Metastatic Pituitary Carcinoma Successfully Treated with Radiation, Chemo.

A man with Cushing’s disease — caused by an adrenocorticotrophic hormone (ACTH)-secreting pituitary adenoma — who later developed metastases in the central nervous system without Cushing’s recurrence, was successfully treated over eight years with radiation and chemotherapy, according to a case report.

The report, “Long-term survival following transformation of an adrenocorticotropic hormone secreting pituitary macroadenoma to a silent corticotroph pituitary carcinoma: Case report,” was published in the journal World Neurosurgery.

Pituitary carcinomas make up only 0.1-0.2% of all pituitary tumors and are characterized by a primary pituitary tumor that metastasizes into cranial, spinal, or systemic locations. Fewer than 200 cases have been reported in the literature.

Most of these carcinomas secrete hormones, with ACTH being the most common. Though the majority of ACTH-secreting carcinomas present with Cushing’s disease, about one-third do not show symptoms of the condition and have normal serum cortisol and ACTH levels. These are called silent corticotroph adenomas and are considered more aggressive.

A research team at the University of Alabama at Birmingham presented the case of a 51-year-old Caucasian man with ACTH-dependent Cushing’s disease. He had undergone an incomplete transsphenoidal (through the nose) resection of an ACTH-secreting pituitary macroadenoma – larger than 10 mm in size – and radiation therapy the year before.

At referral in August 1997, the patient had persistent high cortisol levels and partial hypopituitarism, or pituitary insufficiency. He exhibited Cushing’s symptoms, including facial reddening, moon facies, weight gain above the collarbone, “buffalo hump,” and abdominal stretch marks.

About two years later, the man was weaned off ketoconazole — a medication used to lower cortisol levels — and his cortisol levels had been effectively reduced. He also had no physical manifestations of Cushing’s apart from facial reddening.

In May 2010, the patient reported two episodes of partial seizures, describing two spells of right arm tingling, followed by impaired peripheral vision. Imaging showed a 2.1-by-1-cm mass with an associated cyst within the brain’s right posterior temporal lobe, as well as a 1.8-by-1.2-cm mass at the cervicomedullary junction, which is the region where the brainstem continues as the spinal cord. His right temporal cystic mass was then removed by craniotomy.

A histopathologic analysis was consistent with pituitary carcinoma. Cell morphology was generally similar to the primary pituitary tumor, but cell proliferation was higher. Physical exams showed no recurrence of Cushing’s disease and 24-hour free urinary cortisol was within the normal range.

His cervicomedullary metastasis was treated with radiation therapy in July 2010. He took the oral chemotherapy temozolomide until August 2011, and Avastin (bevacizumab, by Genentech) was administered from September 2010 to November 2012.

At present, the patient continues to undergo annual imaging and laboratory draws. He receives treatment with hydrocortisone, levothyroxine — synthetic thyroid hormone — and testosterone replacement with androgel.

His most recent exam showed no progression over eight years of a small residual right temporal cyst, a residual mass along the pituitary stalk — the connection between the hypothalamus and the pituitary gland — and a small residual mass at the cervicomedullary junction. Lab results continue to show no Cushing’s recurrence.

“Our case is the first to document a patient who initially presented with an endocrinologically active ACTH secreting pituitary adenoma and Cushing’s disease who later developed cranial and spinal metastases without recurrence of Cushing’s disease and transformation to a silent corticotroph pituitary carcinoma,” the scientists wrote.

They added that the report is also the first documenting “8 years of progression-free survival in a patient with pituitary carcinoma treated with radiotherapy, [temozolomide] and bevacizumab.”

Adapted from https://cushingsdiseasenews.com/2019/01/03/successful-treatment-pituitary-carcinoma-radiation-chemo-case-report/

Delayed complications after transsphenoidal surgery for pituitary adenomas

World Neurosurg. 2017 Oct 5. pii: S1878-8750(17)31710-2. doi: 10.1016/j.wneu.2017.09.192. [Epub ahead of print]

Abstract

Perioperative complications after transsphenoidal surgery for pituitary adenomas have been well documented in the literature; however, some complications can occur in a delayed fashion postoperatively and reports are sparse about their occurrence, management, and outcome.

Here, we describe delayed complications after transsphenoidal surgery and discuss the incidence, temporality from the surgery, and management of these complications based on the findings of studies that reported delayed postoperative epistaxis, delayed postoperative cavernous carotid pseudoaneurysm formation and rupture, vasospasm, delayed symptomatic hyponatremia (DSH), hypopituitarism, hydrocephalus, and sinonasal complications.

Our findings from this review revealed an incidence of 0.6-3.3% for delayed postoperative epistaxis at 1-3 weeks postoperatively, 18 reported cases of delayed carotid artery pseudoaneurysm formation at 2 days to 10 years postoperatively, 30 reported cases for postoperative vasospasm occurring 8 days postoperatively, a 3.6-19.8% rate of DSH at 4-7 days postoperatively, a 3.1% rate of new-onset hypopituitarism at 2 months postoperatively, and a 0.4-5.8% rate of hydrocephalus within 2.2 months postoperatively.

Sinonasal complications are commonly reported after transsphenoidal surgery, but spontaneous resolutions within 3-12 months have been reported. Although the incidence of some of these complications is low, providing preoperative counseling to patients with pituitary tumors regarding these delayed complications and proper postoperative follow-up planning is an important part of treatment planning.

KEYWORDS:

carotid pseudoaneurysm; cerebrospinal fluid leak; delayed complications; epistaxis; hydrocephalus; hyponatremia; hypopituitarism; pituitary; sinonasal complication; transsphenoidal surgery; tumor

Growth Hormone Deficiency Following Complicated Mild Traumatic Brain Injury

Traumatic brain injury (“TBI”) is considered the main cause of hypopituitarism in adults and growth hormone (“GH”)deficiency is the most common pituitary deficit associated with TBI.

According to Cedars-Sinai, even after we stop growing, adults need growth hormone. Growth hormone plays a role in healthy muscle, how our bodies collect fat (especially around the stomach area), the ratio of high density to low density lipoproteins in cholesterol levels, and bone density. In addition, growth hormone is needed for normal brain function.

A recent study aimed to assess pituitary function and GH deficiency in adult patients at different time durations following complicated mild TBI, according to the Glasgow Coma Scale (GCS). The study also aimed to evaluate whether mild TBI patients with GH deficiency had developed alterations in the glycolipid profile.

Forty-eight patients (34 men and 14 women) with complicated mild TBI were included in the study. Twenty-three patients were evaluated at 1 year (Group A), and 25 patients at 5 years or longer after the injury (Group B). All patients underwent basal hormonal evaluation for pituitary function. GH deficiency was investigated by the combined test (GH releasing hormone + arginine). The glycolipid profile was also evaluated.

Researchers report that GH deficiency occurred in 8/23 patients (34.7 percent) of Group A and in 12/25 patients (48 percent) of Group B. In addition, two patients, one in each group, showed evidence of central hypothyroidism. Patients examined one-year or several years after complicated mild TBI had a similarly high occurrence of isolated GH deficiency, which was associated with visceral adiposity and metabolic alterations.

These findings suggest that patients with complicated mild TBI should be evaluated for GH deficiency even if several years have passed since the underlying trauma.

From http://www.natlawreview.com/article/growth-hormone-deficiency-following-complicated-mild-traumatic-brain-injury

Pituitary dysfunction after traumatic brain injury: are there definitive data in children?

Arch Dis Child doi:10.1136/archdischild-2016-311609

  1. Correspondence toDr Paula Casano-Sancho, Pediatric Endocrinology Unit, Sant Joan de Déu Hospital, Passeig Sant Joan de Déu, Santa Rosa 39-57, Esplugues, Barcelona 08950, Spain; pcasano@hsjdbcn.org
  • Received 14 July 2016
  • Revised 26 October 2016
  • Accepted 27 October 2016
  • Published Online First 21 November 2016

Abstract

In the past decade, several studies in adults and children have described the risk of pituitary dysfunction after traumatic brain injury (TBI). As a result, an international consensus statement recommended follow-up on the survivors. This paper reviews published studies regarding hypopituitarism after TBI in children and compares their results.

The prevalence of hypopituitarism ranges from 5% to 57%. Growth hormone (GH) and ACTH deficiency are the most common, followed by gonadotropins and thyroid-stimulating hormone. Paediatric studies have failed to identify risk factors for developing hypopituitarism, and therefore we have no tools to restrict screening in severe TBI. In addition, the present review highlights the lack of a unified follow-up and the fact that unrecognised pituitary dysfunction is frequent in paediatric population.

The effect of hormonal replacement in patient recovery is important enough to consider baseline screening and reassessment between 6 and 12 months after TBI. Medical community should be aware of the risk of pituitary dysfunction in these patients, given the high prevalence of endocrine dysfunction already reported in the studies. Longer prospective studies are needed to uncover the natural course of pituitary dysfunction, and new studies should be designed to test the benefit of hormonal replacement in metabolic, cognitive and functional outcome in these patients.

From http://adc.bmj.com/content/early/2016/11/21/archdischild-2016-311609.short?rss=1

Low Oxytocin Levels Linked to Reduced Empathy

People suffering from low levels of oxytocin perform worse on empathy tasks, according to new research presented at the 2016 Society for Endocrinology annual conference.

The research suggests that hormone replacement could improve the psychological well-being of those living with low levels, according to researchers at the University of Cardiff.

Oxytocin is often referred to as the “love hormone” due to its role in human behavior, including sexual arousal, recognition, trust, anxiety, and mother-infant bonding. It is produced by the hypothalamus — an area of the brain that controls mood and appetite — and stored in the pituitary gland.

For the study, researchers investigated empathic behavior in people who they suspected of having reduced oxytocin levels due to one of two medical conditions caused in response to pituitary surgery.

The study assessed 20 people with cranial diabetes insipidus (CDI). In CDI, the body has reduced levels of ADH, a chemical also produced in the hypothalamus and structurally very similar to oxytocin.

The researchers also assessed 15 people with hypopituitarism (HP), a condition in which the pituitary gland does not release enough hormones.

These two patient groups were compared to a group of 20 healthy people.

The researchers gave all participants two tasks designed to test empathy, both relating to the recognition of emotional expression. They also measured each group’s oxytocin levels and found that the 35 CDI and HP participants had slightly lower oxytocin compared to the healthy people. The researchers noted that a larger sample is required to establish statistical significance.

The researchers also discovered that the CDI and HP groups performed significantly worse on empathy tasks, compared to the healthy control group. In particular, CDI participants’ ability to identify expressions was predicted by their oxytocin levels — those with the lowest levels of oxytocin produced the worst performances, according to the study’s findings.

“This is the first study which looks at low oxytocin as a result of medical, as opposed to psychological, disorders,” said Katie Daughters, lead researcher. “If replicated, the results from our patient groups suggest it is also important to consider medical conditions carrying a risk of low oxytocin levels.”

“Patients who have undergone pituitary surgery, and in particular those who have acquired CDI as a consequence, may present with lower oxytocin levels,” she continued. “This could impact on their emotional behavior, and in turn affect their psychological well-being. Perhaps we should be considering the introduction of oxytocin level checks in these cases.”

The researchers said they hope to expand their study to further replicate and confirm their findings. They added that the study presents only preliminary results, and has not been peer reviewed.

Source: Society for Endocrinology

From http://psychcentral.com/news/2016/11/06/low-oxytocin-levels-linked-to-reduced-empathy/112110.html

%d bloggers like this: