New discoveries offer possible Cushing’s disease cure

LOS ANGELES — More than a century has passed since the neurosurgeon and pathologist Harvey Cushing first discovered the disease that would eventually bear his name, but only recently have several key discoveries offered patients with the condition real hope for a cure, according to a speaker here.

There are several challenges clinicians confront in the diagnosis and treatment of Cushing’s disease, Shlomo Melmed, MB, ChB, FRCP, MACP, dean, executive vice president and professor of medicine at Cedars-Sinai Medical Center in Los Angeles, said during a plenary presentation. Patients who present with Cushing’s disease typically have depression, impaired mental function and hypertension and are at high risk for stroke, myocardial infarction, thrombosis, dyslipidemia and other metabolic disorders, Melmed said. Available therapies, which range from surgery and radiation to the somatostatin analogue pasireotide (Signifor LAR, Novartis), are often followed by disease recurrence. Cushing’s disease is fatal without treatment; the median survival if uncontrolled is about 4.5 years, Melmed said.

“This truly is a metabolic, malignant disorder,” Melmed said. “The life expectancy today in patients who are not controlled is apparently no different from 1930.”

The outlook for Cushing’s disease is now beginning to change, Melmed said. New targets are emerging for treatment, and newly discovered molecules show promise in reducing the secretion of adrenocorticotropic hormone (ACTH) and pituitary tumor size.

“Now, we are seeing the glimmers of opportunity and optimism, that we can identify specific tumor drivers — SST5, [epidermal growth factor] receptor, cyclin inhibitors — and we can start thinking about personalized, precision treatment for these patients with a higher degree of efficacy and optimism than we could have even a year or 2 ago,” Melmed said. “This will be an opportunity for us to broaden the horizons of our investigations into this debilitating disorder.”

Challenges in diagnosis, treatment

Overall, about 10% of the U.S. population harbors a pituitary adenoma, the most common type of pituitary disorder, although the average size is only about 6 mm and 40% of them are not visible, Melmed said. In patients with Cushing’s disease, surgery is effective in only about 60% to 70% of patients for initial remission, and overall, there is about a 60% chance of recurrence depending on the surgery center, Melmed said. Radiation typically leads to hypopituitarism, whereas surgical or biochemical adrenalectomy is associated with adverse effects and morbidity. Additionally, the clinical features of hypercortisolemia overlap with many common illnesses, such as obesity, hypertension and type 2 diabetes.

“There are thousands of those patients for every patient with Cushing’s disease who we will encounter,” Melmed said.

The challenge for the treating clinician, Melmed said, is to normalize cortisol and ACTH with minimal morbidity, to resect the tumor mass or control tumor growth, preserve pituitary function, improve quality of life and achieve long-term control without recurrence.

“This is a difficult challenge to meet for all of us,” Melmed said.

Available options

Pituitary surgery is typically the first-line option offered to patients with Cushing’s disease, Melmed said, and there are several advantages, including rapid initial remission, a one-time cost and potentially curing the disease. However, there are several disadvantages with surgery; patients undergoing surgery are at risk for postoperative venous thromboembolism, persistent hypersecretion of ACTH, adenoma persistence or recurrence, and surgical complications.

Second-line options are repeat surgery, radiation, adrenalectomy or medical therapy, each with its own sets of pros and cons, Melmed said.

“The reality of Cushing’s disease — these patients undergo first surgery and then recur, second surgery and then recur, then maybe radiation and then recur, and then they develop a chronic illness, and this chronic illness is what leads to their demise,” Melmed said. “Medical therapy is appropriate at every step of the spectrum.”

Zebrafish clues

Searching for new options, Melmed and colleagues introduced a pituitary tumor transforming gene discovered in his lab into zebrafish, which caused the fish to develop the hallmark features of Cushing’s disease: high cortisol levels, diabetes and cardiovascular disease. In the fish models, researchers observed that cyclin E activity, which drives the production of ACTH, was high.

Melmed and colleagues then screened zebrafish larvae in a search for cyclin E inhibitors to derive a therapeutic molecule and discovered R-roscovitine, shown to repress the expression of proopiomelanocortin (POMC), the pituitary precursor of ACTH.

In fish, mouse and in vitro human cell models, treatment with R-roscovitine was associated with suppressed corticotroph tumor signaling and blocked ACTH production, Melmed said.

“Furthermore, we asked whether or not roscovitine would actually block transcription of the POMC gene,” Melmed said. “It does. We had this molecule (that) suppressed cyclin E and also blocks transcription of POMC leading to blocked production of ACTH.”

In a small, open-label, proof-of-principal study, four patients with Cushing’s disease who received roscovitine for 4 weeks developed normalized urinary free cortisol, Melmed said.

Currently, the FDA Office of Orphan Products Development is funding a multicenter, phase 2, open-label clinical trial that will evaluate the safety and efficacy of two of three potential doses of oral roscovitine (seliciclib) in patients with newly diagnosed, persistent or recurrent Cushing disease. Up to 29 participants will be treated with up to 800 mg per day of oral seliciclib for 4 days each week for 4 weeks and enrolled in sequential cohorts based on efficacy outcomes.

“Given the rarity of the disorder, it will probably take us 2 to 3 years to recruit patients to give us a robust answer,” Melmed said. “This zebrafish model was published in 2011, and we are now in 2019. It has taken us 8 years from publication of the data to, today, going into humans with Cushing’s. Hopefully, this will light the pathway for a phase 2 trial.”

 Offering optimism’

Practitioners face a unique paradigm when treating patients with Cushing’s disease, Melmed said. Available first- and second-line therapy options often are not a cure for many patients, who develop multimorbidity and report a low quality of life.

“Then, we are kept in this difficult cycle of what to do next and, eventually, running out of options,” Melmed said. “Now, we can look at novel, targeted molecules and add those to our armamentarium and at least offer our patients the opportunity to participate in trials, or at least offer the optimism that, over the coming years, there will be a light at the end of the tunnel for their disorder.”

Melmed compared the work to Lucas Cranach’s Fons Juventutis (The Fountain of Youth). The painting, completed in 1446, shows sick people brought by horse-drawn ambulance to a pool of water, only to emerge happy and healthy.

“He was imagining this ‘elixir of youth’ (that) we could offer patients who are very ill and, in fact, that is what we as endocrinologists do,” Melmed said. “We offer our patients these elixirs. These Cushing’s patients are extremely ill. We are trying with all of our molecular work and our understanding of pathogenesis and signaling to create this pool of water for them, where they can emerge with at least an improved quality of life and, hopefully, a normalized mortality. That is our challenge.” – by Regina Schaffer

Reference:

Melmed S. From zebrafish to humans: translating discoveries for the treatment of Cushing’s disease. Presented at: AACE Annual Scientific and Clinical Congress; April 24-28, 2019; Los Angeles.

Disclosure: Melmed reports no relevant financial disclosures.

 

From https://www.healio.com/endocrinology/neuroendocrinology/news/online/%7B585002ad-640f-49e5-8d62-d1853154d7e2%7D/new-discoveries-offer-possible-cushings-disease-cure

Metastatic Pituitary Carcinoma Successfully Treated with Radiation, Chemo.

A man with Cushing’s disease — caused by an adrenocorticotrophic hormone (ACTH)-secreting pituitary adenoma — who later developed metastases in the central nervous system without Cushing’s recurrence, was successfully treated over eight years with radiation and chemotherapy, according to a case report.

The report, “Long-term survival following transformation of an adrenocorticotropic hormone secreting pituitary macroadenoma to a silent corticotroph pituitary carcinoma: Case report,” was published in the journal World Neurosurgery.

Pituitary carcinomas make up only 0.1-0.2% of all pituitary tumors and are characterized by a primary pituitary tumor that metastasizes into cranial, spinal, or systemic locations. Fewer than 200 cases have been reported in the literature.

Most of these carcinomas secrete hormones, with ACTH being the most common. Though the majority of ACTH-secreting carcinomas present with Cushing’s disease, about one-third do not show symptoms of the condition and have normal serum cortisol and ACTH levels. These are called silent corticotroph adenomas and are considered more aggressive.

