Pituitary Dysfunction as a Result of Traumatic Brain Injury

A victim of brain injury can experience many consequences and complications as a result of brain damage. Unfortunately, the problems caused by a traumatic brain injury can extend even beyond what most people think of as the standard symptoms of a brain injury, like mood change and cognitive impairment. One issue which can occur is pituitary dysfunction. If the pituitary gland is damaged due to injury to the brain, the consequences can be dramatic as the pituitary gland works together with the hypothalamus to control every hormonal aspect of a person’s body.

Pituitary dysfunction as a result of a brain injury can be difficult to diagnose, as you may not immediately connect your symptoms to the head injury you experienced. If you did suffer injury to the pituitary gland, you need to know about it so you can get proper treatment. If someone else caused your brain injury to occur, you also want to know about your pituitary dysfunction so you can receive compensation for costs and losses associated with this serious health problem.

The pituitary is a small area of the center of your brain that is about the size of the uvula. The pituitary is surrounded and guarded by bone, but it does hang down.  When it becomes damaged as a result of a brain injury, the damage normally occurs as a result of the fact the pituitary was affected by reduced by reduced blood flow. It can also be harmed directly from the trauma, and only a tiny amount of damage can cause profound consequences.

Many of the important hormones that your body needs are controlled by the pituitary working with the hypothalamus. If the pituitary is damaged, the result can include a deficiency of Human Growth Hormone (HGH). This deficiency can affect your heart and can impact bone development.  Thyroid Stimulating Hormone (TSH) can also be affected, which could result in hypothyroidism. Sex hormones (gonodotropin); Adrenocorticotopic hormone; and many other hormones could be impacted as well, causing fertility problems; muscle loss; sexual dysfunction; kidney problems; fatigue; or even death.

Unfortunately, problems with the pituitary gland may not always be visible on MRIs or other imaging tests because the pituitary is so small. Endocrinologists who handle hormone therapy frequently are not familiar with brain injuries, and may not make the connection that your brain injury was the cause of the problem.

If you begin to experience hormonal issues following an accident, you should be certain to get an accurate diagnosis to determine if your brain injury played a role. If it did, those responsible for causing the accident could be responsible for compensating you for the harm you have experienced to your pituitary and to the body systems which malfunction as a result of your new hormonal issues.

Nelson Blair Langer Engle, PLLC

From http://www.nblelaw.com/posts/pituitary-dysfunction-result-of-traumatic-brain-injury

OR17-Novel Aspects of Adrenal Tumors and the HPA Axis

ENDO_2015

 

March 06, 2015

OR17-Novel Aspects of Adrenal Tumors and the HPA Axis

Epigenetic modulation of DNA Is associated with fatigue, depression and anxiety in patients with Cushing’s syndrome in remission: A genome-wide methylation study

CAM Glad, JC Andersson-Assarsson, P Berglund, R Bergthorsdottir, O Ragnarsson, G Johannsson

Summary: Researchers conducted this study to determine whether patients with Cushing’s syndrome (CS) that is in remission have specific epigenetic alterations that are associated with persistent cognitive impairments, anxiety, fatigue, and depression. Patients with CS in remission were shows to have specific DNA methylation that differed from that of healthy controls and was strongly correlated with clinical traits of anxiety, depression and fatigue, they concluded, adding that their results may suggest that an interaction between the glucocorticoid and the retinoic acid receptor is implicated in the long-term outcome of patients with CS in remission. The persistent cognitive impairment observed in patients with CS in remission, therefore, may be due to epigenetic modulation of DNA, they concluded.

Methods:

  • For this cross-sectional, case-controlled, single center study, researchers included 48 women with CS in remission (mean age±SD: 52.9±14 years) and 16 controls (mean age±SD: 53.6±16 years) matched for age, gender and educational level.
  • The mean age at diagnosis of CS was 37±14 years and the median (interquartile range) duration of remission was 13 (5-19) years.
  • In all, 37 patients had Cushing’s disease (CD) and 11 had a cortisol producing adrenal adenoma.
  • Researchers used the fatigue impact scale (FIS) to evaluate fatigue, and the comprehensive psychopathological rating scale to evaluate depression and anxiety; they assessed cognitive function by standardized neuropsychological tests.
  • DNA was isolated from whole blood, and DNA methylation was analyzed on the Illumina Infinium HumanMethylation450K BeadChip, which simultaneously interrogates >465,000 methylation sites per sample.
  • Researchers performed data quality control and analysis using the ChAMP methylation analysis package in R, and used Spearmen’s rho to perform correlation analyses.

Results:

  • Researchers found that patients had higher median score for FIS, depression and anxiety.
  • Methylation analysis identified 3,903 probes (in 340 genes) in regions that were differently methylated between CS patients and controls, and they found that 28% of these were significantly correlated to at least one of the clinical traits.
  • Fatigue, depression and anxiety were the most commonly correlated traits, and two of the most highly correlated genes were RXRB and COL11A2.
  • Gene ontology analysis revealed that these belong to the same GO-terms and are involved in retinoic acid receptor activity.
  • Finally, researchers found that both genes were specifically hypomethylated in cases as compared to controls.

 

This project has received financial support from the Swedish federal government under the LUA/ALF agreement, The Health & Medical Care Committee of the Regional Executive Board, Region Västra Götaland, The Swedish Society of Medicine and The Swedish Society of Endocrinology.

From http://www.mdlinx.com/endocrinology/conference-abstract.cfm/ZZ5BA369FDE9DE4CED82CB6A7CD5BFD1BE/42321/?utm_source=confcoveragenl&utm_medium=newsletter&utm_content=abstract-list&utm_campaign=abstract-ENDO2015&nonus=0

%d bloggers like this: