Helpful Endocrinologist in Pittsburgh, Pennsylvania

Dr. Murray Gordon is an endocrinologist in Pittsburgh, Pennsylvania and is affiliated with multiple hospitals in the area, including Allegheny General Hospital and Washington Hospital. He received his medical degree from Albany Medical College and has been in practice for more than 20 years. Dr. Gordon accepts several types of health insurance, listed below. He is one of 8 doctors at Allegheny General Hospital and one of 3 at Washington Hospital who specialize in Endocrinology, Diabetes & Metabolism.

Dr. Gordon is in private practice and has an  experienced research site that is currently recruiting for a Cushing’s Syndrome Trial.  If interested in this trial, please call Ann at 412-359-5143.

 

420 E North Ave
Suite 205
Pittsburgh, PA 15212

Phone (412) 359-3426

Fax (412) 359-6974

Pituitary dysfunction after traumatic brain injury: are there definitive data in children?

Arch Dis Child doi:10.1136/archdischild-2016-311609

  1. Correspondence toDr Paula Casano-Sancho, Pediatric Endocrinology Unit, Sant Joan de Déu Hospital, Passeig Sant Joan de Déu, Santa Rosa 39-57, Esplugues, Barcelona 08950, Spain; pcasano@hsjdbcn.org
  • Received 14 July 2016
  • Revised 26 October 2016
  • Accepted 27 October 2016
  • Published Online First 21 November 2016

Abstract

In the past decade, several studies in adults and children have described the risk of pituitary dysfunction after traumatic brain injury (TBI). As a result, an international consensus statement recommended follow-up on the survivors. This paper reviews published studies regarding hypopituitarism after TBI in children and compares their results.

The prevalence of hypopituitarism ranges from 5% to 57%. Growth hormone (GH) and ACTH deficiency are the most common, followed by gonadotropins and thyroid-stimulating hormone. Paediatric studies have failed to identify risk factors for developing hypopituitarism, and therefore we have no tools to restrict screening in severe TBI. In addition, the present review highlights the lack of a unified follow-up and the fact that unrecognised pituitary dysfunction is frequent in paediatric population.

The effect of hormonal replacement in patient recovery is important enough to consider baseline screening and reassessment between 6 and 12 months after TBI. Medical community should be aware of the risk of pituitary dysfunction in these patients, given the high prevalence of endocrine dysfunction already reported in the studies. Longer prospective studies are needed to uncover the natural course of pituitary dysfunction, and new studies should be designed to test the benefit of hormonal replacement in metabolic, cognitive and functional outcome in these patients.

From http://adc.bmj.com/content/early/2016/11/21/archdischild-2016-311609.short?rss=1

Adrenal Insufficiency: Primary and Secondary

By Dr Tomislav Meštrović, MD, PhD

Adrenal insufficiency is a condition that develops when most of the adrenal gland is not functioning normally. Primary adrenal insufficiency arises due to the damage of the glands or because of using drugs that halt synthesis of cortisol. On the other hand, secondary adrenal insufficiency stems from processes that inhibit the secretion of the adrenocorticotropic hormone (ACTH) by the hypophysis as a result of a hypothalamic or pituitary pathology. The former is sometimes also referred to as tertiary adrenal insufficiency.

Adrenal insufficiency is still a significant challenge for both patients and their physicians, but also scientists and researchers. In the past decade, long-term studies with adequate follow-up have shown a surge in mortality and morbidity, as well as impaired quality of life in individuals with this condition.

Primary Adrenal Insufficiency

In developed countries, the most common cause of primary adrenal insufficiency is autoimmune adrenalitis, whereas in the developing world tuberculosis is still considered a primary causative factor. Moreover, in young males, an X-linked adrenoleukodystrophy (also known as the less severe form of adrenomyeloneuropathy) must also be considered.

Histopathologically, in autoimmune primary adrenal insufficiency, there is a diffuse mononuclear cell infiltrate that can gradually progress to atrophy. Primary adrenal insufficiency is linked to both cortisol and mineralocorticoid deficiency.

Recent research drew attention to drug-related and infectious causes of adrenal insufficiency. Antifungal agents are known to substantially reduce cortisol synthesis, while imunosuppression associated with human immunodeficiency virus (HIV) has resulted in a resurgence of infectious causes, most notably tuberculous and CMV adrenalitis.

Secondary Adrenal Insufficiency

Secondary adrenal insufficiency has three principal causes: adrenal suppression after exogenous glucocorticoid or ACTH administration, abnormalities of the hypothalamus or pituitary gland that lead to ACTH deficiency, as well as adrenal suppression upon the correction of endogenous glucocorticoid hypersecretion.

Any lesion of the hypophysis or hypothalamus can result in secondary adrenal insufficiency; some of the examples are space-occupying lesions such as adenomas, craniopharyngiomas, sarcoidosis, fungal infections, trauma, and also metastases from distant malignant processes.

The histologic appearance of the adrenal glands in secondary adrenal insufficiency can range from normal to complete atrophy of the cortex (with preserved medulla). In contrast to primary adrenal insufficiency, secondary types are associated with the lack of cortisol, but not mineralocorticoid deficiency.

Clinical Features of Adrenal Insufficiency

The clinical presentation of adrenal insufficiency is related to the rate of onset and severity of adrenal deficiency. In a large number of cases, the disease has a gradual onset, thus the diagnosis can be made only when the affected individual presents with an acute crisis due to an inadequate rise in cortisol secretion during a physiologic stress. Such acute adrenal insufficiency (also known as the Addisonian crisis) is a medical emergency.

On the other hand, the course of chronic adrenal insufficiency is more subtle and insidious, with the predomination of symptoms such as fatigue, weakness, weight loss, diarrhea or constipation, muscle cramps, pain in joints and postural hypotension (low blood pressure). Salt craving and low-grade fever may also be present.

The classic physical finding that can help in differentiating primary from secondary adrenal failure is hyperpigmentation of the skin or the “suntan that does not fade”. Furthermore, patients with secondary adrenal insufficiency may present with additional symptoms related to pituitary disease (e.g., menstrual disturbances, loss of libido, galactorrhea, or hypothyroidism).

Laboratory Findings and Management

In cases of adrenal insufficiency, the complete blood count usually reveals anemia, neutropenia, eosinophilia, and relative lymphocytosis. Common chemical abnormalities include metabolic acidosis and prerenal azotemia, while hyponatremia, hypoglycemia, and hyperkalemia may also be present.

A cosyntropin stimulation test (also known as ACTH or Synacthen test) is required to establish the diagnosis of adrenal insufficiency. Magnetic resonance imaging (MRI) of the hypophysis in secondary adrenal insufficiency and computed tomography (CT) of the adrenal glands in primary adrenal insufficiency can aid in establishing a diagnosis. The adrenal glands appear normal in cases of autoimmune disorder.

Glucocorticoid replacement in patients with adrenal insufficiency can be lifesaving. Nevertheless, renal crisis is still a threat to patients’ lives, which is why awareness and adequate preventative measures receive increasing attention in the recent years.

Reviewed by Susha Cheriyedath, MSc

From http://www.news-medical.net/health/Adrenal-Insufficiency-Primary-and-Secondary.aspx

Low Oxytocin Levels Linked to Reduced Empathy

People suffering from low levels of oxytocin perform worse on empathy tasks, according to new research presented at the 2016 Society for Endocrinology annual conference.

The research suggests that hormone replacement could improve the psychological well-being of those living with low levels, according to researchers at the University of Cardiff.

Oxytocin is often referred to as the “love hormone” due to its role in human behavior, including sexual arousal, recognition, trust, anxiety, and mother-infant bonding. It is produced by the hypothalamus — an area of the brain that controls mood and appetite — and stored in the pituitary gland.

For the study, researchers investigated empathic behavior in people who they suspected of having reduced oxytocin levels due to one of two medical conditions caused in response to pituitary surgery.

The study assessed 20 people with cranial diabetes insipidus (CDI). In CDI, the body has reduced levels of ADH, a chemical also produced in the hypothalamus and structurally very similar to oxytocin.

The researchers also assessed 15 people with hypopituitarism (HP), a condition in which the pituitary gland does not release enough hormones.

These two patient groups were compared to a group of 20 healthy people.

The researchers gave all participants two tasks designed to test empathy, both relating to the recognition of emotional expression. They also measured each group’s oxytocin levels and found that the 35 CDI and HP participants had slightly lower oxytocin compared to the healthy people. The researchers noted that a larger sample is required to establish statistical significance.

The researchers also discovered that the CDI and HP groups performed significantly worse on empathy tasks, compared to the healthy control group. In particular, CDI participants’ ability to identify expressions was predicted by their oxytocin levels — those with the lowest levels of oxytocin produced the worst performances, according to the study’s findings.

“This is the first study which looks at low oxytocin as a result of medical, as opposed to psychological, disorders,” said Katie Daughters, lead researcher. “If replicated, the results from our patient groups suggest it is also important to consider medical conditions carrying a risk of low oxytocin levels.”

“Patients who have undergone pituitary surgery, and in particular those who have acquired CDI as a consequence, may present with lower oxytocin levels,” she continued. “This could impact on their emotional behavior, and in turn affect their psychological well-being. Perhaps we should be considering the introduction of oxytocin level checks in these cases.”

The researchers said they hope to expand their study to further replicate and confirm their findings. They added that the study presents only preliminary results, and has not been peer reviewed.

Source: Society for Endocrinology

From http://psychcentral.com/news/2016/11/06/low-oxytocin-levels-linked-to-reduced-empathy/112110.html

Hydrocortisone Dosing for Adrenal Insufficiency

In a randomized crossover study, higher doses resulted in modestly higher blood pressure.

No universally accepted glucocorticoid replacement dose exists for patients with adrenal insufficiency. When hydrocortisone is used, divided doses often are given to mimic natural diurnal variation (higher dose early, lower dose later). In this double-blind crossover study, researchers compared the blood pressure effects of higher and lower hydrocortisone doses in 46 Dutch patients with secondary adrenal insufficiency. Each patient received courses of high-dose and low-dose hydrocortisone (10 weeks each, in random order), according to a dosing protocol. For example, a 70-kg patient received 15 mg daily during the low-dose phase (7.5 mg, 5.0 mg, and 2.5 mg before breakfast, lunch, and dinner, respectively), and twice these amounts during the high-dose phase.

Mean blood pressure was significantly higher at the end of the high-dose phase, compared with the low-dose phase (systolic/diastolic difference, 5/2 mm Hg). Plasma renin and aldosterone levels were lower with high-dose than with low-dose hydrocortisone, presumably reflecting hydrocortisone’s mineralocorticoid activity.

COMMENT

Although the higher blood pressure with high-dose hydrocortisone was modest, it conceivably could be consequential over many years of treatment. However, these researchers have published quality-of-life outcomes from this study elsewhere (Neuroendocrinology 2016; 103:771), and those outcomes generally were better with high-dose than with low-dose therapy. This study was too brief to be definitive, but it does highlight potential tradeoffs involved in glucocorticoid dosing for adrenal insufficiency. Whether the findings apply to patients with primary adrenal insufficiency is unclear.

EDITOR DISCLOSURES AT TIME OF PUBLICATION

  • Disclosures for Allan S. Brett, MD at time of publication Nothing to disclose

CITATION(S):

From http://www.jwatch.org/na42734/2016/11/03/hydrocortisone-dosing-adrenal-insufficiency

%d bloggers like this: