’s Syndrome
This occurs when the body produces too much cortisol due to a tumour in the pituitary gland, adrenal glands, or other organs (lungs, pancreas, thymus). While rare—affecting about 10 to 15 people per million annually—it’s more common in women between 20 and 50 years old. When caused by a pituitary tumour, it’s specifically called Cushing’s Disease.

Symptoms: How To Recognize Signs Of Cushing’s Syndrome

Excess cortisol affects multiple organs, leading to a variety of symptoms. This includes:

– Weight gain around the belly (central obesity)
– Rounded, puffy face (moon face)
– Excess facial and body hair (hirsutism)
– Fat accumulation on the upper back (buffalo hump)
– Thin arms and legs
– Dark red-purple stretch marks on the chest and abdomen
– Extreme fatigue and muscle weakness
– Depression or anxiety
– Easily bruising with minimal trauma
– Irregular menstrual cycles in women
– Reduced fertility or low sex drive
– Difficulty sleeping
High blood pressure and newly diagnosed or worsening diabetes are also common red flags.

Why is Cushing’s Syndrome Often Misdiagnosed?

Dr Ghody explains that while severe cases of Cushing’s Syndrome are easier to identify, milder forms can often be missed or mistaken for conditions like obesity, diabetes, or polycystic ovary syndrome (PCOS).

Diagnosing Cushing’s Syndrome involves:
1. Measuring cortisol levels in the blood, urine, or saliva.
2. Identifying the source through ACTH hormone testing, MRI/CT scans, and advanced techniques like Inferior Petrosal Sinus Sampling (IPSS) or nuclear medicine scans
Treatment Options: How is Cushing’s Syndrome Managed?
Once diagnosed, the treatment depends on the cause:
– If due to steroid medication, the dosage is gradually reduced under medical supervision.
– If caused by a tumour, surgery is the primary treatment. Some patients, especially those with pituitary tumours, may require repeat surgery, gamma knife radiosurgery, or medications to control cortisol levels.

Can You Prevent Cushing’s Syndrome?

While complete prevention isn’t always possible, Dr Ghody shares some key strategies to reduce risk:

– Use steroids cautiously – If prescribed, take the lowest effective dose for the shortest time. Never stop abruptly without consulting a doctor.
– Genetic screening for people at risk – If you have a family history of pituitary or adrenal tumours, regular monitoring can help with early detection.
– Maintain a healthy lifestyle – A diet rich in fresh vegetables, and fruits, low sodium intake, adequate calcium, and vitamin D can help manage the metabolic effects of excess cortisol.
– Avoid alcohol and tobacco – These can further disrupt hormone balance and overall health.
“Cushing’s Syndrome can be life-threatening if left untreated, but early diagnosis and proper management can significantly improve quality of life. So if you experience unexplained weight gain, blood pressure spikes, or other symptoms, consult an endocrinologist to manage hormonal imbalances,” he said.

‘Cortisol Face’ Is Real, But It’s Not As Common As You Might Think

Across social media platforms, the hashtag “#cortisolface” has gained traction, with many users claiming that facial swelling and puffiness are due to elevated cortisol levels. Influencers often start their videos with statements like, “You’re not ugly, you just have cortisol face,” and promote various remedies and lifestyle changes as solutions. However, experts warn that although high cortisol can contribute to these symptoms, it is not the sole cause of facial puffiness.

Before blindly believing social media trends, it’s crucial to explore the underlying causes, which might include medications, health conditions or lifestyle factors. Addressing high cortisol levels requires a different approach than what many of these social media influencers suggest.

Dr. Maria Olenick, associate professor at Texas A&M University School of Nursing, offers valuable insights into the concept of “cortisol face,” its effects on the body, and methods for lowering cortisol levels.

What Is ‘Cortisol Face’?

Although high cortisol levels are a factor in some cases of facial swelling and puffiness, the symptom is not as common as social media is making it out to be. In some cases, it’s not cortisol but the foods you eat. For example, eating a meal or snack that’s high in sodium can make you feel bloated because the salt can cause you to retain fluid and look a little puffier than normal.

“Some of the more severe things like moon face and other symptoms are what you might consider a serious issue when a person should really go and see their health care provider, because that would require some medical diagnosis,” Olenick said.

Moon face—or moon facies, in medical terminology—describes an increase of facial swelling due to high cortisol levels. This is a more serious condition that doesn’t just appear or disappear from one day to the next.

How Does Cortisol Affect The Body?

Cortisol is referred to as the body’s “built-in alarm system” because it plays a crucial role in the body’s response to stress, metabolism, immune activity and maintaining homeostasis. The amount of cortisol produced will differ from day to day due to different mental and physical stressors.

“Among healthy individuals, cortisol follows a diurnal pattern in which levels are higher upon waking, increase significantly over about 30 minutes, and steadily decrease from the peak throughout the rest of the day, reaching the nadir in the middle of the night,” said Olenick, whose research focuses on effective stress management techniques and therapies for veterans dealing with post-traumatic stress disorder (PTSD).

Hormones act as chemical messengers working through your bloodstream to regulate various bodily functions. Cortisol, often called the stress hormone, utilizes receptors that receive and use the hormone in different ways by communicating with your brain to control your mood, motivation and fear.

Different ways cortisol reacts and adapts to cope in a stress state include:

  • Regulating blood pressure
  • Regulating metabolism
  • Regulating blood sugar
  • Managing how your body uses carbohydrates, fats and proteins
  • Suppressing inflammation
  • Helping control your sleep/wake cycle
  • Aiding in forming memories

Cortisol secretion is regulated by a hormonal axis through a feedback loop that involves your hypothalamus, pituitary gland, adrenal glands and certain hormones known as the hypothalamic-pituitary-adrenal (HPA) axis. The hypothalamus and pituitary gland in your brain monitor your blood’s cortisol levels before signaling the adrenal glands, which sit on top of each kidney. When a change in cortisol levels is detected, your adrenal glands react to these signals by adjusting the amount of cortisol needed to be released.

The feedback system starts when the hypothalamus detects stress and releases corticotrophin-releasing hormone (CRH) accordingly. This hormone travels into the pituitary gland, signaling it to secrete adrenocorticotropic hormone (ACTH). ACTH will then make its way to the adrenal glands, stimulating them to produce cortisol. Once produced, cortisol is released into the bloodstream, where it helps regulate various functions including stress response, metabolism and immune activity. The HPA axis feedback loop is completed when cortisol levels rise and signal the hypothalamus to reduce CRH production, which maintains an effective secretion loop.

What Causes High Cortisol Levels?

Cortisol is increased at times of stress for your body, but our bodies aren’t designed to handle long-term stress. When there’s too much cortisol or an excess amount of cortisol produced, it can cause major changes in your body’s everyday functions.

Chronic emotional or physical distress can lead to sustained high levels of cortisol as part of the body’s stress response system. Stress activates signals that prompt the adrenal glands to release hormones like adrenaline and cortisol, leading to an increased heart rate and heightened energy for the fight-or-flight response.

Cortisol temporarily suppresses non-essential functions such as digestion, reproduction and inflammation in the short term to prepare for danger. However, if stress is constant, this response can remain active, which can negatively impact many bodily functions such as sleep, weight management, memory, focus and mental health. Chronic stress can also increase the risk of anxiety, depression, digestive issues, headaches, muscle tension, pain and high blood pressure.

However, stress is not the only culprit for excess cortisol levels. It could indicate serious underlying health issues.

“You need to make sure that if you are having issues with cortisol levels that you don’t really have a tumor or something more serious. If you feel like you are having symptoms and they’re not resolved by implementing lifestyle changes, make sure you see a health care provider, because that could be something very different and it might need significant medical care,” Olenick said.

Cushing Syndrome

Cushing syndrome, also known as hypercortisolism, is characterized by excessive levels of cortisol in the body. Prolonged use of corticosteroid medications can result in exogenous Cushing syndrome, where the excess cortisol originates from external sources rather than the body’s own production. One common cause of high cortisol levels is the use of glucocorticoid medications, such as prednisone, which are prescribed for inflammatory conditions like asthma, rheumatoid arthritis and lupus.

“Sometimes people are on steroids such as prednisone for a different condition. When you’re taking steroids, if you start to show signs of serious cortisol issues, talk to your provider,” Olenick said.

Another significant cause of Cushing syndrome is pituitary tumors that secrete excessive amounts of ACTH, which overstimulates the adrenal glands to produce more cortisol. This form of Cushing syndrome, known as Cushing disease, is attributed to benign pituitary adenomas and accounts for a large proportion of cases in both adults and children. Effective management of Cushing syndrome involves addressing the underlying cause, which may include surgical removal of tumors or adjusting medication regimens to reduce cortisol levels and mitigate associated health challenges.

Adrenal gland tumors can also contribute to high cortisol levels. These tumors may be benign or malignant, leading to similar symptoms as those caused by pituitary tumors. Tumors affecting either the pituitary gland or adrenal glands can lead to elevated cortisol levels, but most of these tumors are noncancerous and may be manageable with proper medical care.

Understanding the underlying causes of high cortisol levels is crucial for appropriate diagnosis and treatment, as the medical implications of these conditions extend beyond the portrayals seen in popular media.

What Are Common Symptoms Of High Cortisol Levels?

Having the right cortisol balance is essential for your health, and producing too much or too little can cause health problems, including:

  • Puffiness or weight gain in the face
  • Weight gain in the midsection or abdomen
  • Excess fat behind the neck, above the back
  • Memory and concentration problems, or brain fog
  • Trouble sleeping, or insomnia
  • Severe fatigue
  • High blood pressure
  • Psychiatric disturbances

Symptoms may vary, so the only real way to validate if your cortisol levels are higher than normal is to get them checked, either with blood, urine or saliva tests. When Olenick evaluates cortisol levels in veterans for PTSD research, her preferred method is to collect samples of saliva. A saliva test can be conducted at home, but it’s most effective when collected at different times throughout the day.

How Can Someone Lower Their Cortisol Levels?

Maintaining a healthy diet, sticking to a regular sleep schedule and incorporating regular, moderate exercise can all help lower cortisol. It’s also important to manage stress effectively; this can involve finding healthy ways to cope with stress, such as talking to someone you trust or allowing yourself time to relax and unwind. Self-care is crucial—taking breaks and engaging in activities that rejuvenate you is not a waste of time but a necessary part of maintaining balance.

Avoid extreme measures like severe caloric restriction or high-intensity workouts, which can increase cortisol levels due to the stress they place on the body. Instead, go for low-intensity exercises like walking. Additionally, Olenick says natural remedies and supplements, such as apple cider vinegar and vitamins, may support cortisol management, but it’s wise to monitor their effects and consult with a health care provider if needed. Ultimately, finding a balance between self-care, stress management and maintaining a healthy lifestyle is key to controlling cortisol levels effectively.

“There are a lot of things you can do to regulate your cortisol, like eating well, sleeping well and lowering our stress. Basically, things to take care of ourselves,” Olenick said.

Olenick says social media platforms are great attention grabbers, but it’s important to take health trends with a grain of salt and pay attention to your body’s needs. If you relate to any of the symptoms and feel concerned about your cortisol levels, notify your health care provider and seek medical attention.

This article by Teresa Saenz originally appeared on Vital Record.

7 Things Your Hair Reveals About Your Health

Your hair can tell you and your doctor if you are stressed, have a nutritional deficiency, thyroid problem, or other health issues. Here are seven key things to look for in your hair.

You probably think about your hair every day: worrying about a bad day, enjoying a good blow-dry, or wondering if you have to try the new style you noticed in your favorite celebrity. But you may be missing the clues your hair reveals about your health. Research shows that changes in the look, texture, or thickness of your hair can be signs of underlying health issues. Here’s how to tell if your hair changes are due to a health condition, genetics, stress, or a nutritional deficiency.

1 Stress (and genes) can cause you to turn gray

Anyone who has observed the hairstyle changes of a President of the Republic from one campaign to another has noticed that stress seems to cause hair to turn white. A mouse study published in the journal Nature suggests that chronic stress may actually contribute to white hair by causing DNA damage and reducing the number of pigment-producing cells in hair follicles. Stress can also lead to hair loss.

Another type of stress, known as oxidative stress, can also play a role in white hair. Oxidative stress can affect pigment-producing cells. Turning gray is actually a completely natural part of aging because hair follicles produce less color as you age. Your genes also play a role in when your hair turns gray. Ask your parents how old they were when they first saw the signs of silvering, and you might do the same. In fact, a study published in March 2016 in the journal Nature Communications was the first to identify the gene responsible for white hair.

2 brittle hair could be a sign of Cushing’s syndrome

Brittle hair is one of the symptoms of Cushing’s syndrome, which is a rare condition caused by excess cortisol, the main hormone body stress. But, there are many other, more obvious symptoms of Cushing’s syndrome, including high blood pressure, fatigue, and back pain. Treatment for Cushing’s syndrome may involve changing the dose of medication that may be causing the condition, such as glucocorticoids, which are steroids used to treat inflammation caused by various diseases.

3 Thinning hair may be a sign of thyroid disease

People with hypothyroidism, a condition that occurs when the thyroid gland does not produce enough thyroid hormones, may notice increased hair loss and change in hair appearance. About 4.6% of the population aged 12 years and older have hypothyroidism, although most cases are mild. Hypothyroidism can lead to thinning hair and other symptoms, such as fatigue, intolerance to cold, joint pain, muscle aches, puffy face and weight gain. A thyroid stimulating hormone (TSH) test can diagnose the condition, and treatment involves taking thyroid medication.

In addition to thinning hair, some thyroid disorders put you at risk for risk of autoimmune hair loss called alopecia areata. This type of hair loss causes round patches of sudden hair loss and is caused by the immune system attacking the hair follicles.

4 Hair loss can be a sign of anemia

If you suddenly notice a lot more hair in your hairbrush or on the floor of your shower, it may be a sign that your body has low iron stores, or anemia , and may warrant testing. This is another blood test we do when you complain of hair changes. Vegetarians or women with heavy periods increase their risk that hair changes are due to iron deficiency.

It is unclear why iron deficiency can lead to hair loss. hair, but iron is essential for many biological and chemical reactions, perhaps including hair growth. Hair loss can also occur (temporarily) with sudden changes in estrogen levels and is often noticed after pregnancy or stopping birth control pills.

5 The loss of hair could indicate protein deficiency

Protein is essential for hair health and growth (a lack of protein has been linked to hair thinning and hair loss ). Protein deficiency is not a problem for most people. Most adults need 0.8 grams of protein per kilogram of body weight. Good sources of protein include low-fat Greek yogurt, chickpeas, and chicken breast. People who have gastrointestinal difficulties or who have just had gastric bypass surgery may have problems digesting protein. These special situations will need to be managed with the help of your doctor. But most cases of thinning hair, even in women, are probably due to genetics.

6 White or yellow flakes can mean you have dandruff

Yellow or white flakes in your hair, on your shoulders and even in your eyebrows are a sign of dandruff, a chronic scalp condition. Dandruff is usually not a sign of a health problem and can be treated with specialized over-the-counter or prescription shampoos.

One of the most common causes of dandruff is a medical condition called seborrheic dermatitis. People with seborrheic dermatitis have red, oily skin covered in white or yellow scales. A yeast-like fungus called malassezia can also irritate the scalp. Insufficient shampoo, sensitivity to hair care products, and dry skin can also cause dandruff. (Dandruff is usually more severe in the winter, when indoor heating can make skin drier).

7 Damaged hair can mask other health issues

Although hair can reveal your condition, women more often complain about the damage caused by hair coloring and heat treatment. Excessive heat, from daily use of a flat iron or blow-drying, can certainly damage your hair, making it dry, brittle and difficult to maintain. Best not to use more than one hot tool per day (occasional double heat treatment is okay, but not daily). When applying heat to your hair, always use products with protective ingredients. Serums and shine drops tend to have hair-preserving qualities when using direct and indirect heat.

From https://www.mvdemocrat.com/appearance-texture-thickness-7-things-your-hair-reveals-about-your-health/

Adrenal Fatigue: Faux Diagnosis?

This article is based on reporting that features expert sources.

U.S. News & World Report

Adrenal Fatigue: Is It Real?

You may have heard of so-called ‘adrenal fatigue,’ supposedly caused by ongoing emotional stress. Or you might have come across adrenal support supplements sold online to treat it. But if someone suggests you have the controversial, unproven condition, seek a second opinion, experts say. And if someone tries to sell you dietary supplements or other treatments for adrenal fatigue, be safe and save your money.

Tired man sitting at desk in modern office

(GETTY IMAGES)

Physicians tend to talk about ‘reaching’ or ‘making’ a medical diagnosis. However, when it comes to adrenal fatigue, endocrinologists – doctors who specialize in diseases involving hormone-secreting glands like the adrenals – sometimes use language such as ‘perpetrating a diagnosis,’ ‘misdiagnosis,’ ‘made-up diagnosis,’ ‘a fallacy’ and ‘nonsense.’

About 20 years ago, the term “adrenal fatigue” was coined by Dr. James Wilson, a chiropractor. Since then, certain practitioners and marketers have promoted the notion that chronic stress somehow slows or shuts down the adrenal glands, causing excessive fatigue.

“The phenomenon emerged from the world of integrative medicine and naturopathic medicine,” says Dr. James Findling, a professor of medicine and director of the Community Endocrinology Center and Clinics at the Medical College of Wisconsin. “It has no scientific basis, and there’s no merit to it as a clinical diagnosis.”

An online search of medical billing code sets in the latest version of the International Classification of Diseases, or the ICD-10, does not yield a diagnostic code for ‘adrenal fatigue’ among the 331 diagnoses related either to fatigue or adrenal conditions or procedures.

In a March 2020 position statement, the American Association of Clinical Endocrinologists and American College of Endocrinology addressed the use of adrenal supplements “to treat common nonspecific symptoms due to ‘adrenal fatigue,’ an entity that has not been recognized as a legitimate diagnosis.”

The position statement warned of known and unknown health risks of off-label use and misuse of hormones and supplements in patients without an established endocrine diagnosis, as well as unnecessary costs to patients and the overall health care system.

Study after study has refuted the legitimacy of adrenal fatigue as a medical diagnosis. An August 2016 systematic review combined and analyzed data from 58 studies on adrenal fatigue including more than 10,000 participants. The conclusion in a nutshell: “Adrenal fatigue does not exist,” according to review authors in the journal BMC Endocrine Disorders.

Adrenal Action

You have two adrenal glands in your body. These small triangular glands, one on top of each kidney, produce essential hormones such as aldosterone, cortisol and male sex hormones such as DHEA and testosterone.

Cortisol helps regulate metabolism: How your body uses fat, protein and carbohydrates from food, and cortisol increases blood sugar as needed. It also plays a role in controlling blood pressure, preventing inflammation and regulating your sleep/wake cycle.

As your body responds to stress, cortisol increases. This response starts with signals between two sections in the brain: The hypothalamus and the pituitary gland, which act together to release a hormone that stimulates the adrenal glands to make cortisol. This interactive unit is called the hypothalamic pituitary adrenal axis.

While some health conditions really do affect the body’s cortisol-making ability, adrenal fatigue isn’t among them.

“There’s no evidence to support that adrenal fatigue is an actual medical condition,” says Dr. Mary Vouyiouklis Kellis, a staff endocrinologist at Cleveland Clinic. “There’s no stress connection in the sense that someone’s adrenal glands will all of a sudden just stop producing cortisol because they’re so inundated with emotional stress.”

If anything, adrenal glands are workhorses that rise to the occasion when chronic stress occurs. “The last thing in the body that’s going to fatigue are your adrenal glands,” says Dr. William F. Young Jr., an endocrinology clinical professor and professor of medicine in the Mayo Clinic College of Medicine at Mayo Clinic in Rochester, Minnesota. “Adrenal glands are built for stress – that’s what they do. Adrenal glands don’t fatigue. This is made up – it’s a fallacy.”

The idea of adrenal glands crumbling under stress is “ridiculous,” Findling agrees. “In reality, if you take a person and subject them to chronic stress, the adrenal glands don’t shut down at all,” Findling says. “They keep making cortisol – it’s a stress hormone. In fact, the adrenal glands are just like the Energizer Bunny – they just keep going. They don’t stop.”

Home cortisol tests that allow consumers to check their own levels can be misleading, Findling says. “Some providers who make this (adrenal fatigue) diagnosis, provide patients with testing equipment for doing saliva cortisol levels throughout the day,” he says. “And then, regardless of what the results are, they perpetrate this diagnosis of adrenal fatigue.”

Saliva cortisol is a legitimate test that’s frequently used in diagnosing Cushing’s syndrome, or overactive adrenal glands, Findling notes. However, he says, a practitioner pursuing an adrenal fatigue diagnosis could game the system. “What they do is: They shape a very narrow normal range, so narrow, in fact, that no normal human subject could have all their saliva cortisol (levels) within that range throughout the course of the day,” he says. “Then they convince the poor patients that they have adrenal fatigue phenomena and put them on some kind of adrenal support.”

Loaded Supplements

How do you know what you’re actually getting if you buy a dietary supplement marketed for adrenal fatigue or ‘adrenal support’ use? To find out, researchers purchased 12 such supplements over the counter in the U.S.

Laboratory tests revealed that all supplements contained a small amount of thyroid hormone and most contained at least one steroid hormone, according to the study published in the March 2018 issue of Mayo Clinic Proceedings. “These results may highlight potential risks for hidden ingredients in unregulated supplements,” the authors concluded.

Supplements containing thyroid hormones or steroids can interact with a patient’s prescribed medications or have other side effects.

“Some people just assume they have adrenal fatigue because they looked it up online when they felt tired and they ultimately buy these over-the-counter supplements that can be very dangerous at times,” Vouyiouklis Kellis says. “Some of them contain animal (ingredients), like bovine adrenal extract. That can suppress the pituitary axis. So, as a result, your body stops making its own cortisol or starts making less of it, and as a result, you can actually worsen the condition rather than make it better.”

Any form of steroid from outside the body, whether a prescription drug like prednisone or extract from cows’ adrenal glands, “can shut off the pituitary,” Vouyiouklis Kellis explains. “Because it’s signaling to the pituitary like: Hey, you don’t need to stimulate the adrenals to make cortisol, because this patient is taking it already. So, as a result, the body ultimately doesn’t produce as much. And, so, if you rapidly withdraw that steroid or just all of a sudden decide not to take it anymore, then you can have this acute response of low cortisol.”

Some adrenal support products, such as herbal-only supplements, may be harmless. However, they’re unlikely to relieve chronic fatigue.

Fatigue: No Easy Answers

If you’re suffering from ongoing fatigue, it’s frustrating. And you’re not alone. “I have fatigue,” Young Jr. says. “Go to the lobby any given day and say, ‘Raise your hand if you have fatigue.’ Most of the people are going to raise their hands. It’s a common human symptom and people would like an easy answer for it. Usually there’s not an easy answer. I think ‘adrenal fatigue’ is attractive because it’s like: Aha, here’s the answer.”

There aren’t that many causes of endocrine-related fatigue, Young Jr. notes. “Hypothyroidism – when the thyroid gland is not working – is one.” Addison’s disease, or adrenal insufficiency, can also lead to fatigue among a variety of other symptoms. Established adrenal conditions – like adrenal insufficiency – need to be treated.

“In adrenal insufficiency, there is an intrinsic problem in the adrenal gland’s inability to produce cortisol,” Vouyiouklis Kellis explains. “That can either be a primary problem in the adrenal gland or an issue with the pituitary gland not being able to stimulate the adrenal to make cortisol.”

Issues can arise even with necessary medications. “For example, very commonly, people are put on steroids for various reasons: allergies, ear, nose and throat problems,” Vouyiouklis Kellis says. “And with the withdrawal of the steroids, they can ultimately have adrenal insufficiency, or decrease in cortisol.”

Opioid medications for pain also result in adrenal sufficiency, Vouyiouklis Kellis says, adding that this particular side effect is rarely discussed. People with a history of autoimmune disease can also be at higher risk for adrenal insufficiency.

Common symptoms of adrenal insufficiency include:

  • Fatigue.
  • Weight loss.
  • Decreased appetite.
  • Salt cravings.
  • Low blood pressure.
  • Abdominal pain.
  • Nausea, vomiting or diarrhea.
  • Muscle weakness.
  • Hyperpigmentation (darkening of the skin).
  • Irritability.

Medical tests for adrenal insufficiency start with blood cortisol levels, and tests for the ACTH hormone that stimulates the pituitary gland.

“If the person does not have adrenal insufficiency and they’re still fatigued, it’s important to get to the bottom of it,” Vouyiouklis Kellis says. Untreated sleep apnea often turns out to be the actual cause, she notes.

“It’s very important to tease out what’s going on,” Vouyiouklis Kellis emphasizes. “It can be multifactorial – multiple things contributing to the patient’s feeling of fatigue.” The blood condition anemia – a lack of healthy red blood cells – is another potential cause.

“If you are fatigued, do not treat yourself,” Vouyiouklis Kellis says. “Please seek a physician or a primary care provider for evaluation, because you don’t want to go misdiagnosed or undiagnosed. It’s very important to rule out actual causes that would be contributing to symptoms rather than ordering supplements online or seeking an alternative route like self-treating rather than being evaluated first.”

SOURCES

The U.S. News Health team delivers accurate information about health, nutrition and fitness, as well as in-depth medical condition guides. All of our stories rely on multiple, independent sources and experts in the field, such as medical doctors and licensed nutritionists. To learn more about how we keep our content accurate and trustworthy, read our editorial guidelines.

James Findling, MDFindling is a professor of medicine and director of the Community Endocrinology Center and Clinics at the Medical College of Wisconsin.

Mary Vouyiouklis Kellis, MDVouyiouklis Kellis is a staff endocrinologist at Cleveland Clinic.

William F. Young Jr., MDYoung Jr. is an endocrinology clinical professor and professor of medicine in the Mayo Clinic College of Medicine at Mayo Clinic in Rochester, Minnesota

From https://health.usnews.com/health-care/patient-advice/articles/adrenal-fatigue-is-it-real?