A research team at the University of Alabama at Birmingham presented the case of a 51-year-old Caucasian man with ACTH-dependent Cushing’s disease. He had undergone an incomplete transsphenoidal (through the nose) resection of an ACTH-secreting pituitary macroadenoma – larger than 10 mm in size – and radiation therapy the year before.

At referral in August 1997, the patient had persistent high cortisol levels and partial hypopituitarism, or pituitary insufficiency. He exhibited Cushing’s symptoms, including facial reddening, moon facies, weight gain above the collarbone, “buffalo hump,” and abdominal stretch marks.

About two years later, the man was weaned off ketoconazole — a medication used to lower cortisol levels — and his cortisol levels had been effectively reduced. He also had no physical manifestations of Cushing’s apart from facial reddening.

In May 2010, the patient reported two episodes of partial seizures, describing two spells of right arm tingling, followed by impaired peripheral vision. Imaging showed a 2.1-by-1-cm mass with an associated cyst within the brain’s right posterior temporal lobe, as well as a 1.8-by-1.2-cm mass at the cervicomedullary junction, which is the region where the brainstem continues as the spinal cord. His right temporal cystic mass was then removed by craniotomy.

A histopathologic analysis was consistent with pituitary carcinoma. Cell morphology was generally similar to the primary pituitary tumor, but cell proliferation was higher. Physical exams showed no recurrence of Cushing’s disease and 24-hour free urinary cortisol was within the normal range.

His cervicomedullary metastasis was treated with radiation therapy in July 2010. He took the oral chemotherapy temozolomide until August 2011, and Avastin (bevacizumab, by Genentech) was administered from September 2010 to November 2012.

At present, the patient continues to undergo annual imaging and laboratory draws. He receives treatment with hydrocortisone, levothyroxine — synthetic thyroid hormone — and testosterone replacement with androgel.

His most recent exam showed no progression over eight years of a small residual right temporal cyst, a residual mass along the pituitary stalk — the connection between the hypothalamus and the pituitary gland — and a small residual mass at the cervicomedullary junction. Lab results continue to show no Cushing’s recurrence.

“Our case is the first to document a patient who initially presented with an endocrinologically active ACTH secreting pituitary adenoma and Cushing’s disease who later developed cranial and spinal metastases without recurrence of Cushing’s disease and transformation to a silent corticotroph pituitary carcinoma,” the scientists wrote.

They added that the report is also the first documenting “8 years of progression-free survival in a patient with pituitary carcinoma treated with radiotherapy, [temozolomide] and bevacizumab.”

Adapted from https://cushingsdiseasenews.com/2019/01/03/successful-treatment-pituitary-carcinoma-radiation-chemo-case-report/

Delayed complications after transsphenoidal surgery for pituitary adenomas

World Neurosurg. 2017 Oct 5. pii: S1878-8750(17)31710-2. doi: 10.1016/j.wneu.2017.09.192. [Epub ahead of print]

Abstract

Perioperative complications after transsphenoidal surgery for pituitary adenomas have been well documented in the literature; however, some complications can occur in a delayed fashion postoperatively and reports are sparse about their occurrence, management, and outcome.

Here, we describe delayed complications after transsphenoidal surgery and discuss the incidence, temporality from the surgery, and management of these complications based on the findings of studies that reported delayed postoperative epistaxis, delayed postoperative cavernous carotid pseudoaneurysm formation and rupture, vasospasm, delayed symptomatic hyponatremia (DSH), hypopituitarism, hydrocephalus, and sinonasal complications.

Our findings from this review revealed an incidence of 0.6-3.3% for delayed postoperative epistaxis at 1-3 weeks postoperatively, 18 reported cases of delayed carotid artery pseudoaneurysm formation at 2 days to 10 years postoperatively, 30 reported cases for postoperative vasospasm occurring 8 days postoperatively, a 3.6-19.8% rate of DSH at 4-7 days postoperatively, a 3.1% rate of new-onset hypopituitarism at 2 months postoperatively, and a 0.4-5.8% rate of hydrocephalus within 2.2 months postoperatively.

Sinonasal complications are commonly reported after transsphenoidal surgery, but spontaneous resolutions within 3-12 months have been reported. Although the incidence of some of these complications is low, providing preoperative counseling to patients with pituitary tumors regarding these delayed complications and proper postoperative follow-up planning is an important part of treatment planning.

KEYWORDS:

carotid pseudoaneurysm; cerebrospinal fluid leak; delayed complications; epistaxis; hydrocephalus; hyponatremia; hypopituitarism; pituitary; sinonasal complication; transsphenoidal surgery; tumor

Growth Hormone Deficiency Following Complicated Mild Traumatic Brain Injury

Traumatic brain injury (“TBI”) is considered the main cause of hypopituitarism in adults and growth hormone (“GH”)deficiency is the most common pituitary deficit associated with TBI.

According to Cedars-Sinai, even after we stop growing, adults need growth hormone. Growth hormone plays a role in healthy muscle, how our bodies collect fat (especially around the stomach area), the ratio of high density to low density lipoproteins in cholesterol levels, and bone density. In addition, growth hormone is needed for normal brain function.

A recent study aimed to assess pituitary function and GH deficiency in adult patients at different time durations following complicated mild TBI, according to the Glasgow Coma Scale (GCS). The study also aimed to evaluate whether mild TBI patients with GH deficiency had developed alterations in the glycolipid profile.

Forty-eight patients (34 men and 14 women) with complicated mild TBI were included in the study. Twenty-three patients were evaluated at 1 year (Group A), and 25 patients at 5 years or longer after the injury (Group B). All patients underwent basal hormonal evaluation for pituitary function. GH deficiency was investigated by the combined test (GH releasing hormone + arginine). The glycolipid profile was also evaluated.

Researchers report that GH deficiency occurred in 8/23 patients (34.7 percent) of Group A and in 12/25 patients (48 percent) of Group B. In addition, two patients, one in each group, showed evidence of central hypothyroidism. Patients examined one-year or several years after complicated mild TBI had a similarly high occurrence of isolated GH deficiency, which was associated with visceral adiposity and metabolic alterations.

These findings suggest that patients with complicated mild TBI should be evaluated for GH deficiency even if several years have passed since the underlying trauma.

From http://www.natlawreview.com/article/growth-hormone-deficiency-following-complicated-mild-traumatic-brain-injury

Pituitary dysfunction after traumatic brain injury: are there definitive data in children?

Arch Dis Child doi:10.1136/archdischild-2016-311609

  1. Correspondence toDr Paula Casano-Sancho, Pediatric Endocrinology Unit, Sant Joan de Déu Hospital, Passeig Sant Joan de Déu, Santa Rosa 39-57, Esplugues, Barcelona 08950, Spain; pcasano@hsjdbcn.org
  • Received 14 July 2016
  • Revised 26 October 2016
  • Accepted 27 October 2016
  • Published Online First 21 November 2016

Abstract

In the past decade, several studies in adults and children have described the risk of pituitary dysfunction after traumatic brain injury (TBI). As a result, an international consensus statement recommended follow-up on the survivors. This paper reviews published studies regarding hypopituitarism after TBI in children and compares their results.

The prevalence of hypopituitarism ranges from 5% to 57%. Growth hormone (GH) and ACTH deficiency are the most common, followed by gonadotropins and thyroid-stimulating hormone. Paediatric studies have failed to identify risk factors for developing hypopituitarism, and therefore we have no tools to restrict screening in severe TBI. In addition, the present review highlights the lack of a unified follow-up and the fact that unrecognised pituitary dysfunction is frequent in paediatric population.

The effect of hormonal replacement in patient recovery is important enough to consider baseline screening and reassessment between 6 and 12 months after TBI. Medical community should be aware of the risk of pituitary dysfunction in these patients, given the high prevalence of endocrine dysfunction already reported in the studies. Longer prospective studies are needed to uncover the natural course of pituitary dysfunction, and new studies should be designed to test the benefit of hormonal replacement in metabolic, cognitive and functional outcome in these patients.

From http://adc.bmj.com/content/early/2016/11/21/archdischild-2016-311609.short?rss=1

%d bloggers like this: