Pediatric Endocrine Society Provides Guidance for Growth Hormone Use in Pediatric Patients

HealthDay News—Use of growth hormone in children and adolescents should be considered carefully, with assessment of the risks and benefits necessary for each patient, according to guidelines published in the January issue of Hormone Research in Paediatrics.

Adda Grimberg, MD, from the Perelman School of Medicine at the University of Pennsylvania in Philadelphia, and colleagues updated guidelines on the use of growth hormone, focusing on idiopathic short stature (ISS), GH deficiency (GHD), and primary insulin-like growth factor-I (IGF-I) deficiency (PIGFD). The guidelines were written on behalf of the Pediatric Endocrine Society.

The researchers recommend use of growth hormone for children and adolescents with GHD. Prospective recipients of growth hormone treatment should receive guidance regarding potential adverse effects and should be monitored for these effects. Parents and clinicians should take a shared decision-making approach to treating patients with ISS, and assess the physical and physiological burdens for the child, while considering the risks and benefits of treatment.Follow-up assessment of benefit and psychosocial impact should be conducted at 12 months after initiation and dose optimization of GH. IGF-I therapy is recommended for patients with severe PIGFD. Diagnosis of PIGFD/GH insensitivity syndrome should be based on a combination of factors that fall into four stages.

Physicians with expertise in managing endocrine disorders in children should provide consultation for evaluation of GHD-ISS-PIGFD and manage treatment.

“The taskforce suggests that the recommendations be applied in clinical practice with consideration of the evolving literature and the risks and benefits to each individual patient,” the authors write. “In many instances, careful review highlights areas that need further research.”

Several authors disclosed financial ties to the pharmaceutical industry.

Reference

Grimberg A, DiVall SA, Polychronakos C, et al; on behalf of the Drug and Therapeutics Committee of the Pediatric Endocrine Society. Guidelines for growth hormone and insulin-like growth factor-I treatment in children and adolescents: growth hormone deficiency, idiopathic short stature, and primary insulin-like growth factor-I deficiency. Horm Res Paediatr. 2016;86(6):361-397. doi: 10.1159/000452150

 From http://www.endocrinologyadvisor.com/adrenal/growth-hormone-use-in-pediatric-patients/article/634909/

Bimonthly Growth Hormone Injections to Replace Daily Injections?

At the Annual ENDO 2017 meeting in Orlando, FL, Moore et al provided an update on somavaratan, the long acting recombinant human growth hormone being investigated for children and adults with growth hormone deficiency.

Current treatment for these patients is somewhat burdensome given the need for daily subcutaneous injections. Somavaratan provides the option for bimonthly injections.

At ENDO 2017, 3 year data was presented in children given somavaratan and the data is impressive.

The 3 year data is part of an ongoing extension study following a 6 month Phase 2 trial in which 64 patients received 5.0 mg/kg/month at various dosing schedules. Of those patients, 60 continued in an open label extension study (dose adjusted to 3.5 mg/kg given twice-monthly by the beginning of Year 2 of treatment).  At ENDO 2017, data from 30 of those patients who had completed 3 years of treatment were presented.

(Insulin-like growth factor standard deviation score (IGF-I SDS) increased from -1.7 ± 0.8 at baseline to 1.1 ± 1.6 at peak (3–5 days post-injection) and -0.2 ± 0.9 at trough (end of dosing cycle) in Year 3. Of the 30 patients, 8 had transient IGF-I SDS excursions > 2.0, of which 3 events were > 3.0 (range, 2.3–3.9).

Height velocity (HV) remained consistent at 8.5 ± 1.8, 8.5 ± 1.7, and 8.1 ± 1.5 cm/year, for years 1, 2, and 3 respectively.

Height-SDS increased from -2.6 ± 0.5 at baseline to -1.9 ± 0.6, -1.4 ± 0.7, and -1.0 ± 0.7 at years 1, 2, and 3, respectively.

Treatment-related adverse events were generally mild and transient.

In an exclusive interview with Rare Disease Report, one of the investigators of the study, Bradley Miller, MD, PhD, of the University of Minnesota Masonic Children’s Hospital, said that compliance is an issue with growth hormone replacement therapy and any options that can remove the daily injection requirements would likely be well received by both patients and clinicians.

A Phase 3 study is currently underway to comparing bimonthly somavaratan treatment with daily growth hormone treatments (NCT02339090).

Somavaratan is being developed by Versartis Inc

About Growth Hormone Deficiency 

Growth hormone deficiency occurs when the pituitary gland does not produce enough growth hormone, resulting in short stature, delayed or absent puberty, and changes in muscle mass, cholesterol levels, and bone strength. The condition can be congenital, structural (malformations in the brain) or acquired (resulting from trauma, infections, tumors, radiation therapy, or other causes).

Currently, the standard of care is subcutaneous injection of a biosynthetic recombinant human growth hormone (rhGH). The frequency of the injections is based on the patient’s level of growth hormone deficiency (ie, whether growth hormone is completely absent or some growth hormone is present), but most patients require daily administration.

The rhGH treatments are typically given until the child’s maximum growth potential is achieved, often requiring many years of treatment (and increasing the risk of poor compliance).

Reference

Moore WV, Fechner PY, Nguyan HJ, et al. Safety and Efficacy of Somavaratan (VRS-317), a Long-Acting Recombinant Human Growth Hormone (rhGH), in Children with Growth Hormone Deficiency (GHD): 3-Year Update of the Vertical & VISTA Trials (NCT01718041, NCT02068521). Presented at: ENDO 2017; Orlando, FL; April 1-4, 2017. Abstract OE31-1.

From http://www.raredr.com/news/bimonthly-growth-hormone

Pituitary Incidentaloma Treatment Guideline

0276f-pituitary-gland

 

It is unclear how many people have pituitary incidentaloma, but imaging and autopsy studies indicate they are quite common and occur in up to one-third of patients. Fortunately, the vast majority of these serendipitously discovered tumors are clinically insignificant.

A management guideline in the Annals of Endocrinology brings endocrinologists up to date on current thinking about pituitary incidentaloma management.   Endocrinologists classify these tumors as micro- or macro-. Microincidentalomas are discovered in around 10% of patients, often upon CT after a fall, and are less than 1 cm in diameter. They may grow, but only 5% proceed to macroincidentaloma.

Currently, experts recommend assessing nonfunctioning (NF) microincidentaloma clinically for signs of hypersecretion (hyperprolactinemia, acromegaly or Cushing’s syndrome), with subsequent systematic prolactin and IGF-1 assay.   Pituitary incidentalomas that are larger than 1 cm at discovery—macroincidentalomas—are more likely to grow, with 25% and 24%-40% of patients having larger tumors at 4 and 8 years after diagnosis respectively.

Concerns escalate and closer surveillance is needed if a macroadenoma is in contact with the optic chiasm. With any NF macroincidentaloma, experts recommend assessing patients for signs of hormonal hypersecretion or hypopituitarism. Then, laboratory screening for hypersecretion or hormonal deficiency is needed, as is ophthalmologic assessment (visual acuity and visual field) if the lesion is near the optic chiasm (OC).   Surveillance differs by tumor size, with 5 mm the cutoff for NF microincidentaloma.

Tumors smaller than that require no surveillance, and those larger need to be monitored with MRI at 6 months and then 2 years. Endocrinologists should revisit macroincidentaloma distant from the optic chiasm with MRI at 1 year and conduct hormonal exploration (for anterior pituitary deficiency), then monitor every 2 years.   Proximity to the optic chiasm often creates a need for surgery or increased vigilance. MRI is recommended at 6 months, with hormonal and visual assessment, then annual MRI and hormonal and visual assessment every 6 months.

Specific types of pituitary incidentaloma call for surgery: evolutive NF microincidentaloma, NF macroincidentaloma associated with hypopituitarism or showing progression, incidentaloma compressing the optic chiasm, possible malignancy, non-compliant patient, pregnancy desired in the short-term, or context at risk of apoplexy.

Few guidelines are published for pituitary incidentaloma, and this one is enhanced with a decision tree that walks endocrinologist through the recommendations. –

See more at: http://www.hcplive.com/medical-news/pituitary-incidentaloma-treatment-guideline#sthash.0DqxeTru.dpuf

Skeletal Maturation in Children With Cushing’s Syndrome is Not Consistently Delayed

Skeletal maturation in children with cushing syndrome is not consistently delayed: The role of corticotropin, obesity, and steroid hormones, and the effect of surgical cure.

J Pediatr. 2014 Jan 9. pii: S0022-3476(13)01500-X. doi: 10.1016/j.jpeds.2013.11.065. [Epub ahead of print]

The Journal of Pediatrics, 01/22/2014 Clinical Article

Lodish MB, et al. – The aim of this study is to assess skeletal maturity by measuring bone age (BA) in children with Cushing syndrome (CS) before and 1–year after transsphenoidal surgery or adrenalectomy, and to correlate BA with hormone levels and other measurements. Contrary to common belief, endogenous CS in children appears to be associated with normal or even advanced skeletal maturation. When present, BA advancement in CS is related to obesity, insulin resistance, and elevated adrenal androgen levels and aromatization. This finding may have significant implications for treatment decisions and final height predictions in these children.

Methods

  • This case series conducted at the National Institutes of Health Clinical Center included 93 children with Cushing disease (CD) (43 females; mean age, 12.3 ± 2.9 years) and 31 children with adrenocorticotropic hormone–independent CS (AICS) (22 females, mean age 10.3 ± 4.5 years).
  • BA was obtained before surgery and at follow-up.
  • Outcome measures were comparison of BA in CD vs AICS and analysis of the effects of hypercortisolism, insulin excess, body mass index, and androgen excess on BA.

Results

  • Twenty-six of the 124 children (21.0%) had advanced BA, compared with the expected general population prevalence of 2.5% (P < .0001). Only 4 of 124 (3.2%) had delayed BA.
  • The majority of children (76%) had normal BA.
  • The average BA z-score was similar in the children with CD and those with AICS (0.6 ± 1.4 vs 0.5 ± 1.8; P = .8865).
  • Body mass index SDS and normalized values of dehydroepiandrosterone, dehydroepiandrosterone sulfate, androsteonedione, estradiol, and testosterone were all significantly higher in the children with advanced BA vs those with normal or delayed BA.
  • Fifty-nine children who remained in remission from CD had follow-up BA 1.2 ± 0.3 years after transsphenoidal surgery, demonstrating decreased BA z-score (1.0 ± 1.6 vs 0.3 ± 1.4; P < .0001).

From http://www.ncbi.nlm.nih.gov/pubmed/24412141

%d bloggers like this: