Severe Trauma May Damage The Brain as Well as the Psyche

NOTE: This is only a portion of the article.  Read the entire post at http://www.nytimes.com/1995/08/01/science/severe-trauma-may-damage-the-brain-as-well-as-the-psyche.html?pagewanted=all

Cortisol is a major means the body uses, with adrenaline, to arouse itself so quickly; its action, for example, triggers an increase in blood pressure and mobilizes energy from fat tissue and the liver.

“The dark side of this picture is the neurological effects,” said Dr. Sapolsky. “It’s necessary for survival, but it can be disastrous if you secrete cortisol for months or years on end. We’ve known it could lead to stress-exacerbated diseases like hypertension or adult onset diabetes. But now we’re finding the hippocampus is also damaged by these secretions.”

Studies in animals show that when glucocorticoids are secreted at high levels for several hours or days, there is a detectable effect on memory, though no neuronal death. But with sustained release from repeated stress, “it eventually kills neurons in the hippocampus,” said Dr. Sapolsky. “This has been shown solidly in rats, with the cell biology well understood.”

A parallel effect has long been known among patients with Cushing’s disease, a hormonal condition in which tumors in the adrenal or pituitary glands or corticosteroid drugs used for a prolonged time cause the adrenal glands to secrete high levels of a hormone called ACTHm and of cortisol. Such patients are prone to a range of diseases “in any organ with stress sensitivity,” including diabetes, hypertension and suppression of the immune system, said Dr. Sapolsky.

Cushing’s patients also have pronounced memory problems, especially for facts like where a car was parked. “The hippocampus is essential for transferring such facts from short-term to long-term memory,” said Dr. Sapolsky.

In 1993, researchers at the University of Michigan reported that magnetic resonance imaging had shown an atrophy and shrinkage of the hippocampus in patients with Cushing’s disease; the higher their levels of cortisol, the more shrinkage.

In an apparent paradox, low levels of cortisol in post-trauma victims were found in a separate research report, also in the July issue of The American Journal of Psychiatry. Dr. Rachel Yehuda, a psychologist at Mount Sinai Medical School in New York City, found the lower levels of cortisol in Holocaust survivors who had been in concentration camps 50 years ago and who still had post-traumatic symptoms.

“There are mixed findings on cortisol levels in trauma victims, with some researchers finding very high levels and others finding very low levels,” said Dr. Sapolsky. “Biologically speaking, there may be different kinds of post-traumatic stress.”

In a series of studies, Dr. Yehuda has found that those post-trauma patients who have low cortisol levels also seem to have “a hypersensitivity in cell receptors for cortisol,” she said. To protect itself, the body seems to reset its cortisol levels at a lower point.

The low cortisol levels “seem paradoxical, but both too much and too little can be bad,” said Dr. Yehuda. “There are different kinds of cells in various regions of the hippocampus that react to cortisol. Some atrophy or die if there is too little cortisol, some if there is too much.”

Dr. Yehuda added, “In a brain scan, there’s no way to know exactly which cells have died.”

To be sure that the shrinkage found in the hippocampus of trauma victims is indeed because of the events they suffered through, researchers are now turning to prospective studies, where before-and-after brain images can be made of people who have not yet undergone trauma, but are at high risk, or who have undergone it so recently that cell death has not had time to occur.

Dr. Charney, for example, is planning to take M.R.I. scans of the brains of emergency workers like police officers and firefighters and hopes to do the same with young inner-city children, who are at very high risk of being traumatized over the course of childhood and adolescence. Dr. Pitman, with Dr. Yehuda, plans a similar study of trauma victims in Israel as they are being treated in emergency rooms.

Dr. Yehuda held out some hope for people who have suffered through traumatic events. “It’s not necessarily the case that if you’ve been traumatized your hippocampus is smaller,” she said. She cited research with rats by Dr. Bruce McEwen, a neuroscientist at Rockefeller University, showing that atrophied dendritic extensions to other cells in the hippocampus grew back when the rats were given drugs that blocked stress hormones.

Dr. Sapolsky cited similar results in patients with Cushing’s disease whose cortisol levels returned to normal after tumors were removed. “If the loss of hippocampal volume in trauma victims is due to the atrophy of dendrites rather than to cell death, then it is potentially reversible, or may be so one day,” he said.

NOTE: This is only a portion of the article.  Read the entire post at http://www.nytimes.com/1995/08/01/science/severe-trauma-may-damage-the-brain-as-well-as-the-psyche.html?pagewanted=all

Endocrine Society issues new guidelines on hypopituitarism

The Endocrine Society today issued a Clinical Practice Guideline that recommends treating insufficient hormone levels in individuals with hypopituitarism by replacing hormones at levels as close to the body’s natural patterns as possible.

The guideline, titled “Hormonal Replacement in Hypopituitarism in Adults: An Endocrine Society Clinical Practice Guideline,” was published online and will appear in the November 2016 print issue of The Journal of Clinical Endocrinology & Metabolism (JCEM), a publication of the Endocrine Society.

Hypopituitarism, or pituitary insufficiency, occurs when the pituitary gland does not produce sufficient amounts of hormones–the chemical signals that regulate respiration, reproduction, growth, metabolism, sexual function and other important biological functions. The pituitary gland is often called the master gland because the hormones it produces impact many bodily functions. As a result, hypopituitarism can cause a range of symptoms, according to the Hormone Health Network.

The rare disorder can occur due to abnormal development or later in life as a result of a tumor, traumatic brain injury, hemorrhage or autoimmune condition, according to the Society’s

“Hypopituitarism can manifest as low levels of a variety of hormones, including cortisol, thyroid hormone, estrogen, testosterone and growth hormone,” said Maria Fleseriu, MD, FACE, of Oregon Health & Science University in Portland, OR. Fleseriu chaired the task force that developed the guideline. “The goal of treatment should be to restore hormone levels as close to healthy levels as possible The interactions between these hormones also are very important, and patients might require dose changes of one or more of the replacement hormones after starting or discontinuing another one.”

In recommending treatment options, the guideline task force followed the overriding principle of using hormone replacement therapy dose size and timing to mimic the body’s natural functioning as closely as possible.

Accurate and reliable measurements of hormones play a central role in diagnosing hypopituitarism and monitoring the effectiveness of treatments, Fleseriu said. Healthcare providers need to keep in mind technical considerations to ensure the testing procedure is as accurate as possible.

The guideline addresses special circumstances that may affect the treatment of patients with hypopituitarism, including pregnancy care, post-surgical care following pituitary or other operations, treatment in combination with anti-epilepsy medication, and care following pituitary apoplexy–a serious condition that occurs when there is bleeding into the gland or blood flow to it is blocked.

Recommendations from the guideline include:

  • Measurements of both free thyroxine and thyroid-stimulating hormone are needed to evaluate central hypothyroidism, a condition where the thyroid gland does not produce enough hormones because it isn’t stimulated by the pituitary gland.
  • People who have central hypothyroidism should be treated with levothyroxine in doses sufficient to raise levels of the thyroid hormone free thyroxine to the upper half of the reference range.
  • Growth hormone stimulation testing should be used to diagnose patients with suspected growth hormone deficiency.
  • People who have proven cases of growth hormone deficiency and no contraindications should be offered growth hormone replacement as a treatment option.
  • Premenopausal women who have central hypogonadism, a condition where the sex glands produce minimal amounts or no hormones, can undergo hormone treatment, provided there are no contraindications.
  • People producing abnormally large volumes of dilute urine should be tested for central diabetes insipidus–a rare condition that leads to frequent urination–by analyzing the concentration of their blood and urine.
  • For patients who have low levels of glucocorticoid hormones, hydrocortisone can be given in a daily single or divided dose.
  • All hypopituitarism patients should be instructed to obtain an emergency card, bracelet or necklace warning about the possibility of adrenal insufficiency.
  • Patients who are suspected of having an adrenal crisis due to secondary adrenal insufficiency should receive an immediate injection of 50 to 100 milligrams of hydrocortisone.
  • People who have central adrenal insufficiency should receive the lowest tolerable dose of hydrocortisone replacement on a long-term basis to reduce the risk of metabolic and cardiovascular disease.
Source:

The Endocrine Society

From http://www.news-medical.net/news/20161013/Endocrine-Society-issues-new-guidelines-on-hypopituitarism.aspx

Cushing’s disease best treated by endocrinologist

Dear Dr. Roach: I was told that I have Cushing’s disease, which has caused diabetes, high blood pressure, hunger, weight gain and muscle loss. I was never sick before this, and I did not have any of those things. I am told I have a tumor on my right adrenal gland. I have been to numerous doctors, but most have not been too helpful. They seem to try to treat the diabetes or blood pressure, but nothing else. They seem not to be familiar with Cushing’s. I tell them which medication works, but they still give me new medication. I have an endocrinologist and am scheduled to meet a urologist.

I have managed to go to physical therapy, exercise every day and lose over 50 pounds. I am not happy with the advice I’m getting. I was told that surgery to remove the tumor will fix everything, but that I would need to take steroids for either a short term or for life. My body is already making too much cortisol. I have 50 more pounds to lose. I work hard to keep the weight down. I feel like a science experiment. Within a week, I have had three different medications. I could not tell which was causing the side effects and making me dehydrated. I am not sure surgery is right for me, because they said it can be done laparoscopically, but if they can’t do it that way, they will have to cut me all the way across, which may take a long time to heal and may get infected.

Do you know what tests will confirm the diagnosis? Would surgery fix all these problems? I had the 24-hour urine test, the saliva test and blood tests. I want to know if it may be something else instead of Cushing’s. I’m not on anything for the high cortisol levels.

– A.L.

A: It sounds very much like you have Cushing’s syndrome, which is caused by excess cortisone, a hormone that has many effects. It is called Cushing’s disease when the underlying cause is a pituitary tumor that causes the adrenal gland to make excess cortisone. (Cortisone and cortisol are different names for the same chemical, also called a glucocorticoid.) Cushing’s syndrome also may be caused by an adenoma (benign tumor) of the adrenal gland, which sounds like the case in you.

The high amounts of cortisone produced by the adrenal tumor cause high blood pressure, glucose intolerance or frank diabetes, increased hunger, obesity (especially of the abdomen – large bellies and skinny limbs are classic), dark-colored striae (stretch marks), easy bruising, a reddish face and often weakness of arm and leg muscles. When full-blown, the syndrome is easy to spot, but many people don’t have all the characteristics, especially early in the course of the disease.

Your endocrinologist is the expert in diagnosis and management, and has done most of the tests. I am somewhat surprised that you haven’t yet seen a surgeon to have the tumor removed. Once it is removed, the body quickly starts to return to normal, although losing the weight can be a problem for many.

I have seen cases in my training where, despite many tests, the diagnosis was still uncertain. The endocrinologist orders a test where the blood is sampled from both adrenal veins (which contain the blood that leaves the adrenal glands on top of the kidneys). If the adrenal vein on the side of the tumor has much more cortisone than the opposite side, the diagnosis is certain.

By DR. KEITH ROACH For the Herald & Review at http://herald-review.com/news/opinion/editorial/columnists/roach/dr-roach-cushing-s-disease-best-treated-by-endocrinologist/article_38e71835-464d-5946-aa9c-4cb1366bcee3.html

Causes of Cushing’s Syndrome

Cushing’s syndrome—also referred to as hypercortisolism—is fairly rare. However, researchers have boiled down a few key causes of Cushing’s syndrome, which you’ll read about below.

The cause of Cushing’s syndrome boils down to: Your body is exposed to too much cortisol. There are a few ways that this over-exposure can happen, including taking certain medications and having a tumor on your pituitary gland or adrenal gland.

Can Taking Corticosteroids Cause Cushing’s Disease?
One particular type of medication can cause Cushing’s syndrome: corticosteroids. But rest assured: Not all steroid medications cause Cushing’s syndrome. It’s more common to develop Cushing’s syndrome from steroids you take in pill form or steroids you inject. Steroid creams and steroids you inhale are not common causes of Cushing’s syndrome.

Some steroid medications have the same effect as the hormone cortisol does when produced in your body. But as with an excessive production of cortisol in your body, taking too much corticosteroid medications can, over time, lead to Cushing’s syndrome.

It’s common for people with asthma, rheumatoid arthritis, and lupus to take corticosteroids. Prednisone (eg, Deltasone) is an example of a corticosteroid medication.

Other Cushing’s Disease Causes
Your body can over-produce cortisol or adrenocorticotropic hormone (ACTH). The pituitary gland secretes ACTH, which is in charge of stimulating the adrenal glands to produce cortisol, and the adrenal glands are responsible for releasing cortisol into the bloodstream.

Cortisol performs important tasks in your body, such as helping to maintain blood pressure and regulate how your body metabolizes proteins, fats, and carbohydrates, so it’s necessary for your body to maintain normal levels of it.

The following can cause excessive production of cortisol or ACTH, leading to Cushing’s syndrome.

  • Pituitary gland tumors: A benign (non-cancerous) tumor of the pituitary gland can secrete an excess amount of ACTH, which can cause Cushing’s syndrome. Also known as pituitary adenomas, benign tumors of the pituitary gland affect women 5 times more often than men.
  • Adrenal gland tumors: A tumor in one of your adrenal glands can lead to Cushing’s syndrome by causing too much cortisol to enter your bloodstream. Most of these tumors are non-cancerous (called adrenal adenomas).

    Cancerous adrenal tumors—called adrenocortical carcinomas—are relatively rare. These types of tumors typically cause extremely high levels of cortisol and very rapid development of symptoms.

  • Other tumors in the body: Certain tumors that develop outside the pituitary gland can also produce ACTH. When this happens, it’s known as ectopic ACTH syndrome. Ectopic means that something is in an abnormal place or position. In this case, only the pituitary gland should produce ACTH, so if there is a tumor producing ACTH and it isn’t located on the pituitary, it’s ectopic.

    It’s unusual to have a tumor that secretes ACTH outside the pituitary. These tumors are usually found in the pancreas, lungs, or thyroid, and they can be benign or malignant (cancerous).

    The most common forms of ACTH-producing tumors are small cell lung cancer, which accounts for about 13% of all lung cancer cases, and carcinoid tumors—small, slow-growing tumors that arise from hormone-producing cells in various parts of the body.

  • Familial Cushing’s syndrome: Although it’s rare, Cushing’s syndrome can develop from an inherited tendency to have tumors on one or more of your endocrine glands. Some inherited conditions, such as multiple endocrine neoplasia (MEN 1), can involve tumors that over-produce cortisol or ACTH, leading to Cushing’s syndrome.

If you think you could have Cushing’s syndrome or you have questions about the causes of Cushing’s syndrome, talk to your doctor immediately.

Written by | Reviewed by Daniel J. Toft MD, PhD, adapted from  http://www.endocrineweb.com/conditions/cushings-syndrome/cushings-syndrome-causes

Midnight Salivary Cortisol Versus Urinary Free and Midnight Serum Cortisol as Screening Tests for Cushing’s Syndrome

From PubMed

Gafni RI, Papanicolaou DA, Nieman LK.
Developmental Endocrinology Branch, National Institute of Child Health and Human Development, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892-1862, USA.

OBJECTIVE: There is currently no optimal test to screen for endogenous Cushing’s syndrome (CS) in children. Traditional 24-hour urine or midnight serum cortisol values may be difficult to obtain or elevated by venipuncture stress. We hypothesized that salivary cortisol measurement is a reliable way to screen for CS in children.

STUDY DESIGN: Sixty-seven children (5-17 years) were studied: 24 obese volunteers, 29 non-obese volunteers, and 14 children with CS. Saliva was obtained at 7:30 AM, bedtime, and midnight for measurement of free cortisol by radioimmunoassay.

RESULTS: Salivary cortisol was detectable in all morning and evening samples from patients with CS but was frequently undetectable in healthy children at bedtime (66%) and at midnight (90%). With cut points that excluded healthy children, a midnight salivary cortisol value of 7.5 nmol/L (0.27 microg/dL) identified 13 of 14 patients with CS, whereas a bedtime value >27.6 nmol/L (1 microg/dL) detected CS in 5 of 6 patients. The diagnostic accuracies of midnight salivary cortisol and urinary free cortisol per square meter were the same (93%).

CONCLUSION: Salivary cortisol measurement at bedtime or midnight rules out CS in nearly all cases. Nighttime salivary cortisol sampling is thus a simple, accurate way to screen for hypercortisolism in children. PMID: 10891818 [PubMed – indexed for MEDLINE]


THE PRINCIPLE RESEARCHER FOR SALIVARY CORTISOLS IS HERSHEL RAFF AT THE UNIVERSITY OF WISCONSIN. HE IS A RESEARCH SCIENTIST, NOT A DOCTOR. YOU CAN CONTACT HIM DIRECTLY FOR ORDERING INFO.

Salivary Cortisol: A Screening Technique

By: Dr. Hershel Raff

Cushing’s syndrome – endogenous hypercortisolism – is characterized by a loss of circadian rhythmicity. In normal patients, cortisol levels peak in the early morning hours and decrease to substantially lower levels at night. Rather than the normal decrease in late evening cortisol, patients with Cushing’s syndrome of any cause fail to decrease cortisol secretion in the late evening. Therefore, the measurement of elevated late evening cortisol is helpful in the diagnosis of Cushing’s syndrome. Obtaining a late night, unstressed plasma cortisol is virtually impossible in most clinical practices. Salivary cortisol is in equilibrium with the free, biologically active portion of cortisol in the plasma. Therefore, if one obtains a saliva sample in patients at bedtime in their homes under unstressed conditions, one can make the diagnosis of endogenous hypercortisolism.

A simple way to sample saliva is by using a Salivette made by the Sarstedt Company (Newton, NC). This device consists of a cotton tube and plastic tubes. The patient only has to chew the cotton tube for 2-3 minutes and place it in the plastic tube. The tube is then transported to our lab for analysis.

Late-evening salivary cortisol is not intended to replace the current standard screening test – measurement of a 24 hr urine free cortisol. However, the salivary cortisol test can be extremely useful for patients suspected of having intermittent Cushing’s syndrome. Due to the convenience of sample collection, the patient can sample saliva several evenings in a row. In fact, our clinical endocrinologists routinely order 2-3 consecutive late-evening salivary cortisol samples.


Our research (Raff H, Raff JL, Findling JW. 1998 LATE-NIGHT SALIVARY CORTISOL AS A SCREENING TEST FOR CUSHING’S SYNDROME. J Clin Endocrinol Metab. 83:2681-2686) has shown that the combination of late-evening salivary cortisol and urine free cortisol is very accurate in diagnosing Cushing’s syndrome in most patients. Doctors can obtain a kit by contacting ACL Client Services at 1-800-877-7016.

Editor’s Note: DR. HERSHEL RAFF, PH.D. IS A PROFESSOR OF MEDICINE AND PHYSIOLOGY AT THE MEDICAL COLLEGE OF WISCONSIN’S ENDOCRINE RESEARCH LABORATORY AT ST. LUKE’S MEDICAL CENTER IN MILWAUKEE, WISCONSIN.

%d bloggers like this: