Patients Undergoing Adrenalectomy Should Receive Steroid Substitutive Therapy

All patients who undergo removal of one adrenal gland due to Cushing’s syndrome (CS) or adrenal incidentaloma (AI, adrenal tumors discovered incidentally) should receive a steroid substitutive therapy, a new study shows.

The study, “Predictability of hypoadrenalism occurrence and duration after adrenalectomy for ACTH‐independent hypercortisolism,” was published in the Journal of Endocrinological Investigation.

CS is a rare disease, but subclinical hypercortisolism, an asymptomatic condition characterized by mild cortisol excess, has a much higher prevalence. In fact, subclinical hypercortisolism, is present in up to 20 percent of patients with AI.

The hypothalamic-pituitary-adrenal axis (HPA axis) is composed of the hypothalamus, which releases corticotropin-releasing hormone (CRH) that acts on the pituitary to release adrenocorticotropic hormone (ACTH), that in turn acts on the adrenal gland to release cortisol.

To avoid excess cortisol production, high cortisol levels tell the hypothalamus and the pituitary to stop producing CRH and ACTH, respectively. Therefore, as CS and AI are characterized by high levels of cortisol, there is suppression of the HPA axis.

As the adrenal gland is responsible for the production of cortisol, patients might need steroid substitutive therapy after surgical removal of AI. Indeed, because of HPA axis suppression, some patients have low cortisol levels after such surgeries – clinically known as post-surgical hypocortisolism (PSH), which can be damaging to the patient.

While some researchers suggest that steroid replacement therapy should be given only to some patients, others recommend it should be given to all who undergo adrenalectomy (surgical removal of the adrenal gland).

Some studies have shown that the severity of hypercortisolism, as well as the degree of HPA axis suppression and treatment with ketoconazole pre-surgery in CS patients, are associated with a longer duration of PSH.

Until now, however, there have been only a few studies to guide in predicting the occurrence and duration of PSH. Therefore, researchers conducted a study to determine whether HPA axis activity, determined by levels of ACTH and cortisol, could predict the occurrence and duration of PSH in patients who undergo an adrenalectomy.

Researchers studied 80 patients who underwent adrenalectomy for either CS or AI. Prior to the surgery, researchers measured levels of ACTH, urinary free cortisol (UFC), and serum cortisol after 1 mg dexamethasone suppression test (1 mg-DST).

After the surgery, all patients were placed on steroid replacement therapy and PSH was determined after two months. For those with PSH, levels of cortisol were determined every six months for at least four years.

Results showed that PSH occurred in 82.4 percent of CS patients and 46 percent of AI patients. PSH lasted for longer than 18 months in 50 percent of CS and 30 percent of AI patients. Furthermore, it lasted longer than 36 months for 35.7 percent of CS patients.

In all patients, PSH was predicted by pre-surgery cortisol levels after the 1 mg-DST, but with less than 70 percent accuracy.

In AI patients, a shorter-than-12-month duration of PSH was not predicted by any HPA parameter, but was significantly predicted by an absence of pre-surgery diagnosis of subclinical hypercortisolism.

So, this study did not find any parameters that could significantly predict with high sensitivity and specificity the development or duration of PSH in all patients undergoing adrenalectomy.

Consequently, the authors concluded that “the PSH occurrence and its duration are hardly predictable before surgery. All patients undergoing unilateral adrenalectomy should receive a steroid substitutive therapy.”


Desmopressin is Promising Alternative in Diagnosing Cushing’s Disease

Bilateral inferior petrosal sinus sampling (IPSS) — a procedure that uses desmopressin to determine levels of ACTH hormone from veins that drain from the pituitary gland, is a sensitive way to diagnose patients with Cushing’s disease and find tumors, a Chinese study shows.

The study, “Tumour Lateralization in Cushing’s disease by Inferior Petrosal Sinus Sampling with desmopressin,” appeared in the journal Clinical Endocrinology.

Cushing’s disease is characterized by excessive production of the adrenocorticotropin hormone (ACTH) caused by a tumor in the pituitary gland. ACTH is the hormone that causes the adrenal glands to produce cortisol.

Currently, pituitary imaging is insufficient to confirm a Cushing’s diagnosis. This is because 70 percent of pituitary adenomas in Cushing’s are microadenomas, which are physically very small. As a result, 40 percent of Cushing’s patients are reported as being healthy.

This means that a Cushing’s diagnosis requires a combination of techniques including clinical symptoms, imaging methods and endocrinological assays that include measures of serum cortisol and ACTH levels.

IPSS determines ACTH levels from veins that drain from the pituitary gland. ACTH levels are then compared to ACTH levels in blood. Higher levels in the pituitary gland indicate a pituitary tumor.

IPSS can also be used to determine tumor lateralization, which refers to which side of the pituitary gland the tumor is located on. The test is 69 percent accurate.

Doctors administer IPSS along with corticotropin-releasing hormone (CRH) stimulation. IPSS with CRH is considered the gold standard for preoperative diagnosis of Cushing’s, with a diagnostic sensitivity (or true positive rate) of 95 percent and specificity (or true negative rate) of 90 to 95 percent. Unfortunately, the high cost and limited availability of CRH make it impractical for many patients.

Desmopressin has been used to replace CRH to stimulate ACTH secretion for IPSS, and prior studies have shown that desmopressin’s sensitivity is comparable to that of CRH.

Researchers at Peking Union Medical College in Beijing conducted a retrospective analysis of their experience using desmopressin-stimulated IPSS to determine its diagnostic value for Cushing’s and its predictive value for tumor lateralization.

Researchers analyzed 91 Cushing’s patients who either had negative findings on the MRI imaging of the pituitary or negative high-dose dexamethasone suppression tests, which is another method of evaluation. All patients underwent IPSS with desmopressin, followed by pituitary surgery to extract the tumor.

Of the 91 patients tested, 90 patients had confirmed Cushing’s. And of these, 89 had positive IPSS findings, which led to a sensitivity of 98.9 percent for this test. One patient out of 91 who did not have Cushing’s also underwent this test, which led to a negative IPSS result and a specificity of 100 percent.

Researchers also determined tumor lateralization in patients who were ultimately diagnosed with Cushing’s and underwent surgery. Results of the IPSS showed a 72.5 percent concordance between the results from the IPSS and the surgery.

Therefore, IPSS with desmopressin is a comparable approach to IPSS with CRH for the diagnosis of Cushing’s. It also demonstrates moderate accuracy in determining the location of tumors.

“Like many medical centers in China, we currently have no supply of CRH, while desmopressin is readily available,” researchers concluded. “Moreover, desmopressin is cheaper than CRH. As our data and other studies indicate, IPSS with desmopressin yielded comparable outcomes to IPSS with CRH. Therefore, desmopressin-stimulated IPSS might serve as a possible alternative to CRH-stimulated IPSS.”


Increase in Glucose Uptake by Cushing’s Disease-associated Tumors Could Improve Early Detection

An increase in glucose uptake by Cushing’s disease-associated pituitary tumors could improve their detection, new research shows.

The study, “Corticotropin releasing hormone can selectively stimulate glucose uptake in corticotropinoma via glucose transporter 1,” appeared in the journal Molecular and Cellular Endocrinology.

The study’s senior author was Dr. Prashant Chittiboina, MD, from the Department of Neurosurgery, Wexner Medical Center, The Ohio State University, in Columbus, Ohio.

Microadenomas – tumors in the pituitary gland measuring less than 10 mm in diameter – that release corticotropin, or corticotropinomas, can lead to Cushing’s disease. The presurgical detection of these microadenomas could improve surgical outcomes in patients with Cushing’s.

But current tumor visualization methodologies – magnetic resonance imaging (MRI) and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) – failed to detect a significant percentage of pituitary microadenomas.

Stimulation with corticotropin-releasing hormone (CRH), which increases glucose uptake, has been suggested as a method of increasing the detection of adenomas with 18F-FDG PET, by augmenting the uptake of 18F-FDG – a glucose analog.

However, previous studies aiming to validate this idea have failed, leading the research team to hypothesize that it may be due to a delayed elevation in glucose uptake in corticotropinomas.

The scientists used clinical data to determine the effectiveness of CRH in improving the detection of corticotropinomas with 18F-FDG PET in Cushing’s disease.

They found that CRH increased glucose uptake in human and mouse tumor cells, but not in healthy mouse or human pituitary cells that produce the adrenocorticotropic hormone (ACTH). Exposure to CRH increased glucose uptake in mouse tumor cells, with a maximal effect at four hours after stimulation.

Similarly, the glucose transporter GLUT1, which is located at the cell membrane, was increased two hours after stimulation, as was GLUT1-mediated glucose transport.

These findings indicate a potential mechanism linking CRH exposure to augmented glucose uptake through GLUT1. Expectedly, the inhibition of glucose transport with fasentin suppressed glucose uptake.

The researchers consistently observed exaggerated evidence of GLUT1 in human corticotropinomas. In addition, human corticotroph tumor cells showed an increased breakdown of glucose, which indicates that, unlike healthy cells, pituitary adenomas use glucose as their primary source of energy.

Overall, the study shows that corticotropin-releasing hormone (CRH) leads to a specific and delayed increase in glucose uptake in tumor corticotrophs.

“Taken together, these novel findings support the potential use of delayed 18F-FDG PET imaging following CRH stimulation to improve microadenoma detection in [Cushing’s disease],” researchers wrote. The scientists are now conducting a clinical trial to further explore this promising finding.


Cushing’s Disease Treatment Market to Witness an Outstanding Growth by 2017 – 2025

Cushing disease is caused by tumour in the pituitary gland which leads to excessive secretion of a hormone called adrenocorticotrophic (ACTH), which in turn leads to increasing levels of cortisol in the body. Cortisol is a steroid hormone released by the adrenal glands and helps the body to deal with injury or infection. Increasing levels of cortisol increases the blood sugar and can even cause diabetes mellitus. However the disease is also caused due to excess production of hypothalamus corticotropin releasing hormone (CRH) which stimulates the synthesis of cortisol by the adrenal glands.

The condition is named after Harvey Cushing, the doctor who first identified the disease in 1912. Cushing disease results in Cushing syndrome. Cushing syndrome is a group of signs and symptoms developed due to prolonged exposure to cortisol.

Signs and symptoms of Cushing syndrome includes hypertension, abdominal obesity, muscle weakness, headache, fragile skin, acne, thin arms and legs, red stretch marks on stomach, fluid retention or swelling, excess body and facial hair, weight gain, acne, buffalo hump, tiredness, fatigue, brittle bones, low back pain, moon shaped face etc.

Symptoms vary from individual to individual depending upon the disease duration, age and gender of the patient.  Disease diagnosis is done by measuring levels of cortisol in patient’s urine, saliva or blood. For confirming the diagnosis, a blood test for ACTH is performed. The first-line treatment of the disease is through surgical resection of ACTH-secreting pituitary adenoma, however disease management is also done through medications, Cushing disease treatment market comprises of the drugs designed for lowering the level of cortisol in the body. Thus patients suffering from Cushing disease are prescribed medications such as ketoconazole, mitotane, aminoglutethimide metyrapone, mifepristone, etomidate and pasireotide.

Request to View Tables of Content @

Cushing’s disease treatment market revenue is growing with a stable growth rate, this is attributed to increasing number of pipeline drugs. Also increasing interest of pharmaceutical companies to develop Cushing disease drugs is a major factor contributing to the revenue growth of Cushing disease treatment market over the forecast period. Current and emerging players’ focuses on physician education and awareness regarding availability of different drugs for curing Cushing disease, thus increasing the referral speeds, time to diagnosis and volume of diagnosed Cushing disease individuals. Growing healthcare expenditure and increasing awareness regarding Cushing syndrome aids in the revenue growth of Cushing’s disease treatment market. Increasing number of new product launches also drives the market for Cushing’s disease Treatment devices. However availability of alternative therapies for curing Cushing syndrome is expected to hamper the growth of the Cushing’s disease treatment market over the forecast period.

The Cushing’s disease Treatment market is segment based on the product type, technology type and end user

Cushing’s disease Treatment market is segmented into following types:

By Drug Type

  • Ketoconazole
  • Mitotane
  • Aminoglutethimide
  • Metyrapone
  • Mifepristone
  • Etomidate
  • Pasireotide

By End User

  • Hospital Pharmacies
  • Retail Pharmacies
  • Drug Stores
  • Clinics
  • e-Commerce/Online Pharmacies

Cushing’s disease treatment market revenue is expected to grow at a good growth rate, over the forecast period. The market is anticipated to perform well in the near future due to increasing awareness regarding the condition. Also the market is anticipated to grow with a fastest CAGR over the forecast period, attributed to increasing investment in R&D and increasing number of new product launches which is estimated to drive the revenue growth of Cushing’s disease treatment market over the forecast period.

Depending on geographic region, the Cushing’s disease treatment market is segmented into five key regions: North America, Latin America, Europe, Asia Pacific (APAC) and Middle East & Africa (MEA).

North America is occupying the largest regional market share in the global Cushing’s disease treatment market owing to the presence of more number of market players, high awareness levels regarding Cushing syndrome. Healthcare expenditure and relatively larger number of R&D exercises pertaining to drug manufacturing and marketing activities in the region. Also Europe is expected to perform well in the near future due to increasing prevalence of the condition in the region.

Asia Pacific is expected to grow at the fastest CAGR because of increase in the number of people showing the symptoms of Cushing syndrome, thus boosting the market growth of Cushing’s disease treatment market throughout the forecast period.

Some players of Cushing’s disease Treatment market includes CORCEPT THERAPEUTICS, HRA Pharma, Strongbridge Biopharma plc, Novartis AG, etc. However there are numerous companies producing branded generics for Cushing disease. The companies in Cushing’s disease treatment market are increasingly engaged in strategic partnerships, collaborations and promotional activities to capture a greater pie of market share.

Buy Now: You can now buy a single user license of the report at

The final report customized as per your specific requirement will be sent to your e-mail id within 7-20 days, depending on the scope of the report.

The research report presents a comprehensive assessment of the market and contains thoughtful insights, facts, historical data, and statistically supported and industry-validated market data. It also contains projections using a suitable set of assumptions and methodologies. The research report provides analysis and information according to categories such as market segments, geographies, types, technology and applications.

For more information, please e-mail us at

About Us 

Persistence Market Research (PMR) is a U.S.-based full-service market intelligence firm specializing in syndicated research, custom research, and consulting services. PMR boasts market research expertise across the Healthcare, Chemicals and Materials, Technology and Media, Energy and Mining, Food and Beverages, Semiconductor and Electronics, Consumer Goods, and Shipping and Transportation industries. The company draws from its multi-disciplinary capabilities and high-pedigree team of analysts to share data that precisely corresponds to clients’ business needs.

PMR stands committed to bringing more accuracy and speed to clients’ business decisions. From ready-to-purchase market research reports to customized research solutions, PMR’s engagement models are highly flexible without compromising on its deep-seated research values.


Persistence Market Research Pvt. Ltd

305 Broadway

7th Floor, New York City,

NY 10007, United States,

USA – Canada Toll Free: 800-961-0353



Rare neuroendocrine tumours may be misdiagnosed as Cushing’s disease

By Eleanor McDermid, Senior medwireNews Reporter

Ectopic tumours secreting corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) are very rare in children and can result in a misdiagnosis of Cushing’s disease (CD), say researchers.

Three of the patients in the reported case series had pituitary hyperplasia and underwent transsphenoidal surgery for apparent CD before the tumour that was actually causing their symptoms was located. The hyperplasia was probably caused by release of CRH from the ectopic tumour, which stimulated the pituitary gland, giving the impression of an ACTH-secreting pituitary adenoma, explain Maya Lodish (National Institutes of Health, Bethesda, Maryland, USA) and study co-authors.

These three patients were part of a series of seven, which Lodish et al describe as “a relatively large number of patients, considering the infrequency of this disease.”

The patients were aged between 1.8 and 21.3 years. Three had neuroendocrine tumours located in the pancreas ranging in size from 1.4 to 7.0 cm, two had thymic carcinoids ranging from 6.0 mm to 11.5 cm, one patient had a 12.0 cm tumour in the liver and one had a 1.3 cm bronchogenic carcinoid tumour of the right pulmonary lobe.

Four of the patients had metastatic disease and, during up to 57 months of follow-up, three died of metastatic disease or associated complications and two patients had recurrent disease.

“Our series demonstrates that these are aggressive tumors with a high mortality rate,” write the researchers in the Journal of Clinical Endocrinology & Metabolism. “It is important to follow the appropriate work up, regarding both biochemical and imaging tests, which can lead to the correct diagnosis and to the most beneficial therapeutic approach.”

The team found the CRH stimulation test to be helpful, noting, for example, that none of the patients had a rise in cortisol that was consistent with CD, with all patients showing smaller responses ranging from 2% to 15%. Likewise, just one patient had an ACTH rise higher than 35% on CRH administration, and four patients had a “flat” response, which has previously been associated with ectopic neuroendocrine tumours.

Of note, six patients had normal or high plasma CRH levels, despite all having high cortisol levels, which would be expected to result in undetectable plasma CRH due to negative feedback, implying another source of CRH production. Five patients had blunted diurnal variation of both cortisol and ACTH levels consistent with Cushing’s syndrome.

The patients also underwent a variety of imaging procedures to identify the source of ACTH/CRH production, some of which, such as octreotide scans, are specialist and not available in most hospitals, the researchers note, potentially contributing to inappropriate diagnosis and management.


%d bloggers like this: