Cushing’s Syndrome Treatments

Medications, Surgery, and Other Treatments for Cushing’s Syndrome

Written by | Reviewed by Daniel J. Toft MD, PhD

Treatment for Cushing’s syndrome depends on what symptoms you’re experiencing as well as the cause of Cushing’s syndrome.

Cushing’s syndrome is caused by an over-exposure to the hormone cortisol. This excessive hormone exposure can come from a tumor that’s over-producing either cortisol or adrenocorticotropic hormone (ACTH—which stimulates the body to make cortisol). It can also come from taking too many corticosteroid medications over a long period of time; corticosteroids mimic the effect of cortisol in the body.

The goal of treatment is to address the over-exposure. This article walks you through the most common treatments for Cushing’s syndrome.

Gradually decreasing corticosteroid medications: If your doctor has identified that the cause of your Cushing’s syndrome is corticosteroid medications, you may be able to manage your Cushing’s syndrome symptoms by reducing the overall amount of corticosteroids you take.

It’s common for some people with certain health conditions—such as arthritis and asthma—to take corticosteroids to help them manage their symptoms. In these cases, your doctor can prescribe non-corticosteroid medications, which will allow you to reduce—or eliminate—your use of corticosteroids.

It’s important to note that you shouldn’t stop taking corticosteroid medications on your own—suddenly stopping these medications could lead to a drop in cortisol levels—and you need a healthy amount of cortisol. When cortisol levels get too low, it can cause a variety of symptoms, such as muscle weakness, fatigue, weight loss, and low blood pressure, which may be life-threatening.

Instead, your doctor will gradually reduce your dose of corticosteroids to allow your body to resume normal production of cortisol.

If for some reason you cannot stop taking corticosteroids, your doctor will monitor your condition very carefully, frequently checking to make sure your blood glucose levels as well as your bone mass levels are normal. Elevated blood glucose levels and low bone density are signs of Cushing’s syndrome.

Surgery to remove a tumor: If it’s a tumor causing Cushing’s syndrome, your doctor may recommend surgery to remove the tumor. The 2 types of tumors that can cause Cushing’s are pituitary tumors (also called pituitary adenomas) and adrenal tumors. However, other tumors in the body (eg, in the lungs or pancreas) can cause Cushing’s syndrome, too.

Pituitary adenomas are benign (non-cancerous), and most adrenal tumors are as well. However, in rare cases, adrenal tumors can be malignant (cancerous). These tumors are called adrenocortical carcinomas, and it’s important to treat them right away.

Surgery for removing a pituitary tumor is a delicate process. It’s typically performed through the nostril, and your surgeon will use tiny specialized tools. The success, or cure, rate of this procedure is more than 80% when performed by a surgeon with extensive experience. If surgery fails or only produces a temporary cure, surgery can be repeated, often with good results.

If you have surgery to remove an adrenal tumor or tumor in your lungs or pancreas, your surgeon will typically remove it through a standard open surgery (through an incision in your stomach or back) or minimally invasive surgery in which small incisions are made and tiny tools are used.

In some cases of adrenal tumors, surgical removal of the adrenal glands may be necessary.

Radiation therapy for tumors: Sometimes your surgeon can’t remove the entire tumor. If that happens, he or she may recommend radiation therapy—a type of treatment that uses high-energy radiation to shrink tumors and/or destroy cancer cells.

Radiation therapy may also be prescribed if you’re not a candidate for surgery due to various reasons, such as location or size of the tumor. Radiation therapy for Cushing’s syndrome is typically given in small doses over a period of 6 weeks or by a technique called stereotactic radiosurgery or gamma-knife radiation.

Stereotactic radiosurgery is a more precise form of radiation. It targets the tumor without damaging healthy tissue.

With gamma-knife radiation, a large dose of radiation is sent to the tumor, and radiation exposure to the healthy surrounding tissues is minimized. Usually one treatment is needed with this type of radiation.

Medications for Cushing’s syndrome: If surgery and/or radiation aren’t effective, medications can be used to regulate cortisol production in the body. However, for people who have severe Cushing’s syndrome symptoms, sometimes medications are used before surgery and radiation treatment. This can help control excessive cortisol production and reduce risks during surgery.

Examples of medications your doctor may prescribe for Cushing’s syndrome are: aminoglutethimide (eg, Cytadren), ketoconazole (eg, Nizoral), metyrapone (eg, Metopirone), and mitotane (eg, Lysodren). Your doctor will let you know what medication—or combination of medications—is right for you.

You may also need to take medication after surgery to remove a pituitary tumor or adrenal tumor. Your doctor will most likely prescribe a cortisol replacement medication. This medication helps provide the proper amount of cortisol in your body. An example of this type of medication is hydrocortisone (a synthetic form of cortisol).

Experiencing the full effects of the medication can take up to a year or longer. But in most cases and under your doctor’s careful supervision, you can slowly reduce your use of cortisol replacement medications because your body will be able to produce normal cortisol levels again on its own. However, in some cases, people who have surgery to remove a tumor that causes Cushing’s syndrome won’t regain normal adrenal function, and they’ll typically need lifelong replacement therapy.2

Treating Cushing’s Syndrome Conclusion
You may need one treatment or a combination of these treatments to effectively treat your Cushing’s syndrome. Your doctor will let you know what treatments for Cushing’s syndrome you’ll need.

From https://www.endocrineweb.com/conditions/cushings-syndrome/cushings-syndrome-treatments

Genetic mutation lowers obesity in Cushing’s syndrome

London E. J Clin Endocrinol Metab. 2013; doi:10.1210/jc.2013-1956.

Among adult patients with Cushing’s syndrome, those with mutations in PRKAR1A, the gene that controls cAMP-dependent protein kinase, are less obese than their counterparts without these mutations, according to a recent study.

The retrospective study evaluated adrenalectomy samples from 51 patients with Cushing’s syndrome, 13 with PRKAR1A mutations and 32 without. Of the 51 patients, 40 were female and 11 were male, and patients ranged in age from 4 to 74 years.

A non-Cushing’s syndrome comparison group consisting of 6 adrenalectomy patients with aldosterone producing adenomas (APAs) was included. Additional comparison groups comprising clinical data from 89 patients with Cushing’s disease and 26 with hyperaldosteronism were also studied.

Researchers recorded the weight, height and BMI of all patients, and measured abdominal subcutaneous adipose tissue (ScAT) and periadrenal adipose tissue (PAT) using computed tomography. PAT was collected and frozen for evaluation; the extracts were assessed for levels of cAMP and protein kinase (PKA) activity, as well as for protein and mRNA expression of subunits of PKA. Diurnal cortisol levels and urine-free cortisol were also measured preoperatively.

The study found that in adults with Cushing’s syndrome, the mean BMI of those with PRKAR1A mutations was lower than that of patients with noPRKAR1A mutations (P<.05), and was not inconsistent with the hyperaldosteronism comparison group.

In pediatric patients with adrenal Cushing’s syndrome, the presence of PRKAR1A mutation did not have an impact on mean BMI z-scores. However, in comparison with pediatric patients with pituitary Cushing’s disease, the BMI z-scores were significantly lower in pediatric Cushing’s disease patients with PRKAR1Amutations (P<.05). Patients with Cushing’s syndrome without PRKAR1A mutations had significantly more PAT and ScAT than non-Cushing’s syndrome patients. Additionally, the ratio of basal-to-total (cAMP-triggered) PKA activity was significantly lower in patients with PRKAR1A mutations, suggesting greater proportions of active PKA (P<.005).

“These findings have obvious implications in the establishment of the diagnosis of CS in patients with PRKAR1A mutations: These patients may be leaner than other patients with [Cushing’s syndrome],” the study authors wrote. “Perhaps more importantly, our findings point to the importance of cAMP and or PKA signaling in the regulation of adiposity.”

Disclosures: The researchers report no relevant financial disclosures.

From http://www.healio.com/endocrinology/adrenal/news/online/%7B693f94cd-359d-4c52-8e0d-bfd0e4a51d03%7D/genetic-mutation-lowers-obesity-in-cushings-syndrome

The Effect of Hypercortisolism Treatment on Dyslipidemia in Cushing Syndrome

Abstract

Introduction

Cushing syndrome (CS) is a clinical condition caused by increased plasma cortisol levels and characterized by high cardiovascular mortality. Among the metabolic effects of CS and its treatment, glycaemic disturbances have been investigated in depth, while data on dyslipidemia is still lacking.

Objectives

Our study aims at evaluating the effects of CS treatment on serum lipid levels.

Materials and methods

A literature search was conducted using PubMed, Scopus, and EMBASE databases to investigate the effects of CS treatment on serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), and triglycerides (TG). Before-after analysis and subgroup analysis were performed.

Results

Twenty-nine observational or interventional studies (51.7% of good quality) were included in the quantitative analysis. Treatment of CS led to clinically and statistically significant decrease in serum TC (MD -26.49; 95% CI: -29.95, -23.04; p < 0.00001), LDL-c (MD -18.44; 95% CI: -21.30, -15.57; p < 0.00001), and TG levels (MD -17.77; 95% CI: -22.70, -12.84; p < 0.00001), with no significant changes in HDL-c levels (MD -2.34; 95% CI: -6.96, 2.28; p= 0.32). Subgroup analysis showed greater decrease in TC levels in subjects with adrenal hypercortisolism, in those treated with steroidogenesis inhibitors and in those with treatment duration equal or longer than 12 months. In addition, CS treatment significantly decreased blood glucose (BG) levels, body mass index (BMI), waist circumference (WC), and insulin resistance index.

Conclusion

Our study demonstrate a significant improvement in serum lipid levels after treatment of CS. Since the cardiovascular complications of hypercortisolism depend on several factors, further studies are needed to determine whether this directly translates into an adequate reduction in the risk of major cardiovascular events.

Bone Material Strength Index Is Low in Patients With Cushing’s Syndrome Even After Long-term Remission

I sure know this to be true, even though my surgery was in 1987

Abstract

Objective

Hypercortisolism in endogenous Cushing’s syndrome (CS) results in decreased bone mineral density (BMD) and increased fracture risk. Although after remission BMD improves, the fracture rate remains elevated, suggesting that BMD may not adequately reflect fracture risk in this group. The aim was to evaluate bone material properties, another component of bone quality, using impact microindentation in patients with CS in remission.

Methods

Cross-sectional study in 60 CS patients and 60 age-, sex-, and BMD-matched controls at a tertiary referral center between 2019 and 2021. Bone material strength index (BMSi) was measured by impact microindentation using the OsteoProbe® device at the tibia. In addition, laboratory investigation, BMD, and vertebral fracture assessment were performed.

Results

By design, patients and controls were comparable for age (median age 56.5 years), sex (48 women), and BMD at the lumbar spine and femoral neck. They were also comparable regarding the number of fragility fractures (21 vs 27, P = .22). The median time of remission in patients was 6 years (range 1 to 41). Despite comparable BMD, BMSi was significantly lower in CS patients compared to controls (76.2 ± 6.7 vs 80.5 ± 4.9, P < .001). In CS patients, BMSi was negatively correlated with body mass index (r = −0.354, P = .01) but not related to the presence of fracture, physiological hydrocortisone replacement use, other pituitary insufficiencies, or time since remission.

Conclusion

Bone material properties remain altered in patients with endogenous CS, even after long-term remission. These abnormalities, known to be associated with fractures in other populations, may play a role in the persistent bone fragility of steroid excess.

Identification of Endogenous Hypercortisolism and the Effect of Mifepristone Treatment in Patients With Difficult-to-Manage Diabetes: A Case Series

Endogenous hypercortisolism (Cushing syndrome) is a multisystemic disease characterized by a wide range of clinical signs and symptoms. Its heterogeneous presentation can cause significant diagnostic delays, and prolonged exposure to excess cortisol activity can contribute to cardiometabolic abnormalities such as diabetes. When diabetes remains unresponsive or only partially responsive to standard-of-care treatment, clinicians should consider hypercortisolism as a potential underlying driver.Despite the risks associated with hypercortisolism, guidance on identifying and managing it in patients with diabetes remains limited. This article presents a case series of 10 patients from a single practice who were screened for hypercortisolism because of difficult-to-manage diabetes and additional comorbidities. All patients were treated for hypercortisolism with mifepristone, resulting in significant clinical improvements including weight loss, improved glycemic control, and reduced medication needs.

This real-world case series highlights the importance of recognizing hypercortisolism as a differential diagnosis and a potential contributing factor to difficult-to-manage diabetes despite standard-of-care therapies. Addressing hypercortisolism with mifepristone can result in substantial clinical benefits.

This article contains supplementary material online at https://doi.org/10.2337/figshare.30351361.

PDF of article here.