Ectopic Adrenocorticotropic Hormone-Secreting Pituitary Adenoma in the Clivus Region: A Case Report

Yan Zhang, Danrong Wu, Ruoqiu Wang, Min Luo, Dong Wang, Kaiyue Wang, Yi Ai, Li Zheng, Qiao Zhang, Lixin Shi

Department of Endocrinology and Metabolism, Guiqian International General Hospital, Guiyang, People’s Republic of China

Correspondence: Qiao Zhang; Lixin Shi, Department of Endocrinology and Metabolism, Guiqian International General Hospital, Guiyang, People’s Republic of China, Tel/Fax +86 851-86277666, Email endocrine_zq@126.com; slx1962@medmail.com.cn

Abstract: Ectopic pituitary adenoma (EPA) is a pituitary adenoma unrelated to the intrasellar component and is an extremely rare disease. EPA resembles typical pituitary adenomas in morphology, immunohistochemistry, and hormonal activity, and it may present with specific or non-specific endocrine manifestations. Here, we report a rare case of ectopic adrenocorticotropic hormone (ACTH)-secreting pituitary adenoma in the clival region. Only three patients with ACTH-secreting pituitary adenomas occurring in the clivus have been previously reported, and the present case was diagnosed as a clivus-ectopic ACTH-secreting pituitary macroadenoma. Thus, in addition to the more common organs, such as the lung, thymus, and pancreas, in the diagnosis of ectopic ACTH syndrome, special attention should be paid to the extremely rare ectopic ACTH-secreting pituitary adenoma of the clivus region.

Keywords: ectopic pituitary adenoma, Cushing’s syndrome, clivus, adrenocorticotropic hormone, endocrine

Introduction

The diagnosis of Cushing’s syndrome (CS), particularly its localization diagnosis, has always been a challenge in clinical practice.1,2 Endogenous CS can be divided into adrenocorticotropic hormone (ACTH)-dependent and non-ACTH dependent with the former accounting for 70% of CS cases. Ectopic ACTH syndrome accounts for 5–10% of CS cases, and its lesions are mainly located in the lungs, thymus, pancreas, and the thyroid gland.3 Finding such lesions in non-pituitary intracranial regions is extremely rare, and ectopic ACTH in the clivus region is even rarer. To date, less than 60 cases of ectopic ACTH-secreting pituitary adenomas have been reported,4 and determining their localization is a formidable challenge in CS diagnosis. It is difficult to make an accurate and prompt diagnosis of ectopic ACTH-secreting pituitary adenoma caused by hypercortisolism based on its clinical manifestation, routine laboratory tests, and radiologic examinations.1,4 Ectopic pituitary adenomas (EPAs) are mainly concentrated in the sphenoid sinus, suprasellar region, and cavernous sinus, and rare regions include the clivus, ethmoid sinus, and nasal cavity.5 A literature review showed that only three cases of primary EPA in the clivus region have been reported worldwide.6–8 Recently, we diagnosed a patient with ectopic ACTH-secreting pituitary macroadenoma in the clivus region that was confirmed by surgery and immunohistochemistry.

Case Presentation

A 53-year-old female patient sought medical attention at our hospital for hypertension, headache, and dizziness with a blood pressure as high as 180/100 mmHg. Her medical history showed that she had developed similar symptoms 2 years ago. At that time, she had hypertension (180/100 mmHg), headache, and dizziness, and she was treated with amlodipine (5 mg per day), benazepril hydrochloride (10 mg per day), and metoprolol tartrate (50 mg per day). The patient was not hospitalized for treatment and did not undergo systemic examination. Three months before admission, the patient had a thoracic vertebrae fracture caused by moving heavy objects. One month before admission, she had a bilateral rib fracture due to falling on flat ground. Her physical examination results were as follows: blood pressure, 160/85 mmHg; height, 147 cm; weight, 55.2 kg; and body mass index (BMI), 25.54 kg/m2. In the physical examination, moon facies, buffalo hump, concentric obesity, facial plethora, and large patches of ecchymosis at the blood sampling site were observed. Purple striae were absent below the axilla, abdomen, and limbs. Her hematological examination results were as follows: cortisol (COR) rhythm with 33.52 µg/dL (reference range: 4.26–24.85) at 8:00 AM, 34.3 µg/dL at 4:00 PM, and 33.14 µg/dL at 12:00 AM; 1 mg dexamethasone overnight suppression test indicated 22.21 µg/dL COR at 8:00 AM; 24 h urine COR was 962.16 µg/24 h (reference range: 50–437 µg/24 h); 8:00 AM ACTH at two different times was 74 pg/mL and 90.8 pg/mL (reference range: <46); high-dose dexamethasone suppression test (HDDST) was 21.44 µg/dL COR (serum COR level was not suppressed by more than 50%); serum potassium was 3.38 mmol/L (reference range: 3.5–5.5); insulin-like growth factor-1 (IGF-1) was 106.6 ng/mL (reference range: 84–236); serum luteinizing hormone (LH) was <0.07 IU/L (reference range: 1.9–12.5); serum follicle stimulating hormone (FSH) was 0.37 IU/L (reference range: 2.5–10.2); prolactin (PRL), testosterone, progesterone, and estradiol test results were normal; FT4 was 8.25 pmol/L (reference range: 10.44–24.38); TSH was 1.116 mIU/L (reference range: 0.55–4.78); oral glucose tolerance test (OGTT) indicated that fasting blood glucose was 6.3 mmol/L and 2-h blood glucose was 18.72 mmol/L; and glycated hemoglobin (HbA1c) was 7.1%. A bone mineral density test suggested osteoporosis (dual energy X-rays: L1-L4 T values were −3.4).

Magnetic resonance (MR) scans were performed using a SIGNA Pioneer 3.0T (GE Healthcare, Waukesha, WI, USA), and computed tomography (CT) scans were performed using a 256 slice CT scanner (Revolution CT; GE Healthcare, Waukesha, WI, USA). The enhanced MR scan of the sellar lesion showed a soft tissue mass with abnormal signals in the occipital bone clivus. T1WI showed an isointense signal, and T2WI showed an isointense/slightly hyperintense signal in a large area of approximately 30 mm × 46 mm. The lesion extended anteriorly to completely fill the entire sphenoidal sinus, and it was in a close proximity to the right internal carotid arteries. Significant invasion, liquefaction, and necrosis were not observed in the bilateral cavernous sinuses. Pituitary gland morphology was normal with a superoinferior diameter of 3.14 mm, and the pituitary gland was located in the center. An occipital bone clival space-occupying lesion was considered with a tendency of low malignancy and a possibility of chordoma (Figure 1A–C). Non-enhanced high-resolution CT scans of the nasal sinuses showed osteolytic destruction, and a soft tissue mass was observed in the occipital bone clivus. The mass had a large area of 20 mm × 30 mm × 46 mm (Figure 1D). Enhanced CT of the adrenals showed bilateral adrenal gland hyperplasia.

Figure 1 (A) MR T1+T2 scan (transverse view). MR T1 scan (left) shows the soft tissue mass of the occipital clivus (white arrow), and MR T2 scan (right) shows that the right internal carotid artery, cavernous sinus, and tumor are within close proximity to each other (white arrow). (B) MR T1 enhanced scan (sagittal view) shows clear demarcation between normal pituitary gland and mass (white arrow). (C) MR T2 scan (sagittal view) shows that the pituitary fossa is normally present (white arrow). (D) CT (sagittal view) shows bony destruction of dorsum sellae, clivus, and sphenoid sinus by mass (white arrow).

Bilateral inferior petrosal sinus sampling (IPSS) combined with a desmopressin stimulation test had the following results: baseline ACTH at left inferior petrosal sinus/periphery (IPS/P), 5.4; post-stimulation IPS/P, 3.42; stimulation corrected (ACTHPRL) IPS/P, 2.8; right baseline IPS/P, 1.64; post-stimulation IPS/P, 9.34; and stimulation corrected IPS/P, 6.92. The left inferior petrosal sinus was the dominant side (Table 1).

Table 1 Bilateral Inferior Petrosal Sinus Sampling Combined with Desmopressin Stimulation Test

The patient underwent endoscopic transsphenoidal clival lesion resection surgery, and the postoperative pathology test results showed EPA (Figure 2). The immunohistochemistry staining results were as follows: CK (+), SYN (+), CgA (+), ACTH (+), growth hormone (GH) (−), LH (−), TSH (−), PRL (−), FSH (−), and Ki-67 (<1% +). The COR level at 10 days after surgery was 15.87 µg/dL, and the ACTH level was 31.37 pg/mL (Table 2).

Table 2 Changes in COR and ACTH Levels During Course of Treatment
Figure 2 Pathological diagnosis of (clivus) ectopic pituitary adenoma. (A) Pituitary adenoma revealing a trabecular and nested structure revealing vascular invasion (hematoxylin and eosin (HE) stain, 200x) composed of two distinct types of cells. (B) ACTH expression in the EPA (200x, ACTH-antibody, Dako).

After admission, her blood and urine COR levels were significantly elevated, and a qualitative diagnosis of CS was obtained. Etiological examination found that ACTH was also significantly elevated, suggesting that the CS was ACTH dependent. The HDDST results showed that the serum COR level was not suppressed by more than 50% and was accompanied by hypokalemia, suggesting that the ACTH-dependent CS may be ectopic ACTH syndrome. Ectopic ACTH syndrome is relatively rare, and the lesions are caused by non-pituitary tumors. No lesions were identified in the lung, thymus, pancreas, and thyroid of our patient. Regarding the IPSS examination, the IPS/P ratio was greater than 2, which suggested that the ectopic ACTH was located intracranially and not at the periphery. Radiologic testing suggested that the pituitary structure was normal and that a space-occupying lesion in the clivus region was present. Therefore, ectopic ACTH-secreting adenoma in the clivus region was considered, and postoperative pathological biopsy was used to confirm the diagnosis.

Discussion

EPA is an extremely rare disease that occurs outside of the sella turcica, and it is not linked to the intrasellar pituitary. The morphology, immunohistochemistry, and hormone activity of EPAs are similar to typical pituitary adenomas. EPAs can manifest as specific or non-specific endocrine disorders, and they account for 0.48% of all pituitary adenomas.9 The pathogenesis of EPA is still currently unknown. It is generally considered that during the development of the anterior pituitary lobe, the incompletely degraded Rathke cleft cyst remnants of the Rathke pouch lead to the formation of EPAs in the nasopharynx, sphenoid, and clivus.10,11 EPA is rare in China. Zhu et al5 recorded 14,357 pituitary gland patients in the last 20 years; of these patients, only 14 were diagnosed with EPA (0.098% of all cases), but none of the lesions originated from the clivus region. Previous literature reviews4,5 revealed that non-functioning EPAs in the clivus region are the most common (50%); the most common hormone-secreting functional adenomas are PRL adenomas and GH adenomas, which account for 25.0% and 21.4% of EPAs, respectively, whereas ACTH-secreting EPAs are extremely rare and only account for 3.6% of cases.

The postoperative pathological and immunohistochemical results of the tumor tissue in the patient demonstrated that it was an ectopic ACTH-secreting pituitary macroadenoma in the clivus region. Most EPAs are microadenomas (diameter <1 cm), except those in the clivus region, which are macroadenomas.5 Adenoma size generally does not affect the patient’s clinical and biochemical characteristics, and it may be related to tumor location or extension.12 Encasement of the internal carotid artery is a characteristic feature of EPA invasion into surrounding tissues.5 Encasement of the right internal carotid artery by the tumor was also observed in our patient. Therefore, surgery cannot completely remove the tumor and may ultimately affect surgical outcomes, and radiotherapy may even be required in the future. The serum COR and ACTH levels of our patient were evaluated 10 days after surgery. Although the levels were significantly lower than those before the surgery, the COR level was still significantly higher than the cutoff value of 1 µg/dL,13,14 suggesting that the patient may not have complete remission due to the incomplete tumor resection in the area adjacent to the carotid artery during surgery. Another feature that was observed in our patient was bone invasion. Because the clivus is composed of abundant cancellous bone that is connected to surrounding bone structures, EPAs or other tumors may cause bone destruction and affect the sphenoidal sinus and cavernous sinus, which is also consistent with literature reports.15,16

Due to the low incidence of EPAs, most EPA cases are reported as case reports in the literature. We performed an English literature search using the PubMed and Web of Science Core Collection databases with the following predetermined terms: “Cushing’s syndrome”, “pituitary adenomas”, “clivus”, “ectopic pituitary adenoma”, and “adrenocorticotropic”. The literature was included if it met the following criteria: (i) the confirmed diagnosis of CS or ectopic ACTH syndrome was described in the literature; (ii) the diagnosis of EPA was confirmed by postoperative inspection; and (iii) EPA occurred in the clivus. After excluding cases of clival invasion from other sites, we found only three reports of ectopic ACTH-secreting adenoma in the clivus region,6–8 and they were all female patients. Ortiz-Suarez and Erickson6 employed transfrontal craniotomy to demonstrate that the ectopic ACTH-secreting adenoma was an extension of extrasellar lesion to the clivus. In a case report by Pluta et al,7 the patient was found to have cavernous sinus and clival ACTH-positive tumors through transphenoidal surgery. In a case report by Aftab et al,8 the patient only presented a space-occupying lesion with unilateral vision loss; the patient was initially diagnosed with clival chordoma, but the postoperative results supported the diagnosis of EPA. Based on preoperative imaging, the possibility of chordoma was also considered to be high in our patient. We combined the clinical manifestation and laboratory test results of the patient and considered the etiology of CS to conclude that the patient had clival ectopic ACTH-secreting adenoma instead of chordoma.

Hormone tests in our patient suggested secondary pituitary-gonadal axis and decreased pituitary-thyroid axis function. These changes in endocrine function may be due to pituitary suppression by hypercortisolism. After surgery, the corresponding markers recovered, indicating that the suppression was transient. The patient has a history of fracture and a bone mineral density suggestive of osteoporosis, which may also be associated with CS hypercortisolemia.

Treatment modalities for EPA include adenoma resection surgery, radiotherapy, and drugs. The first-line recommended treatment is surgical resection. Craniotomy is considered the surgical procedure of choice for EPA, and endoscopic transsphenoidal surgery (TSS) is considered a feasible method for preserving pituitary function while simultaneously treating EPA. However, due to limitations with the surgical operation space, there are still concerns whether sufficient exploration and effective tumor resection can be achieved.17 Because there are few case reports of such patients, the long-term outcomes of these two surgical procedures require further validation. Due to differences in EPA sites and functions, the efficacy of surgery also differs. Zhu et al5 reported that compared to the radical resection rate of sphenoidal sinus and cavernous sinus EPA (72.3% and 73.3%, respectively), the radical resection rate of clival EPA is only 45.0%, and this difference is statistically significant.

The three clival EPA patients described in the three relevant publications6–8 all showed significant improvements in postoperative signs, symptoms, and hormone levels after complete surgical removal of the lesions or combined with radiation therapy. In our patient, however, radical resection of the tumor could not be achieved due to the close proximity of the tumor mass to the right internal carotid artery, and surgery could not be used to achieve complete remission, which is similar to the case reported by Zhu et al.5 For such patients, radiotherapy can be considered as a second-line treatment for EPA. To control hormone levels, drugs and bilateral adrenalectomy are also treatment options.5,18,19

Conclusion

EPA is a rare disease, and clival EPA is even rarer. From the entire diagnosis and treatment course, this unique and rare EPA case was preliminarily diagnosed through a comprehensive hormone panel and IPSS, and it was confirmed by pathology and immunohistochemistry after surgery. In the diagnosis of ectopic ACTH syndrome, attention should also be paid to extremely rare pituitary ectopic sites, such as the sphenoid sinuses, parasellar region, and the clivus, in addition to common sites, such as the lungs, thymus, pancreas, and thyroid.

Data Sharing Statement

The raw data supporting the conclusions of this article will be made available by the authors without undue reservation.

Informed Consent Statement

Prior written permission was obtained from the patient for treatment as well as for the preparation of this manuscript and for publication. Our institution approved the publication of the case details.

Acknowledgments

We would like to thank the patient and her family.

Author Contributions

All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis and interpretation, or in all these areas; took part in drafting, revising or critically reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article has been submitted; and agree to be accountable for all aspects of the work.

Funding

There is no funding to report.

Disclosure

The authors report no conflicts of interest in this work.

References

1. Senanayake R, Gillett D, MacFarlane J, et al. New types of localization methods for adrenocorticotropic hormone-dependent Cushing’s syndrome. Best Pract Res Clin Endocrinol Metab. 2021;35:101513. doi:10.1016/j.beem.2021.101513

2. Young J, Haissaguerre M, Viera-Pinto O, et al. Management of Endocrine Disease: cushing’s syndrome due to ectopic ACTH secretion: an expert operational opinion. Eur J Endocrinol. 2020;182:R29–r58. doi:10.1530/EJE-19-0877

3. Hayes AR, Grossman AB. The ectopic adrenocorticotropic hormone syndrome: rarely easy, always challenging. Endocrinol Metab Clin North Am. 2018;47:409–425. doi:10.1016/j.ecl.2018.01.005

4. Zhu J, Lu L, Yao Y, et al. Long-term follow-up for ectopic ACTH-secreting pituitary adenoma in a single tertiary medical center and a literature review. Pituitary. 2020;23:149–159. doi:10.1007/s11102-019-01017-y

5. Zhu J, Wang Z, Zhang Y, et al. Ectopic pituitary adenomas: clinical features, diagnostic challenges and management. Pituitary. 2020;23:648–664. doi:10.1007/s11102-020-01071-x

6. Ortiz-Suarez H, Erickson DL. Pituitary adenomas of adolescents. J Neurosurg. 1975;43:437–439. doi:10.3171/jns.1975.43.4.0437

7. Pluta RM, Nieman L, Doppman JL, et al. Extrapituitary parasellar microadenoma in Cushing’s disease. J Clin Endocrinol Metab. 1999;84:2912–2923. doi:10.1210/jcem.84.8.5890

8. Aftab HB, Gunay C, Dermesropian R, et al. “An Unexpected Pit” – ectopic pituitary adenoma. J Endocr Soc. 2021;5:A557–A558. doi:10.1210/jendso/bvab048.1137

9. Li X, Zhao B, Hou B, et al. Case report and literature review: ectopic thyrotropin-secreting pituitary adenoma in the suprasellar region. Front Endocrinol. 2021;12:619161. doi:10.3389/fendo.2021.619161

10. Agely A, Okromelidze L, Vilanilam GK, et al. Ectopic pituitary adenomas: common presentations of a rare entity. Pituitary. 2019;22:339–343. doi:10.1007/s11102-019-00954-y

11. Tajudeen BA, Kuan EC, Adappa ND, et al. Ectopic pituitary adenomas presenting as sphenoid or clival lesions: case series and management recommendations. J Neurol Surg B Skull Base. 2017;78:120–124. doi:10.1055/s-0036-1592081

12. Akirov A, Shimon I, Fleseriu M, et al. Clinical study and systematic review of pituitary microadenomas vs. macroadenomas in cushing’s disease: does size matter? J Clin Med. 2022;11:1558. doi:10.3390/jcm11061558

13. Badiu C. Williams textbook of endocrinology. Acta Endocrinologica. 2019;15:416. doi:10.4183/aeb.2019.416

14. Rollin GA, Ferreira NP, Junges M, et al. Dynamics of serum cortisol levels after transsphenoidal surgery in a cohort of patients with Cushing’s disease. J Clin Endocrinol Metab. 2004;89:1131–1139. doi:10.1210/jc.2003-031170

15. Hu S, Cheng S, Wu Y, et al. A large cavernous sinus giant cell tumor invading clivus and sphenoid sinus masquerading as meningioma: a case report and literature review. Front Surg. 2022;9:861739. doi:10.3389/fsurg.2022.861739

16. Wu X, Ding H, Yang L, et al. Invasive corridor of clivus extension in pituitary adenoma: bony anatomic consideration, surgical outcome and technical nuances. Front Oncol. 2021;11:689943. doi:10.3389/fonc.2021.689943

17. Sun X, Lu L, Feng M, et al. Cushing syndrome caused by ectopic adrenocorticotropic hormone-secreting pituitary adenomas: case report and literature review. World Neurosurg. 2020;142:75–86. doi:10.1016/j.wneu.2020.06.138

18. Szabo Yamashita T, Sada A, Bancos I, et al. Differences in outcomes of bilateral adrenalectomy in patients with ectopic ACTH producing tumor of known and unknown origin. Am J Surg. 2021;221:460–464. doi:10.1016/j.amjsurg.2020.08.047

19. Szabo Yamashita T, Sada A, Bancos I, et al. Bilateral adrenalectomy: differences between cushing disease and Ectopic ACTH-producing tumors. Ann Surg Oncol. 2020;27:3851–3857. doi:10.1245/s10434-020-08451-4

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

 

Successful Immunomodulatory Treatment of COVID-19 in a Patient With Severe ACTH-Dependent Cushing’s Syndrome

Introduction: Patients with Cushing’s syndrome (CS) represent a highly sensitive group during corona virus disease 2019 (COVID-19) pandemic. The effect of multiple comorbidities and immune system supression make the clinical picture complicated and treatment challenging.

Case report: A 70-year-old female was admitted to a covid hospital with a severe form of COVID-19 pneumonia that required oxygen supplementation. Prior to her admission to the hospital she was diagnosed with adrenocorticotropic hormone (ACTH)-dependent CS, and the treatment of hypercortisolism had not been started yet. Since the patient’s condition was quickly deteriorating, and with presumend immmune system supression due to CS, we decided on treatement with intraveonus immunoglobulins (IVIg) that enabled quick onset of immunomodulatory effect. All comorbidities were treated with standard of care. The patient’s condition quickly stabilized with no direct side effects of a given treatment.

Conclusion: Treatment of COVID-19 in patients with CS faces many challenges due to the complexity of comorbidity effects, immunosupression and potential interactions of available medications both for treatment of COVID-19 and CS. So far, there are no guidelines for treatment of COVID-19 in patients with active CS. It is our opinion that immunomodulating therapies like IVIg might be an effective and safe treatment modality in this particularly fragile group of patients.

Introduction

Dealing with corona virus disease 2019 (COVID-19) focused medical attention on several sensitive population groups. While the knowledge is still improving, some of the recognized risk factors for severe form of the disease are male sex, older age, obesity, hypertension, diabetes mellitus, and cardio-vascular disease (1). This constellation of morbidities is particularly intriguing from endocrine point of view, since they are all features of patients with Cushing’s syndrome (CS). Another relevant feature of CS is a propensity for infections due to profound immune suppression, with prevalence of 21-51%; even more so, infections are the second cause of death (31%) in CS after disease progression, and are the main cause of death (37%) in patients who died within 90 days of diagnosis (2).

Immune system alterations in CS lead to depression of both innate and adaptive immune responses, favoring not only commonly acquired but also opportunistic bacterial infections, fungal infections, and severe, disseminated viral infections (3). Susceptibility to infections directly positively correlates with cortisol level, and is more frequent in ectopic ACTH secretion (EAS). Hypercortisolism hampers the first-line response to external agents and consequent activation of the adaptive response (3). Consequently, there is a decrease in total number of T-cells and B-cells, as well as a reduction in T-helper cell activation, which might favor opportunistic and intracellular infections. On the other hand, an increase in pro-inflammatory cytokine secretion, including interleukine-6 (IL-6) and tumor necrosis factor-α (TNF-α) leads to persistent, low-grade inflammation. It is important to note that immune system changes are confirmed both during the active phase and while in remission of CS (3).

In view of the aforementioned data, a few topics emerge regarding patients with CS and COVID-19. Initial clinical presentation may be altered – low-grade chronic inflammation and poor immune reaction might limit febrile response in the early phase of infection, aggravating timely diagnosis (4). Increased cytokine levels may put patients with CS at increased risk of severe course and progression to acute respiratory distress syndrome (ARDS). On the other hand, the rise in cytokine levels associated with exposure to external agents is significantly hampered, probably because of persistently elevated pro-inflammatory cytokine secretion (45). Patients with CS have a possibility for prolonged duration of viral infections and risk for superinfections leading to sepsis and increased mortality risk; this is especially relevant for hospitalized patients and mandates empirical prophylaxis with broad-spectrum antibiotics (6). Both COVID-19 and CS individually represent disease states of increased thromboembolic (TE) risk, requiring additional care (6).

Due to very limited data, it is still not possible to address these topics with certainty and make recommendations for optimal management of these patients. Current clinical practice guidance for management of CS during COVID-19 commissioned by the European Society of Endocrinology (ESE) emphasizes prompt and optimal control of hypercortisolism and adequate treatment of all comorbidities (7). Although individual circumstances must always be considered, we need more direct clinical experience, especially regarding the actual treatment of COVID-19 in this sensitive group. So far, there are only five published case studies of patients with CS and COVID-19, with eight patients in total (812). In this study, we present a patient with newly diagnosed ACTH-dependent CS who was diagnosed with COVID-19 before the initiation of specific medical treatment.

Case Report

A 70-year-old female was admitted to our Covid hospital due to bilateral interstitial pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Six days before she was discharged from endocrinology department of another hospital where she was hospitalized due to newly diagnosed diabetes mellitus. Her personal history was unremarkable, and she was vaccinated with two doses of inactivated COVID-19 vaccine Sinopharm BBIBP. During this hospitalization Cushingoid features were noted (moon face, centripetal obesity, thin extremities with multiple hematomas, bilateral peripheral edema), as well as diabetes mellitus (HbA1c 8.7%), arterial hypertension (BP 180/100 mmHg), hypokalemia (2.0 mmol/L), mild leukocytosis (WBC 12.9x10e9/L) with neutrophilia, and mildly elevated CRP (12.3 mg/L). Hormonal functional testing confirmed ACTH-dependent Cushing’s syndrome: morning ACTH 92.6 pg/mL (reference range 10-60 pg/mL), morning serum cortisol 1239 nmol/L (reference range 131-642 nmol/L), midnight serum cortisol 1241 nmol/L, lack of cortisol suppression in overnight dexamethasone suppression test (978 nmol/L). Pituitary MRI was unremarkable other than empty sella, and CT scan of thorax normal other than left adrenal hyperplasia. Diabetes mellitus was successfully controlled with metformin, hypertension with ACE-inhibitor, Ca-channel blocker and beta-blocker, and hypokalemia with potassium supplementation along with spironolactone. Steroidogenesis inhibitors were not available in this institution, but before referral to a tertiary care hospital she was tested for SARS-CoV-2, and the test came back positive (sample was obtained by nasopharyngeal swab). Since she was asymptomatic, with normal thoracic CT scan and stabile CRP level (9.1 mg/L), she was discharged with detailed recommendations for conduct in case of progression of COVID symptoms.

Next day she started feeling malaise with episodes of fever (up to 38.2°C). Symptomatic therapy was advised in an outpatient clinic (no antiviral therapy was recommended), but 5 days later respiratory symptoms ensued. During examination, the patient was weak, with dyspnea and tachypnea (RR 22/min), afebrile (36.9°C) and with oxygen saturation (SO2) of 85% measured by pulse oximeter. Chest X-ray confirmed bilateral interstitial pneumonia with parenchymal consolidation in the right lower lung lobe, so she was referred to the COVID hospital.

Laboratory analyses upon admission are presented in the Supplementary Table 1. In addition to her previous testing, elevated chromogranin A (CgA) level was verified (538.8 ng/mL, reference range 11-98.1). The patient was treated with supplemental oxygen with maximal flow of 13 l/min. For the reason of previously confirmed severe endogenous hypercortisolism, glucocorticoids were not administered. Due to limited therapeutic options and presumed further clinical deterioration, we decided to treat the patient with intravenous immunoglobulins (IVIg) 30 g iv for 5 days, starting from the 2nd day of hospitalization. We did not observe any side effects of a given treatment. In parallel, the patient received broad-spectrum antibiotics (ceftazidime and levofloxacin), proton pump inhibitor, LMWH in prophylactic dose, oral and parenteral potassium supplementation along with spironolactone. She continued with her previous antihypertensive therapy with good control of blood pressure. While the patient was on oxygen supplementation, glycaemia was controlled with short acting insulin before meals. Following given treatment, we observed clinical, biochemical (Supplementary Table 1.) and radiological improvement (Supplementary Figure 1). Oxygen supplementation was gradually discontinued. With regard to D-dimer levels and risk factors for TE events due to COVID-19 and CS, we performed color Doppler scan of lower extremities veins, and CT pulmonary angiography, but there were no signs of thrombosis. During hospital stay, there were no signs of secondary infection and cotrimoxazole was not added to the current treatment. The patient was discharged with advice to continue her prior medical therapy along with increased dose of spironolactone and initiation of rivaroxaban. She was referred to the tertiary institution for the initiation of steroidogenesis inhibitor and further diagnostics.

Discussion

Endogenous Cushing’s syndrome is a rare disease with an incidence of 0.7-2.4 million person-years in European population-based studies (13). Significant morbidity yields a standard mortality ratio of 3.7 (95%CI 2.3–5.3), with the highest mortality during the first year after initial presentation. COVID-19 pandemic imposes additional challenge to this fragile group of patients. Due to lack of solid experience, it is still difficult to define potential clinical course and outcome of patients with CS and COVID-19. In addition, currently there are no guidelines for management of SARS-CoV-2 infection in patients with active CS.

So far, only two small case series followed patients with Cushing’s disease (CD) in various disease stages (not all were active) during COVID-19 pandemic (912). Small number of SARS-CoV-2 positive cases (3/22 and 2/61) is clearly biased by shortness of analyzed period (one and a half, and three and a half months). Additionally, a small number of patients was actually tested by nasopharyngeal swab for SARS-CoV-2 even in the presence of indicative symptoms, albeit mild. Nevertheless, all these limitations included, it seems that the prevalence of COVID-19 might be greater in patients with CD than in general population (12). This is accordant with studies on patients on exogenous glucocorticoid (GC) treatment. Overall, there is a growing body of evidence that patients on chronic GC therapy are at higher risk for SARS-CoV-2 infection and a severe course of disese, regardless of age and comorbidities (14). In many studies patients on high-dose GC therapy were at particularly high risk for a severe course of disease, so it is reasonable to assume that there is a dose-dependent effect (14).

All patients except one with endogenous CS and COVID-19 presented in literature were hospitalized, with majority of them requiring oxygen supplementation, which classified them as serious cases of disease (812). Parameters of inflammation (namely CRP) were highly variable (from normal to elevated) and did not seem to reflect severity of COVID-19 consistently. Two patients had fatal outcome; one with postoperative hypocortisolism that required stress doses of hydrocortisone, and with terminal kidney failure as significant comorbidity; the other with suspected EAS who developed ARDS in contrast to normal CRP and absence of fever (912). Based on reported cortisol levels in these patients, it seems that the severity of COVID-19 pneumonia depended on severity of hypercortisolism (812). A patient with probable EAS even developed ARDS, which adds to ongoing controversy regarding the risk of ARDS due to SARS-CoV-2 in patients with CS (315). We ourselves have treated a severely obese female patient with active CD on pasireotide, who developed ARDS despite addition of high doses of methylprednisolone (unpublished data). Additional risk imposed by comorbidities cannot be underestimated (1516). This is particularly relevant for obesity, that not only hampers immune system (leading to increased levels of IL-1, IL-6, and TNF-α), but adipocytes represent a reservoir of SARS-CoV-2 thanks to ACE2 receptor, crucial for virus attachment (15).

Majority of depicted patients with active CS were already medically treated for hypercortisolism but with various compliance (sometimes very poor), and two young patients have just started steroidogenesis inhibitors (metyrapone/ketoconazole). Infection with SARS-CoV-2 was treated by national protocols that were mostly based on supportive care. These protocols changed over time, so a few patients received antiviral therapy (favipiravir), and one young patient with suspected EAS was treated with methylprednisolone along with high doses of ketoconazole (10). Treatment was complicated with adrenal insufficiency (AI) in three patients (81112).

We have presented a patient with CS and rapid development of serious case of COVID-19 pneumonia that required hospital admission and oxygen support. She was febrile and had positive laboratory parameters of inflammation. Her CS was active, with very high cortisol levels, no prior medical treatment and with clinical suspicion of EAS (ACTH-dependent disease of short duration, severe hypercortisolism, hypokalemia, very high CgA, no visible pituitary tumor). With this in mind, and with regard to rapid progression of COVID-19 pneumonia, it was our opinion that the patient required treatment with quick onset and presumable immune system modulation.

A logical approach to treatment of CS during COVID-19 pandemic includes meticulous therapy for comorbidities (namely antihypertensives, anti-diabetic drugs, low molecular weight heparin, etc.), and steroidogenesis inhibitors for treatment for hypercortisolemia (7). While some of these drugs demonstrate quick onset of action regarding normalization of cortisol level (and hence improve clinical comorbidities), rapid effects on immune system responses are not likely, which might be of great relevance in case of acute infection. Secondly, adrenolytic therapy increases a risk of AI, which can be even more perilous than CS in case of infection or other stress situations (8121516). A modified “block and replace” approach may be considered, where addition of hydrocortisone could diminish the risk of AI (7). Still, there are a few potential pitfalls with this regimen as well. Some people fail to respond to high doses of adrenal-blocking agents due to genetic differences in the steroidogenic enzymes, since therapeutic responses to metyrapone and ketoconazole in patients with CS are associated with the polymorphism in the CYP17A1 gene (17). Additionally, there are not enough data about possible interactions between adrenolytic drugs (majority of them being metabolized through the CYP450/CYP3A4 pathway) and medications used to treat COVID-19, most of which are only just emerging (18). Special concerns, amplified with similar potential effects of SARS-CoV-2 itself as well as specific therapies are liver dysfunction (metyrapone, ketoconazole), hypokalemia (metyrapone, ketoconazole), QT-interval prolongation (ketoconazole, osilodrostat), gastrointestinal distress (mitotane, osilodrostat, etomidate) (18). Metyrapone may cause accumulation of androgenic precursors secondary to the blockade of cortisol synthesis, that can virtually enhance expression of transmembrane protease serine 2 (TMPRSS2), found to be essential to activate the viral spikes, induce viral spread, and pathogenesis in the infected hosts (19). Another important issue concerns biochemical estimation of disease control (and hence risk for AI), since most commercially available assays can overestimate cortisol level in patients treated with metyrapone due to cross-reactivity with the precursor 11-deoxicortisol (715). Mass spectrometry is a method of choice to overcome this problem, but it is not available in many centers. Some centers advocate titration and/or temporary halting medical therapies in the treatment of patients with CS in the context of COVID-19 infection (20). Treatement was stopped in a few patients with severe COVID-19 symptoms who were then given high dose GC for a few days with no long-term complications, and with full recovery (20).

There are no data about the effect of anti-viral drugs in patients with CS and COVID-19. A special concern refers to adipose tissuse, as adipose tissue is difficult for antiviral drugs to reach. It cannot be excluded that the constant release of viral replicas from the adipose tissue reservoir may interfere with COVID-19 infection treatment, delaying its resolution and favoring a worse prognosis (15). If antiviral drugs are started, it is suggested that immunocompromised patients may require prolonged therapy (18). However, the timing is difficult in practice and candidates for antivirals are limited.

Since the clinical course of COVID-19 only initially depends on viral replication, immunomodulatory therapy emerged as a valuable treatment option to control the host immune response. This became apparent ever since RECOVERY trial proved efficacy of glucocortiods (21). But this therapeutic option is fairly inapplicable in patients with active CS, since glucocorticoid treatment in chronic hypercortisolism seems to enhance immune system alterations (22). In parallel with the development of new agents, it is prudent to study the efficacy of existing therapeutic options with acceptable safety profile (20). Beside glucocorticoids, inflammation blockers, intravenous immunoglobulin and convalescent plasma were used in various settings (23).

Intravenous immunoglobulin (IVIg) is a blood product prepared from the serum pooled from thousands of healthy donors, containing a mixture of polyclonal IgG antibodies, mostly IgG1 and IgG2 subclasses (2425). Initial rationale for its use was immunodefficiency due to hypoglobulinemia. Since then it has been shown that IVIg exerts pleiotropic immunomodulating action involving both innate and adaptive immunity and it has been used in a variety of diseases (26). In previous studies on MERS (Middle East Respiratory Syndrome) and SARS (Severe Acute Respiratory Syndrome) using IVIg showed beneficial clinical effects (25). Although pathogenesis of COVID-19 has not be fully elucidated, there is a consensus that immune-mediated inflammation plays an important role in the progression of this disease, just as it did in prior coronavirus infections (27). In this context, the actual role of IVIg in COVID-19 patients might be not to boost the immune system, but through its immunomodulatory effect to suppress a hyperactive immune response that is seen in some patients (28). So far, a limited number of studies, case series and meta-analyses demonstrate a promising potential of IVIg in patients with COVID-19. The effect was demonstrated in terms of mortality, improvement of clinical symptoms, laboratory examinations, imaging and length of hospital stay, especially in patients with moderate/severe form of the disease, and with emphasis on early administration (within 3 days of admission) (24252731). A recent double blind, placebo-controlled, phase 3, randomized trial tested hyperimmune intravenous immunoglobulin (hIVIg) to SARS-CoV-2 derived from recovered donors with no demonstrated effect compared with standard of care, but therapy was administered in patients symptomatic up to 12 days (32). Additional clinical trials are underway, hopefully with more guidance for proper selection of patients that might benefit from this type of treatment.

Conclusion

To our knowledge, this is the first case of IVIg treatment in a COVID-19 patient with CS. It is our opinion that immune-modulating properties of IVIg might present an attractive treatment option, especially in those CS patients that show rapid clinical progression and positive laboratory parameters of inflammation. While we await for new therapeutic modalities for COVID-19 and while some of the modalities remain not widely available, IVIg is more accessible, safe method, which could be rescuing in carefully selected patients. Of note, we consider our patient’s vaccinal status as an unquestionable positive contributor to the favorable outcome

Data Availability Statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Ethics Statement

Ethical review and approval was not required for the study on human participants in accordance with the local legislation and institutional requirements. The patients/participants provided their written informed consent to participate in this study. Written informed consent was obtained from the individual(s) for the publication of any potentially identifiable images or data included in this article.

Author Contributions

BP, AS, JV, TG, MJ-L, JV, VS, ZG and TA-V analyzed and interpreted the patient data. BP, AP, DI, and DJ were major contributors in writing the manuscript. All authors contributed to the article and approved the submitted version.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fendo.2022.889928/full#supplementary-material

References

1. Hu J, Wang Y. The Clinical Characteristics and Risk Factors of Severe COVID-19. Gerontology (2021) 67(3):255–66. doi: 10.1159/000513400

PubMed Abstract | CrossRef Full Text | Google Scholar

2. Valassi E, Tabarin A, Brue T, Feelders RA, Reincke M, Netea-Maier R, et al. High Mortality Within 90 Days of Diagnosis in Patients With Cushing’s Syndrome: Results From the ERCUSYN Registry. Eur J Endocrinol (2019) 181(5):461–72. doi: 10.1530/EJE-19-0464

PubMed Abstract | CrossRef Full Text | Google Scholar

3. Hasenmajer V, Sbardella E, Sciarra F, Minnetti M, Isidori AM, Venneri MA. The Immune System in Cushing’s Syndrome. Trends Endocrinol Metab (2020) 31(9):655–69. doi: 10.1016/j.tem.2020.04.004

PubMed Abstract | CrossRef Full Text | Google Scholar

4. Pivonello R, Isidori AM, De Martino MC, Newell-Price J, Biller BM, Colao A. Complications of Cushing’s Syndrome: State of the Art. Lancet Diabetes Endocrinol (2016) 4(7):611–29. doi: 10.1016/S2213-8587(16)00086-3

PubMed Abstract | CrossRef Full Text | Google Scholar

5. Martins-Filho PR, Tavares CSS, Santos VS. Factors Associated With Mortality in Patients With COVID-19. A Quantitative Evidence Synthesis of Clinical and Laboratory Data. Eur J Intern Med (2020) 76:97–9. doi: 10.1016/j.ejim.2020.04.043

PubMed Abstract | CrossRef Full Text | Google Scholar

6. Pivonello R, Ferrigno R, Isidori AM, Biller BMK, Grossman AB, Colao A. COVID-19 and Cushing’s Syndrome: Recommendations for a Special Population With Endogenous Glucocorticoid Excess. Lancet Diabetes Endocrinol (2020) 8(8):654–6. doi: 10.1016/S2213-8587(20)30215-1

PubMed Abstract | CrossRef Full Text | Google Scholar

7. Newell-Price J, Nieman LK, Reincke M, Tabarin A. ENDOCRINOLOGY IN THE TIME OF COVID-19: Management of Cushing’s Syndrome. Eur J Endocrinol (2020) 183(1):G1–7. doi: 10.1530/EJE-20-0352

PubMed Abstract | CrossRef Full Text | Google Scholar

8. Beretta F, Dassie F, Parolin M, Boscari F, Barbot M, Busetto L, et al. Practical Considerations for the Management of Cushing’s Disease and COVID-19: A Case Report. Front Endocrinol (Lausanne) (2020) 11:554. doi: 10.3389/fendo.2020.00554

PubMed Abstract | CrossRef Full Text | Google Scholar

9. Belaya Z, Golounina O, Melnichenko G, Tarbaeva N, Pashkova E, Gorokhov M, et al. Clinical Course and Outcome of Patients With ACTH-Dependent Cushing’s Syndrome Infected With Novel Coronavirus Disease-19 (COVID-19): Case Presentations. Endocrine (2021) 72(1):12–9. doi: 10.1007/s12020-021-02674-5

PubMed Abstract | CrossRef Full Text | Google Scholar

10. Rehman T. Image of the Month: Diagnostic and Therapeutic Challenges in the Management of Ectopic ACTH Syndrome: A Perfect Storm of Hypercortisolism, Hyperglycaemia and COVID-19. Clin Med (Lond) (2021) 21(3):231–4. doi: 10.7861/clinmed.2021-0005

PubMed Abstract | CrossRef Full Text | Google Scholar

11. Yuno A, Kenmotsu Y, Takahashi Y, Nomoto H, Kameda H, Cho KY, et al. Successful Management of a Patient With Active Cushing’s Disease Complicated With Coronavirus Disease 2019 (COVID-19) Pneumonia. Endocr J (2021) 68(4):477–84. doi: 10.1507/endocrj.EJ20-0613

PubMed Abstract | CrossRef Full Text | Google Scholar

12. Serban AL, Ferrante E, Carosi G, Indirli R, Arosio M, Mantovani G. COVID-19 in Cushing Disease: Experience of a Single Tertiary Centre in Lombardy. J Endocrinol Invest (2021) 44(6):1335–6. doi: 10.1007/s40618-020-01419-x

PubMed Abstract | CrossRef Full Text | Google Scholar

13. Sharma ST, Nieman LK, Feelders RA. Cushing’s Syndrome: Epidemiology and Developments in Disease Management. Clin Epidemiol (2015) 7:281–93. doi: 10.2147/CLEP.S44336

PubMed Abstract | CrossRef Full Text | Google Scholar

14. Vogel F, Reincke M. Endocrine Risk Factors for COVID-19: Endogenous and Exogenous Glucocorticoid Excess. Rev Endocr Metab Disord (2021) 23(2):233–50. doi: 10.1007/s11154-021-09670-0

PubMed Abstract | CrossRef Full Text | Google Scholar

15. Guarnotta V, Ferrigno R, Martino M, Barbot M, Isidori AM, Scaroni C, et al. Glucocorticoid Excess and COVID-19 Disease. Rev Endocr Metab Disord (2021) 22(4):703–14. doi: 10.1007/s11154-020-09598-x

PubMed Abstract | CrossRef Full Text | Google Scholar

16. Chifu I, Detomas M, Dischinger U, Kimpel O, Megerle F, Hahner S, et al. Management of Patients With Glucocorticoid-Related Diseases and COVID-19. Front Endocrinol (Lausanne) (2021) 12:705214. doi: 10.3389/fendo.2021.705214

PubMed Abstract | CrossRef Full Text | Google Scholar

17. Valassi E, Aulinas A, Glad CA, Johannsson G, Ragnarsson O, Webb SM. A Polymorphism in the CYP17A1 Gene Influences the Therapeutic Response to Steroidogenesis Inhibitors in Cushing’s Syndrome. Clin Endocrinol (Oxf) (2017) 87(5):433–9. doi: 10.1111/cen.13414

PubMed Abstract | CrossRef Full Text | Google Scholar

18. Berlinska A, Swiatkowska-Stodulska R, Sworczak K. Old Problem, New Concerns: Hypercortisolemia in the Time of COVID-19. Front Endocrinol (Lausanne) (2021) 12:711612. doi: 10.3389/fendo.2021.711612

PubMed Abstract | CrossRef Full Text | Google Scholar

19. Barbot M, Ceccato F, Scaroni C. Consideration on TMPRSS2 and the Risk of COVID-19 Infection in Cushing’s Syndrome. Endocrine (2020) 69(2):235–6. doi: 10.1007/s12020-020-02390-6

PubMed Abstract | CrossRef Full Text | Google Scholar

20. Fleseriu M. Pituitary Disorders and COVID-19, Reimagining Care: The Pandemic A Year and Counting. Front Endocrinol (Lausanne) (2021) 12:656025. doi: 10.3389/fendo.2021.656025

PubMed Abstract | CrossRef Full Text | Google Scholar

21. Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, et al. Dexamethasone in Hospitalized Patients With Covid-19. N Engl J Med (2021) 384(8):693–704. doi: 10.1056/NEJMoa2021436

PubMed Abstract | CrossRef Full Text | Google Scholar

22. Bergquist M, Lindholm C, Strinnholm M, Hedenstierna G, Rylander C. Impairment of Neutrophilic Glucocorticoid Receptor Function in Patients Treated With Steroids for Septic Shock. Intensive Care Med Exp (2015) 3(1):59. doi: 10.1186/s40635-015-0059-9

PubMed Abstract | CrossRef Full Text | Google Scholar

23. Cao W, Li T. COVID-19: Towards Understanding of Pathogenesis. Cell Res (2020) 30(5):367–9. doi: 10.1038/s41422-020-0327-4

PubMed Abstract | CrossRef Full Text | Google Scholar

24. Tzilas V, Manali E, Papiris S, Bouros D. Intravenous Immunoglobulin for the Treatment of COVID-19: A Promising Tool. Respiration (2020) 99(12):1087–9. doi: 10.1159/000512727

PubMed Abstract | CrossRef Full Text | Google Scholar

25. Mohtadi N, Ghaysouri A, Shirazi S, Sara A, Shafiee E, Bastani E, et al. Recovery of Severely Ill COVID-19 Patients by Intravenous Immunoglobulin (IVIG) Treatment: A Case Series. Virology (2020) 548:1–5. doi: 10.1016/j.virol.2020.05.006

PubMed Abstract | CrossRef Full Text | Google Scholar

26. Schwab I, Nimmerjahn F. Intravenous Immunoglobulin Therapy: How Does IgG Modulate the Immune System? Nat Rev Immunol (2013) 13(3):176–89. doi: 10.1038/nri3401

PubMed Abstract | CrossRef Full Text | Google Scholar

27. Cao W, Liu X, Hong K, Ma Z, Zhang Y, Lin L, et al. High-Dose Intravenous Immunoglobulin in Severe Coronavirus Disease 2019: A Multicenter Retrospective Study in China. Front Immunol (2021) 12:627844. doi: 10.3389/fimmu.2021.627844

PubMed Abstract | CrossRef Full Text | Google Scholar

28. Bongomin F, Asio LG, Ssebambulidde K, Baluku JB. Adjunctive Intravenous Immunoglobulins (IVIg) for Moderate-Severe COVID-19: Emerging Therapeutic Roles. Curr Med Res Opin (2021) 37(6):903–5. doi: 10.1080/03007995.2021.1903849

PubMed Abstract | CrossRef Full Text | Google Scholar

29. Gharebaghi N, Nejadrahim R, Mousavi SJ, Sadat-Ebrahimi SR, Hajizadeh R. The Use of Intravenous Immunoglobulin Gamma for the Treatment of Severe Coronavirus Disease 2019: A Randomized Placebo-Controlled Double-Blind Clinical Trial. BMC Infect Dis (2020) 20(1):786. doi: 10.1186/s12879-020-05507-4

PubMed Abstract | CrossRef Full Text | Google Scholar

30. Ali S, Uddin SM, Shalim E, Sayeed MA, Anjum F, Saleem F, et al. Hyperimmune Anti-COVID-19 IVIG (C-IVIG) Treatment in Severe and Critical COVID-19 Patients: A Phase I/II Randomized Control Trial. EClinicalMedicine (2021) 36:100926. doi: 10.1016/j.eclinm.2021.100926

PubMed Abstract | CrossRef Full Text | Google Scholar

31. Xiang HR, Cheng X, Li Y, Luo WW, Zhang QZ, Peng WX. Efficacy of IVIG (Intravenous Immunoglobulin) for Corona Virus Disease 2019 (COVID-19): A Meta-Analysis. Int Immunopharmacol (2021) 96:107732. doi: 10.1016/j.intimp.2021.107732

PubMed Abstract | CrossRef Full Text | Google Scholar

32. Polizzotto MN, Nordwall J, Babiker AG, Phillips A, Vock DM, Eriobu N, et al. Hyperimmune Immunoglobulin for Hospitalised Patients With COVID-19 (ITAC): A Double-Blind, Placebo-Controlled, Phase 3, Randomised Trial. Lancet (2022) 399(10324):530–40. doi: 10.1016/S0140-6736(22)00101-5

PubMed Abstract | CrossRef Full Text | Google Scholar

Keywords: Cushing’s syndrome, COVID-19, IVIg, hypercortisolism, immunomodulation, immunosuppression

Citation: Popovic B, Radovanovic Spurnic A, Velickovic J, Plavsic A, Jecmenica-Lukic M, Glisic T, Ilic D, Jeremic D, Vratonjic J, Samardzic V, Gluvic Z and Adzic-Vukicevic T (2022) Successful Immunomodulatory Treatment of COVID-19 in a Patient With Severe ACTH-Dependent Cushing’s Syndrome: A Case Report and Review of Literature. Front. Endocrinol. 13:889928. doi: 10.3389/fendo.2022.889928

Received: 04 March 2022; Accepted: 17 May 2022;
Published: 22 June 2022.

Edited by:

Giuseppe Reimondo, University of Turin, Italy

Reviewed by:

Nora Maria Elvira Albiger, Veneto Institute of Oncology (IRCCS), Italy
Miguel Debono, Royal Hallamshire Hospital, United Kingdom

Copyright © 2022 Popovic, Radovanovic Spurnic, Velickovic, Plavsic, Jecmenica-Lukic, Glisic, Ilic, Jeremic, Vratonjic, Samardzic, Gluvic and Adzic-Vukicevic. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Bojana Popovic, popbojana@gmail.com

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

From https://www.frontiersin.org/articles/10.3389/fendo.2022.889928/full

Eyelid Edema Due to Cushing’s Syndrome

Abstract

Cushing’s syndrome (CS) shows diverse signs such as centripetal obesity, moon face, and buffalo hump, which can complicate the diagnosis. Facial features including eyelid edema, as an underrecognized sign, can be diagnostic clues for an excess of corticoids in a CS patient.

A 49-year-old woman presented with amenorrhea and weight gain that had continued for 2 years. Her medical history was dyslipidemia, hypertension, and osteoporosis. Physical examination revealed eyelid edemas (Figure 1A), moon face, buffalo hump, abdominal purple striae, and centripetal obesity (body mass index (BMI), 30.8 kg/m2). Basal plasma adrenocorticotropin was undetectable and serum cortisol level was high (16.9 μg/dl) without circadian rhythms. Free cortisol level in a 24-h urine collection was elevated (158.7 μg/day). Overnight administration of dexamethasone (1 mg) did not reduce serum cortisol level (17.4 μg/dl). Magnetic resonance imaging suggested bilateral adenomas. We made a diagnosis of adrenal Cushing’s syndrome (CS). Since 131l-adosterol scintigraphy showed specific uptake in the left adrenal gland, left adrenalectomy was laparoscopically performed. Histopathology of the tumor was compatible with adrenocortical adenoma. Three months after surgery, her BMI decreased to 25.0 kg/m2 and eyelid edemas were ameliorated (Figure 1B).

Details are in the caption following the image

(A) Bilateral eyelid edemas due to Cushing’s syndrome are shown. (B) These findings were improved three months after surgery for left adrenal adenomas

Eyelid edema, in addition to centripetal obesity, moon face, and buffalo hump, is also a significant sign of CS; however, it has scarcely been reported in countries other than Japan.12 Increased capillary permeability, insufficient venous return due to muscle atrophy, and sodium retention due to mineralocorticoid actions conceivably cause edema in CS.

AUTHORS’ CONTRIBUTIONS

KY wrote the first draft and managed all the submission processes. KO and KH contributed to the clinical management of the patient. FO organized the writing the manuscript.

ACKNOWLEDGMENT

None.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

ETHICAL APPROVAL

Written informed consent was obtained from the patient to publish this case report.

  • 1Lacroix A, Feelders RA, Stratakis CA, Nieman LK. Cushing’s syndrome. Lancet. 2015; 386: 913- 927.
  • 2Komiya I, Takasu N, Ohara N, et al. Forty-one cases of Cushing’s syndrome: a comparison between Cushing’s syndrome (adrenal adenoma) and Cushing’s disease (adrenal hyperplasia). Nihon Naibunpi Gakkai Zasshi. 1992; 68: 607- 622.

https://doi.org/10.1002/ccr3.5940

From https://onlinelibrary.wiley.com/doi/10.1002/ccr3.5940

Osilodrostat Improves Physical Manifestations of Hypercortisolism for Most Adults

Osilodrostat is associated with improvements in physical manifestations of hypercortisolism and reductions in mean body weight and BMI in adults with Cushing’s syndrome, according to a speaker.

As Healio previously reported, in findings from the LINC 4 phase 3 trial, osilodrostat (Isturisa, Recordati) normalized mean urinary free cortisol level at 12 weeks in more than 75% of adults with Cushing’s disease. In new findings presented at the AACE Annual Scientific and Clinical Conference, most adults with Cushing’s syndrome participating in the LINC 3 phase 3 trial had improvements in physical manifestations of hypercortisolism 72 weeks after initiating osilodrostat, with more than 50% having no dorsal fat pad, supraclavicular fat pad, facial rubor, proximal muscle atrophy, striae, ecchymoses and hirsutism for women at 72 weeks.

Adrenal transparent _Adobe
Source: Adobe Stock

“Many patients with Cushing’s syndrome suffer from clinical manifestations related to hypercortisolism,” Albert M. Pedroncelli, MD, PhD, head of clinical development and medical affairs for Recordati AG in Basel, Switzerland, told Healio. “The treatment with osilodrostat induced a rapid normalization of cortisol secretion, and improvements in physical manifestations associated with hypercortisolism were observed soon after initiation of osilodrostat and were sustained throughout the study.”

Albert M. Pedroncelli

Pedroncelli and colleagues analyzed changes in the physical manifestations of hypercortisolism in 137 adults with Cushing’s syndrome (median age, 40 years; 77.4% women) assigned osilodrostat. Dose titration took place from baseline to 12 weeks, and therapeutic doses were administered from 12 to 48 weeks, with some participants randomly assigned to withdrawal between 26 and 34 weeks. An extension phase of the trial took place from 48 to 72 weeks. Investigators subjectively rated physical manifestations of hypercortisolism in participants as none, mild, moderate or severe. Participants were evaluated at baseline and 12, 24, 34, 48 and 72 weeks.

At baseline, the majority of the study cohort had mild, moderate or severe physical manifestations of hypercortisolism in most individual categories, including dorsal fat pad, central obesity, supraclavicular fat pad, facial rubor, hirsutism in women and striae. Central obesity was the most frequent physical manifestation rated as severe.

The percentage of participants with improvements in physical manifestations of hypercortisolism increased from week 12 on for all individual manifestations evaluated in the study, and improvements were maintained through week 72. At 72 weeks, the percentage of participants who had no individual physical manifestations was higher than 50% for each category except central obesity, where 30.6% of participants had no physical manifestations.

In addition to improvement in physical manifestations, the study cohort had decreases in body weight, BMI and waist circumference at weeks 48 and 72 compared with baseline.

“The main goal of treating patients with Cushing’s syndrome is to normalize cortisol secretion,” Pedroncelli said. “The rapid reduction and normalization of cortisol levels is accompanied by improvement in the associated clinical manifestations. This represents an important objective for patients.”

From https://www.healio.com/news/endocrinology/20220512/osilodrostat-improves-physical-manifestations-of-hypercortisolism-for-most-adults

Glucocorticoid Withdrawal Syndrome following treatment of endogenous Cushing Syndrome

Abstract

Purpose:

Literature regarding endogenous Cushing syndrome (CS) largely focuses on the challenges of diagnosis, subtyping, and treatment. The enigmatic phenomenon of glucocorticoid withdrawal syndrome (GWS), due to rapid reduction in cortisol exposure following treatment of CS, is less commonly discussed but also difficult to manage. We highlight the clinical approach to navigating patients from GWS and adrenal insufficiency to full hypothalamic-pituitary-adrenal (HPA) axis recovery.

Methods:

We review the literature on the pathogenesis of GWS and its clinical presentation. We provide strategies for glucocorticoid dosing and tapering, HPA axis testing, as well as pharmacotherapy and ancillary treatments for GWS symptom management.

Results:

GWS can be difficult to differentiate from adrenal insufficiency and CS recurrence, which complicates glucocorticoid dosing and tapering regimens. Monitoring for HPA axis recovery requires both clinical and biochemical assessments. The most important intervention is reassurance to patients that GWS symptoms portend a favorable prognosis of sustained remission from CS, and GWS typically resolves as the HPA axis recovers. GWS also occurs during medical management of CS, and gradual dose titration based primarily on symptoms is essential to maintain adherence and to eventually achieve disease control. Myopathy and neurocognitive dysfunction can be chronic complications of CS that do not completely recover.

Conclusions:

Due to limited data, no guidelines have been developed for management of GWS. Nevertheless, this article provides overarching themes derived from published literature plus expert opinion and experience. Future studies are needed to better understand the pathophysiology of GWS to guide more targeted and optimal treatments.

Introduction

Endogenous neoplastic hypercortisolism – Cushing syndrome (CS) – is one of the most challenging diagnostic and management problems in clinical endocrinology. CS may be due to either a pituitary tumor (Cushing disease, CD), or a non-pituitary (ectopic) tumor secreting ACTH. ACTH-independent hypercortisolism due to unilateral or bilateral adrenal nodular disease has been increasingly recognized as an important cause of CS. Regardless of the cause of CS, the clinical manifestations are protean and include a myriad of clinical, biochemical, neurocognitive, and neuropsychiatric abnormalities. The catabolic state of hypercortisolism causes signs and symptoms including skin fragility, bruising, delayed healing, violaceous striae, muscle weakness, and low bone mass with fragility fractures. Other clinical features include weight gain, fatigue, depression, difficulty concentrating, insomnia, facial plethora, and fat redistribution to the head and neck with resultant supraclavicular and dorsocervical fullness[1]. Metabolic consequences of hypercortisolism including hypertension, diabetes, and dyslipidemia are common. In addition, women often experience hirsutism and menstrual irregularity, while men may have hypogonadism.

Management options of CS include surgery, medications, and radiation. The preferred first line treatment, regardless of source, is surgery, which offers the potential for remission[2,3,4]. The primary literature, reviews, and clinical practice guidelines for CS have traditionally focused on the diagnosis, subtyping, and surgical approach to CS. This bias derives first from the profound diagnostic challenge posed in the evaluation of cortisol production and dynamics, given that circulating cortisol follows a circadian rhythm, exhibits extensive protein binding and metabolism, and rises acutely with stress. CD and ectopic ACTH syndrome may be difficult to distinguish clinically and biochemically, and inferior petrosal sinus sampling is required in many patients to resolve this differential diagnosis. Ectopic ACTH-producing tumors can also be small, and these tumors can escape localization despite the best current methods. Although diagnosis and initial surgical remission can be achieved in the majority of patient with CS at experienced centers, up to 50% of patients with CD will require additional therapies after unsuccessful primary surgeries or recurrence up to many years later[5]. For patients who do not achieve surgical cure or who are not surgical candidates, several medical treatment options are now available. Pharmacotherapies directed at the pituitary include pasireotide[67] (FDA approved) and cabergoline[8]. Adrenal steroidogenesis inhibitors such as osilodrostat[9] (FDA approved), metyrapone[10], levoketoconazole[11] (FDA approved) and ketoconazole[12], as well as the glucocorticoid antagonist, mifepristone[13] (FDA approved), are now widely used to treat CS. Pituitary radiotherapy is an additional treatment option for CD but can take months to years to lower cortisol production. Bilateral adrenalectomy (BLA) provides immediate, reliable correction of hypercortisolism but mandates life-long corticosteroid replacement therapy, and, in patients with CD, may be complicated by corticotroph tumor progression syndrome in 25–40% of patients[14].

After successful surgery for CS, the rapid onset of adrenal insufficiency (AI) is anticipated and usually portends a favorable prognosis [15,16,17,18]; however, despite the use of post-operative corticosteroid replacement, the rapid reduction in cortisol exposure often results in an enigmatic phenomenon referred to as the glucocorticoid withdrawal syndrome (GWS). This article addresses the clinical presentation and the pathogenesis of GWS, as well as its distinction from AI. When available, appropriate references are provided. Statements and guidance provided without references are derived from expert opinion and experience.

Clinical Presentation and Pathogenesis of GWS

GWS occurs following withdrawal of supraphysiologic exposure to either exogenous or endogenous glucocorticoids of at least several months duration[19]. After surgical cure of endogenous CS, GWS is usually characterized by biochemical evidence of hypothalamic-pituitary-adrenal (HPA) axis suppression with many signs and symptoms consistent with cortisol deficiency despite the use of supraphysiologic glucocorticoid replacement therapy. The degree of physical or psychologic glucocorticoid dependence experienced by patients may not correlate with the degree of HPA axis suppression[2021].

GWS symptom onset is typically 3–10 days postoperatively, often after the patient has been discharged from the hospital. The first symptoms of GWS vary but usually consist of myalgias, muscle weakness, fatigue, and hypersomnolence. Anorexia, nausea, and abdominal discomfort are common, but vomiting should raise concern for hyponatremia, cerebrospinal fluid leak, hydrocephalus, or other perioperative complications. Mood changes develop more gradually and range from mood swings to depression, and the fatigue with myalgias can exacerbate mood changes. An atypical depressive disorder has been described in many patients after CD surgery[22]. Weight loss should ensue in most patients but gradually and proportionate to the reduction in glucocorticoid exposure. It is important to complete a thorough symptom review and physical exam at postoperative visits, as the differentiation between GWS and bona fide AI – and even between GWS and recurrence of CS – can be challenging (Fig. 1). All three conditions are associated with symptoms of myalgias, weakness, and fatigue; however, rapid weight loss, hypoglycemia, and hypotension are suggestive of AI and the need for an increase in the glucocorticoid dose. In parallel, hypersomnia is more suggestive of GWS, while insomnia is more associated with recurrence of CS. Given the anticipation of GWS onset shortly after discharge and the potential for hyponatremia during this time, a widely employed strategy is a generous glucocorticoid dose for the first 2–3 weeks, at least until the first postoperative outpatient visit (Table 1).

Fig. 1

figure 1

Overlapping clinical features of Cushing syndrome (CS), glucocorticoid withdrawal syndrome (GWS), and adrenal insufficiency (AI)

Table 1 Glucocorticoid Therapy Options After Surgery for CS

The mechanisms responsible for the precipitation of the GWS after surgery for CS and the variability in its manifestations are not completely understood, yet alterations in the regulation of cortisol and cortisol-responsive genes appear to contribute. Down-regulation of corticotropin-releasing hormone (CRH) and proopiomelanocortin (POMC) expression, combined with up-regulation of cytokines and prostaglandins are likely to be important components of GWS. Low CRH has been associated with atypical depression[23], and CRH levels in cerebrospinal fluid of patients with CD are significantly lower compared to healthy subjects[24]. CRH suppression gradually resolves after surgical cure over 12 months during glucocorticoid replacement[25], illustrative of the slow recovery process. The expression of POMC, the ACTH precursor molecule, is also suppressed with chronic glucocorticoid exposure[26], and the normalization of POMC-associated peptides mirrors HPA axis recovery[19]. In the acute phase of glucocorticoid withdrawal, interleukins IL-6 and IL-1β, as well as tumor-necrosis factor alpha (TNFα) have been observed to rise[27], suggesting that glucocorticoid-mediated suppression of cytokines and prostaglandins is then released in GWS, and these cytokines induce the associated flu-like symptoms. Glucocorticoid replacement with dexamethasone 0.5 mg/d reduced but did not normalize IL-6 after 4–5 days[27], consistent with resistance to suppression during GWS.

Acute Care: Perioperative Planning, Coaching, and Management

For patients with CD, transsphenoidal surgery performed by an experienced surgeon achieves remission in about 80% of pituitary microadenomas and 60% of macroadenomas[28,29,30,31]. Post-operative AI and GWS are some of the most challenging phases of management for endocrinologists and one of the most disheartening for CS patients. Many patients report feeling unprepared for the postsurgical recovery process[32]. For these reasons, it is important to prepare the patient prior to surgery for the difficult months ahead, and the same considerations apply to the commencement of medical therapies, as will be discussed later. On the one hand, more potent glucocorticoids and higher doses reliably mitigate symptoms, but on the other hand, substitution of exogenous for endogenous CS delays recovery of the HPA axis and perpetuates CS-related co-morbidities. Limited data that compare management strategies preclude evidence-based decisions, yet some themes can be derived from expert opinion and extensive experience from CS centers.

In centers dedicated to the management of CS, surgeons and endocrinologists work closely together through all phases of the process. Although the goal of primary surgery for CD is adenoma resection, the tumor might not be found and/or removed completely after initial exploration. To prepare for this possibility, the surgeon should determine in advance with the patient and endocrinologist what to do next in this situation – dissect further, perform a hypophysectomy or hemi-hypophysectomy, or stop the operation. The plan for perioperative testing and glucocorticoid treatment varies widely among centers. The conundrum faced in the immediate perioperative period is that withholding glucocorticoids allows for rapid testing and demonstration of remission; however, complete resection of the causative tumor causes AI from prolonged suppression of the HPA axis and concerns for acute decompensation. Abundant evidence has shown that post-pituitary adenomectomy patients are not at risk for an adrenal crisis when monitored closely in an intensive care unit or equivalent setting[33]. Many studies have confirmed that post-operative AI almost always suggests a remission of CD[15,16,17,1834]. A standard protocol includes securing serum electrolytes and cortisol, plasma ACTH, capillary blood glucose, blood pressure, and urine specific gravity every 6 h for 24–48 h while withholding all glucocorticoids. Consecutive serum cortisol values less than 2–5 µg/dL (we use < 3 µg/dL) are sufficient to document successful tumor resection and to begin glucocorticoid therapy[35]. Post-operative signs and symptoms of AI including vomiting, hyponatremia, hypoglycemia, and hypotension should also mandate immediate glucocorticoid support. Although not clinically useful in the immediate post-operative period, some investigators have shown that low ACTH and DHEAS levels may be better predictors of long-term remission than serum cortisol[36]. A similar strategy for the management of possible post-operative AI/GWS following unilateral adrenalectomy for nodular adrenal disease has recently been reported. A post-operative day 1 basal cortisol and its response to cosyntropin stimulation can reliably segregate those patients with HPA axis suppression requiring cortisol replacement from those with an intact HPA axis who do not need to be discharged with glucocorticoid therapy[37].

Once remission is achieved, exogenous glucocorticoid replacement should be initiated and maintained during the months required for HPA axis recovery. Several glucocorticoids and dosing options are available (Table 1), and the initial dose is generally 3- to 4-fold higher than the physiologic range and graded based on age, comorbidities, and severity of disease. Fludrocortisone acetate should also be initiated following BLA for patients who receive glucocorticoids other than hydrocortisone, the only glucocorticoid with mineralocorticoid activity. By comparison, post-BLA patients receiving supraphysiologic hydrocortisone doses usually do not need mineralocorticoid support until their dose is tapered to near physiologic replacement. In the acute postoperative period, several medical comorbidities accompanying CS may reverse rapidly and require medication adjustments[35]. In particular, insulin and oral hypoglycemic drugs, potassium-sparing diuretics such as spironolactone, and other cardiovascular drugs are typically tapered or discontinued as glucose counter-regulation and electrolyte balance change rapidly upon cortisol reduction. Due to the high risk of postoperative venous thromboembolism[38,39,40], prophylaxis is frequently recommended and continued for several weeks after discharge. Posterior pituitary manipulation can disturb water balance and result in serum sodium alterations, including transient or permanent central diabetes insipidus, and in rare cases the triphasic response of diabetes insipidus, followed by syndrome of inappropriate secretion of antidiuretic hormone (SIADH), and finally permanent diabetes insipidus[4142]. In the first week or two after discharge, the most common cause for readmission is hyponatremia[4344], although the mechanisms responsible for this transient SIADH state are not known. For this reason, patients should be instructed to drink only when thirsty and not as an alternative to solid foods or for social reasons for 7–10 days after the surgery. Both diabetes insipidus and SIADH may not manifest for weeks after surgery; consequently, serum sodium should be monitored after hospital discharge as well [42].

Subacute Care: The GWS and HPA Axis Recovery

When managing GWS symptoms, it is important to repeatedly emphasize to the patient that not only are GWS symptoms to be expected, but in fact these manifestations portend a favorable prognosis of sustained remission from CS. The most important treatment intervention is frequent reassurance to the patient that GWS typically resolves as the HPA axis recovers. Family members must be included in the conversation to help provide as much support as possible, as patients report that support from family and friends is the most helpful coping mechanism during the recovery process[32]. When appropriate, it may be necessary to provide the patient with temporary disability documentation, since GWS symptoms may be so severe to preclude gainful employment. The patient must know that the myalgias reflect the body’s attempts to repair the muscle damage, similar to the soreness experienced the day after resistance weight training, and these aches will eventually subside. Due to the challenges of differentiating between GWS and AI, a higher glucocorticoid dose can be briefly trialed to assess if this increased glucocorticoid exposure improves symptoms, but late-day dosing should be avoided to support recovery of the circadian rhythm. In parallel, the patient should be encouraged to adequately rest, particularly going to sleep early but limiting daytime sleep to short naps.

Several other classes of medications can be trialed to target specific patient symptoms (Table 2). Antidepressants such as fluoxetine, sertraline, and trazodone might help to improve mood, sleep and appetite. A non-steroidal anti-inflammatory medication to address the musculoskeletal discomfort might be used early in the GWS, with the cyclooxygenase type 2 (COX-2) inhibitor celecoxib (100–200 mg once or twice daily) preferred when several weeks of daily treatment is needed, generally not more than 3 months. With anorexia and reduced food intake, adequate protein intake is necessary to allow muscle recovery. Egg whites, nuts, and lean meats are nutritionally dense and generally easy to tolerate despite poor appetite.

Table 2 Pharmacotherapy and Ancillary Treatment Options for GWS Symptoms

Following surgical remission, the duration of glucocorticoid taper can vary from 6 to 12 months or more, depending on age, severity of disease, and duration of disease [4546]. Monitoring for HPA axis recovery involves both clinical and biochemical assessments. Since the HPA axis is likely to remain suppressed with prolonged supraphysiologic glucocorticoid replacement, the first goal is to shift from all-day dosing to a circadian schedule as soon as possible, such as hydrocortisone 20 mg on rising and 10 mg in the early afternoon by 2–6 weeks after surgery. The advantages of hydrocortisone include rapid absorption for symptom mitigation, the ability to measure serum cortisol as a measure of drug exposure when helpful, and the relatively short half-life [47], which ensures a glucocorticoid-free period in the early morning when it is most critical to avoid prolonged HPA axis suppression and to enhance recovery. The second goal, which should not be attempted until GWS symptoms – particularly the anorexia and myalgias – are considerably improved, is to limit replacement to a single morning dose.

Biochemical assessment should begin once patients are taking a physiologic dose of glucocorticoid replacement (total daily dose of hydrocortisone 15 to 20 mg per day) and clinically feel well enough to begin the final stage to discontinuation of glucocorticoid replacement (Fig. 2). Biochemical evaluation begins with basal testing, and dynamic assessment of adrenal function might be necessary to confirm completion of recovery. For basal testing, patients should not take their afternoon hydrocortisone dose (if prescribed) the day before testing and then have a blood draw by 0830 prior to the morning hydrocortisone dose on the day of testing. While a serum cortisol alone is adequate to taper hydrocortisone, a simultaneous plasma ACTH assists in gauging the state of HPA axis recovery. Often the ACTH and cortisol rise gradually in parallel, but sometimes the ACTH rises above the normal range despite a low cortisol, which indicates recovery of the hypothalamus (CRH neuron) and pituitary corticotrophs in advance of adrenal function. Serum DHEAS can remain suppressed for months to years after cortisol normalization, and a low DHEAS does not indicate continued HPA axis suppression. A rapid rise in DHEAS, in contrast, is concerning for disease recurrence, but a slow drift to a measurable amount in parallel with the cortisol rise is consistent with HPA axis recovery. Periodic assessment of electrolytes is prudent to screen for hyponatremia and hypo- or hyperkalemia as medications are changed, particularly diuretics. Hypercalcemia that is parathyroid-hormone independent might be observed during the recovery phase, probably related to the rise in cytokines that accompany resolution of hypercortisolemia[4849].

Fig. 2

figure 2

Glucocorticoid withdrawal algorithm. TDD, total daily dose

Basal testing is performed at 4- to 6-week intervals during glucocorticoid replacement. A rule of thumb is that the AM cortisol in µg/dL plus the morning dose of hydrocortisone in milligrams should sum to 15–20. Thus, once endogenous cortisol production is measurable, the hydrocortisone dose should be not more than 20 mg on arising. Once the AM cortisol rises to near 5 and then 10 µg/dL, the AM hydrocortisone dose is dropped to 15 and then 10 mg, respectively. Once the AM cortisol is 12–14 µg/dL, recovery is essentially complete, and the morning hydrocortisone dose is dropped to 5 mg for 4–6 weeks and then stopped or held for dynamic testing (Fig. 2). A clinical pearl related to HPA axis recovery is that patients who state that they are finally feeling better and getting over the GWS usually have started to make some endogenous cortisol, yet not enough to stop glucocorticoid tapering. Nevertheless, a smidgeon of endogenous cortisol production with the waning of GWS symptoms is a harbinger that HPA axis recovery is imminent. If basal testing is equivocal, dynamic testing might be necessary. The gold standard testing for central AI is the insulin tolerance test, which is rarely used, and metyrapone testing might be employed once the basal cortisol is > 10 µg/dL. Although designed to test for primary adrenal insufficiency, the cosyntropin stimulation test is often employed in this setting due to greater availability, simplicity, and safety than insulin or metyrapone testing. The duration of full HPA axis recovery can be highly variable depending on the individual and postoperative glucocorticoid dosing[50].

GWS During Medical Management of CS

Patients who are not surgical candidates or do not have successful remission of CS following surgery may be offered medical treatment or BLA. After BLA, the GWS will ensue without eventual recovery of the HPA axis, so glucocorticoids are tapered until a chronic physiologic replacement dose is reached as described previously. With medical management, patients might also experience GWS, particularly at the onset of treatment. Therefore, patients must be counseled that the typical symptoms of fatigue, myalgias, and anorexia are not only possible but indeed expected, rather than “side effects” of the medication, with two caveats. First, as described for glucocorticoid replacement following surgical remission, the endocrinologist must distinguish GWS from AI due to over-treatment of CS. The same parameters of vomiting, hypotension, and hypoglycemia favor inadequate cortisol exposure and the need for dose reduction or treatment pause and/or supplementation with a potent glucocorticoid such as dexamethasone to reverse an acute event. Second, known adverse effects of the specific drug in use should be considered and excluded. The quandary of distinguishing GWS from over-treatment raises an important principle of medical management: under-dose initially and gauge primarily the severity of GWS symptoms in the first several days. The initial goal of medical therapy is not to rapidly achieve normal cortisol milieu, but rather to “dial in” just enough inhibition of cortisol production or receptor antagonism to precipitate mild to moderate GWS symptoms. Once GWS symptoms appear and/or a typical dose of the medication is achieved, further assessments, including glucose, serum cortisol and/or UFC (except when treated with mifepristone), clinical appearance, and body weight are conducted while the dose is maintained constant until GWS symptoms begin to dissipate. If the patient is not experiencing adequate clinical and/or biochemical benefit from the medication in the absence of GWS symptoms, the dose is gradually raised incrementally. This iterative process might require periodic dose reduction or perhaps even temporarily discontinuing the medication if the patient’s daily living activities are affected at any point in the process.

For several medications, a block-and-replacement strategy is an option[3], particularly for very compliant patients for whom a priority is placed on avoidance of over-treatment. This strategy resembles thionamide-plus-levothyroxine therapy for the treatment of Graves disease. The patient is given both a generous dose of medication to completely block endogenous glucocorticoid production, plus simultaneous exogenous glucocorticoid therapy, titrated to replacement dose or greater. This approach allows for greater control over glucocorticoid exposure and low risk of AI, as long as the patient always takes both medications each day. Long-acting pasireotide, for example, would not be an appropriate drug for the block-and-replace strategy. Based on the drug mechanism of action, this block-and-replace strategy is feasible with ketoconazole or levoketoconazole, the 11β-hydroxylase inhibitors osilodrostat and metyrapone, and the adrenolytic agent mitotane (the latter three are off-label uses). Alternatively, the patient might be given a double replacement dose of glucocorticoid to take only if symptoms concerning for over-treatment occur, and the medical therapy for hypercortisolemia is then interrupted until the patient communicates with the endocrinologist.

Treatment monitoring with medical management includes biochemical and symptom assessment. For all medications other than mifepristone, normalization of 24-hour UFC is the minimal goal [2]. Basal morning cortisol and late-night salivary cortisol may be more challenging to interpret in the setting of diurnal rhythm loss characteristic of CS. Because mifepristone blocks glucocorticoid receptors, ACTH and cortisol increase with treatment for most forms of CS; dose titration therefore relies on assessment of clinical features, glycemia, body weight, and other metabolic parameters [2]. For occult tumors, periodic imaging to screen for a surgical target and/or tumor regrowth is prudent, and a pause in treatment for repeat surgery might be indicated.

The End Game: Comprehensive Recovery for the Patient with CS

Besides navigating the GWS and shepherding recovery of the HPA axis, recovery from co-morbidities of CS must be addressed to the extent possible. Hypertension, hyperglycemia, hypokalemia, and dyslipidemia often improve substantially but do not always resolve. Insomnia, skin thinning and bruising, and risk of thrombosis also generally resolve, and associated treatments might be discontinued. Although there is usually an improvement in bone density and decreased fracture risk following correction of CS, anabolic and/or anti-resorptive therapies may be warranted in some patients. The deformities of vertebral compression fractures may be permanent, and some authors have recommended the use of vertebroplasty for symptom relief[51]. Violaceous striae and chronic skin tears might heal with hyperpigmentation, leaving “the scars of Cushing’s,” which can persist for a lifetime. These milestones or minor victories can be used as evidence of healing and encouragement for the patient during the dark days of the GWS, and these changes herald further improvements. Fat redistribution and significant weight loss take some weeks to manifest and usually follow next.

The myopathy from CS is an example of a co-morbidity that rarely improves without targeted treatment, and the German Cushing’s Registry has provided evidence for chronic muscle dysfunction following cure of CS[52]. Recent data indicate that a low IGF-1 after curative surgery is associated with long-term myopathy [53]. This persistent myopathy is a common source of chronic fatigue following HPA axis recovery, which is unresponsive to glucocorticoids. For these reasons, an important ancillary modality is physical therapy, and an ideal time to initiate this treatment is at the first signs of HPA axis recovery when the GWS symptoms have subsided. A complete evaluation from an experienced physical therapist should focus on core and proximal muscle strength, balance, and other factors that limit function. Exercises targeting these factors (stand on one foot, sit-to-stand, straight-arm raises with 1- to 5-pound weights) rather than traditional gym exercises (arm curls, bench press, treadmill) are necessary to restore functional status and avoid frustration and injury when the patient is not yet prepared for the latter stages of recovery. Professional supervision of this initial phase is a critical component of the recovery process, and failure to attend to musculoskeletal rehabilitation – as would be routine following survival of a critical illness – risks long-term morbidities from a curable disease.

Patients with CS often complain of cognitive defects, which usually improve but may not completely recover following treatment[5455]. Glucocorticoids are toxic to the hippocampus, and both rats treated with high-dose corticosterone and patients with CD experience reductions in hippocampal volume, which does not completely return to normal even with correction of hypercortisolemia[5657]. Because the hippocampus is an important brain region for memory, the main complaint is impaired formation of new memories and recall of recent events. When significant cognitive dysfunction persists, a formal neuropsychologic testing session is prudent, both to screen for additional sources of memory loss (degenerative brain diseases) and to identify aspects that might be amenable to functional management approaches. Cognitive therapy can be effective for mental health and overall disease coping strategies as well.

Finally, for patients undergoing transsphenoidal surgery for CD, complications associated with pituitary surgeries in general should also be considered. Anterior pituitary hormone axes should be assessed biochemically and symptomatically for hypothyroidism and hypogonadism, as hypopituitarism is an independent predictor of decreased quality of life after surgical cure [58]. Hypopituitarism can not only complicate the assessment of GWS with overlapping symptoms such as fatigue, but treatment of hypopituitarism can also be important for GWS recovery. Prior to initiating physical therapy, testosterone replacement in male patients with hypogonadism should be optimized. Hypothyroidism can contribute to hyponatremia and can also slow the metabolism of glucocorticoids. Therefore, optimizing the treatment of hypothyroidism and hypogonadism prior to completing glucocorticoid taper is prudent. Growth hormone deficiency may also be evaluated in symptomatic patients in the setting of other anterior pituitary hormone deficiencies, although formal evaluation is best delayed for at least 6–12 months when HPA axis recovery has occurred or at least the glucocorticoid dose is reduced to a physiologic range [2].

Summary and Final Thoughts

After a diagnosis of CS has been well established, a multidisciplinary team of endocrinologists and surgeons must design the best treatment strategy for the patient. Expectations and possible adverse side effects of surgery or pharmacotherapy should be reviewed with the patient. The GWS is a very difficult concept for patients to understand. It seems inconceivable to them that they could possibly feel worse (and that this is a good omen) six weeks after resolution of their hypercortisolism than they do pre-operatively; however, there are no studies that address whether comprehensive pre-operative patient education regarding GWS has any impact on the patient’s post-operative perception and outcome after successful surgery. An addiction metaphor is sometimes helpful: the patient’s body and brain has become addicted to steroids (cortisol) and after steroids are abruptly reduced, their body and brain are dysphoric — much like removal of any other addictive substance (e.g., opioids, alcohol, nicotine). The patient and their care team need to know that this treatment odyssey will be a marathon, not a sprint. It may take as long as 12–18 months for patients to have full HPA axis recovery, regression of GWS, and, most importantly, resolution of the devastating effects of chronic excessive glucocorticoid exposure.

Conclusions

GWS following surgery or during medical treatment of CS can be challenging to manage. There are currently no standard guidelines for management of GWS, but various available medical and ancillary therapies are discussed here. Studies are needed to better understand the pathophysiology of GWS to guide more targeted treatments. There may be yet unrecognized steroids produced by the adrenal glands, the withdrawal of which contributes to GWS symptoms[59]. Future observational and interventional studies would be beneficial for identifying optimal management options.

References

  1. Carroll TB, Findling JW (2010) The diagnosis of Cushing’s syndrome. Rev Endocr Metab Disord 11:147–153. https://doi.org/10.1007/s11154-010-9143-3

    Article PubMed Google Scholar

  2. Fleseriu M, Auchus R, Bancos I et al (2021) Consensus on diagnosis and management of Cushing’s disease: a guideline update. Lancet Diabetes Endocrinol 9:847–875. https://doi.org/10.1016/S2213-8587(21)00235-7

    Article PubMed Google Scholar

  3. Nieman LK, Biller BMK, Findling JW et al (2015) Treatment of Cushing’s Syndrome: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 100:2807–2831. https://doi.org/10.1210/jc.2015-1818

    CAS Article PubMed PubMed Central Google Scholar

  4. Biller BMK, Grossman AB, Stewart PM et al (2008) Treatment of adrenocorticotropin-dependent Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab 93:2454–2462. https://doi.org/10.1210/jc.2007-2734

    CAS Article PubMed PubMed Central Google Scholar

  5. Geer EB, Shafiq I, Gordon MB et al (2017) BIOCHEMICAL CONTROL DURING LONG-TERM FOLLOW-UP OF 230 ADULT PATIENTS WITH CUSHING DISEASE: A MULTICENTER RETROSPECTIVE STUDY. Endocr Pract 23:962–970. https://doi.org/10.4158/EP171787.OR

    Article PubMed Google Scholar

  6. Colao A, Petersenn S, Newell-Price J et al (2012) A 12-Month Phase 3 Study of Pasireotide in Cushing’s Disease. N Engl J Med 366:914–924. https://doi.org/10.1056/NEJMoa1105743

    CAS Article PubMed Google Scholar

  7. Lacroix A, Gu F, Gallardo W et al (2018) Efficacy and safety of once-monthly pasireotide in Cushing’s disease: a 12 month clinical trial. Lancet Diabetes Endocrinol 6:17–26. https://doi.org/10.1016/S2213-8587(17)30326-1

    CAS Article PubMed Google Scholar

  8. Pivonello R, De Martino MC, Cappabianca P et al (2009) The medical treatment of Cushing’s disease: effectiveness of chronic treatment with the dopamine agonist cabergoline in patients unsuccessfully treated by surgery. J Clin Endocrinol Metab 94:223–230. https://doi.org/10.1210/jc.2008-1533

    CAS Article PubMed Google Scholar

  9. Pivonello R, Fleseriu M, Newell-Price J et al (2020) Efficacy and safety of osilodrostat in patients with Cushing’s disease (LINC 3): a multicentre phase III study with a double-blind, randomised withdrawal phase. Lancet Diabetes Endocrinol 8:748–761. https://doi.org/10.1016/S2213-8587(20)30240-0

    CAS Article PubMed Google Scholar

  10. Ceccato F, Zilio M, Barbot M et al (2018) Metyrapone treatment in Cushing’s syndrome: a real-life study. Endocrine 62:701–711. https://doi.org/10.1007/s12020-018-1675-4

    CAS Article PubMed Google Scholar

  11. Fleseriu M, Pivonello R, Elenkova A et al (2019) Efficacy and safety of levoketoconazole in the treatment of endogenous Cushing’s syndrome (SONICS): a phase 3, multicentre, open-label, single-arm trial. Lancet Diabetes Endocrinol 7:855–865. https://doi.org/10.1016/S2213-8587(19)30313-4

    CAS Article PubMed Google Scholar

  12. Castinetti F, Guignat L, Giraud P et al (2014) Ketoconazole in Cushing’s disease: is it worth a try? J Clin Endocrinol Metab 99:1623–1630. https://doi.org/10.1210/jc.2013-3628

    CAS Article PubMed Google Scholar

  13. Fleseriu M, Biller BMK, Findling JW et al (2012) Mifepristone, a glucocorticoid receptor antagonist, produces clinical and metabolic benefits in patients with Cushing’s syndrome. J Clin Endocrinol Metab 97:2039–2049. https://doi.org/10.1210/jc.2011-3350

    CAS Article PubMed Google Scholar

  14. Reincke M, Albani A, Assie G et al (2021) Corticotroph tumor progression after bilateral adrenalectomy (Nelson’s syndrome): systematic review and expert consensus recommendations. Eur J Endocrinol 184:P1–P16. https://doi.org/10.1530/EJE-20-1088

    CAS Article PubMed PubMed Central Google Scholar

  15. Lindsay JR, Oldfield EH, Stratakis CA, Nieman LK (2011) The Postoperative Basal Cortisol and CRH Tests for Prediction of Long-Term Remission from Cushing’s Disease after Transsphenoidal Surgery. J Clin Endocrinol Metab 96:2057–2064. https://doi.org/10.1210/jc.2011-0456

    CAS Article PubMed PubMed Central Google Scholar

  16. Hameed N, Yedinak CG, Brzana J et al (2013) Remission rate after transsphenoidal surgery in patients with pathologically confirmed Cushing’s disease, the role of cortisol, ACTH assessment and immediate reoperation: a large single center experience. Pituitary 16:452–458. https://doi.org/10.1007/s11102-012-0455-z

    CAS Article PubMed Google Scholar

  17. Ramm-Pettersen J, Halvorsen H, Evang JA et al (2015) Low immediate postoperative serum-cortisol nadir predicts the short-term, but not long-term, remission after pituitary surgery for Cushing’s disease. BMC Endocr Disord 15:62. https://doi.org/10.1186/s12902-015-0055-9

    CAS Article PubMed PubMed Central Google Scholar

  18. Ironside N, Chatain G, Asuzu D et al (2018) Earlier post-operative hypocortisolemia may predict durable remission from Cushing’s disease. Eur J Endocrinol 178:255–263. https://doi.org/10.1530/EJE-17-0873

    CAS Article PubMed PubMed Central Google Scholar

  19. Hochberg Z, Pacak K, Chrousos GP (2003) Endocrine Withdrawal Syndromes. Endocr Rev 24:523–538. https://doi.org/10.1210/er.2001-0014

    Article PubMed Google Scholar

  20. Dixon RB, Christy NP (1980) On the various forms of corticosteroid withdrawal syndrome. Am J Med 68:224–230. https://doi.org/10.1016/0002-9343(80)90358-7

    CAS Article PubMed Google Scholar

  21. AMATRUDA TT ND JR (1965) Certain Endocrine and Metabolic Facets of the Steroid Withdrawal Syndrome. J Clin Endocrinol Metab 25:1207–1217. https://doi.org/10.1210/jcem-25-9-1207

    Article PubMed Google Scholar

  22. Dorn LD, Burgess ES, Friedman TC et al (1997) The Longitudinal Course of Psychopathology in Cushing’s Syndrome after Correction of Hypercortisolism. J Clin Endocrinol Metab 82:912–919. https://doi.org/10.1210/jcem.82.3.3834

    CAS Article PubMed Google Scholar

  23. Chrousos GP, Gold PW (1992) The Concepts of Stress and Stress System Disorders: Overview of Physical and Behavioral Homeostasis. JAMA 267:1244–1252. https://doi.org/10.1001/jama.1992.03480090092034

    CAS Article PubMed Google Scholar

  24. Kling MA, Roy A, Doran AR et al (1991) Cerebrospinal fluid immunoreactive corticotropin-releasing hormone and adrenocorticotropin secretion in Cushing’s disease and major depression: potential clinical implications. J Clin Endocrinol Metab 72:260–271. https://doi.org/10.1210/jcem-72-2-260

    CAS Article PubMed Google Scholar

  25. Gomez MT, Magiakou MA, Mastorakos G, Chrousos GP (1993) The pituitary corticotroph is not the rate limiting step in the postoperative recovery of the hypothalamic-pituitary-adrenal axis in patients with Cushing syndrome. J Clin Endocrinol Metab 77:173–177. https://doi.org/10.1210/jcem.77.1.8392083

    CAS Article PubMed Google Scholar

  26. Young EA, Kwak SP, Kottak J (1995) Negative feedback regulation following administration of chronic exogenous corticosterone. J Neuroendocrinol 7:37–45. https://doi.org/10.1111/j.1365-2826.1995.tb00665.x

    CAS Article PubMed Google Scholar

  27. Papanicolaou DA, Tsigos C, Oldfield EH, Chrousos GP (1996) Acute glucocorticoid deficiency is associated with plasma elevations of interleukin-6: does the latter participate in the symptomatology of the steroid withdrawal syndrome and adrenal insufficiency? J Clin Endocrinol Metab 81:2303–2306. https://doi.org/10.1210/jcem.81.6.8964868

    CAS Article PubMed Google Scholar

  28. Ciric I, Zhao J-C, Du H et al (2012) Transsphenoidal surgery for Cushing disease: experience with 136 patients. Neurosurgery 70:70–80 discussion 80–81. https://doi.org/10.1227/NEU.0b013e31822dda2c

    Article PubMed Google Scholar

  29. Alexandraki KI, Kaltsas GA, Isidori AM et al (2013) Long-term remission and recurrence rates in Cushing’s disease: predictive factors in a single-centre study. Eur J Endocrinol 168:639–648. https://doi.org/10.1530/EJE-12-0921

    CAS Article PubMed Google Scholar

  30. Capatina C, Hinojosa-Amaya JM, Poiana C, Fleseriu M (2020) Management of patients with persistent or recurrent Cushing’s disease after initial pituitary surgery. Expert Rev Endocrinol Metab 15:321–339. https://doi.org/10.1080/17446651.2020.1802243

    CAS Article PubMed Google Scholar

  31. Stroud A, Dhaliwal P, Alvarado R et al (2020) Outcomes of pituitary surgery for Cushing’s disease: a systematic review and meta-analysis. Pituitary 23:595–609. https://doi.org/10.1007/s11102-020-01066-8

    Article PubMed Google Scholar

  32. Acree R, Miller CM, Abel BS et al (2021) Patient and Provider Perspectives on Postsurgical Recovery of Cushing Syndrome. J Endocr Soc 5:bvab109. https://doi.org/10.1210/jendso/bvab109

    Article PubMed PubMed Central Google Scholar

  33. AbdelMannan D, Selman WR, Arafah BM (2010) Peri-operative management of Cushing’s disease. Rev Endocr Metab Disord 11:127–134. https://doi.org/10.1007/s11154-010-9140-6

    Article PubMed Google Scholar

  34. Costenaro F, Rodrigues TC, Rollin GAF et al (2014) Evaluation of Cushing’s disease remission after transsphenoidal surgery based on early serum cortisol dynamics. Clin Endocrinol (Oxf) 80:411–418. https://doi.org/10.1111/cen.12300

    CAS Article Google Scholar

  35. Varlamov EV, Vila G, Fleseriu M (2022) Perioperative Management of a Patient With Cushing Disease. J Endocr Soc 6:bvac010. https://doi.org/10.1210/jendso/bvac010

    Article PubMed PubMed Central Google Scholar

  36. El Asmar N, Rajpal A, Selman WR, Arafah BM (2018) The Value of Perioperative Levels of ACTH, DHEA, and DHEA-S and Tumor Size in Predicting Recurrence of Cushing Disease. J Clin Endocrinol Metab 103:477–485. https://doi.org/10.1210/jc.2017-01797

    Article PubMed Google Scholar

  37. DeLozier OM, Dream SY, Findling JW et al (2022) Selective Glucocorticoid Replacement Following Unilateral Adrenalectomy for Hypercortisolism and Primary Aldosteronism. J Clin Endocrinol Metab 107:e538–e547. https://doi.org/10.1210/clinem/dgab698

    Article PubMed Google Scholar

  38. Stuijver DJF, van Zaane B, Feelders RA et al (2011) Incidence of venous thromboembolism in patients with Cushing’s syndrome: a multicenter cohort study. J Clin Endocrinol Metab 96:3525–3532. https://doi.org/10.1210/jc.2011-1661

    CAS Article PubMed Google Scholar

  39. van der Pas R, Leebeek FWG, Hofland LJ et al (2013) Hypercoagulability in Cushing’s syndrome: prevalence, pathogenesis and treatment. Clin Endocrinol (Oxf) 78:481–488. https://doi.org/10.1111/cen.12094

    CAS Article Google Scholar

  40. van der Pas R, de Bruin C, Leebeek FWG et al (2012) The hypercoagulable state in Cushing’s disease is associated with increased levels of procoagulant factors and impaired fibrinolysis, but is not reversible after short-term biochemical remission induced by medical therapy. J Clin Endocrinol Metab 97:1303–1310. https://doi.org/10.1210/jc.2011-2753

    CAS Article PubMed Google Scholar

  41. Kristof RA, Rother M, Neuloh G, Klingmüller D (2009) Incidence, clinical manifestations, and course of water and electrolyte metabolism disturbances following transsphenoidal pituitary adenoma surgery: a prospective observational study: Clinical article. J Neurosurg 111:555–562. https://doi.org/10.3171/2008.9.JNS08191

    Article PubMed Google Scholar

  42. Yuen KCJ, Ajmal A, Correa R, Little AS (2019) Sodium Perturbations After Pituitary Surgery. Neurosurg Clin 30:515–524. https://doi.org/10.1016/j.nec.2019.05.011

    Article Google Scholar

  43. Ghiam MK, Chyou DE, Dable CL et al (2021) 30-Day Readmissions and Coordination of Care Following Endoscopic Transsphenoidal Pituitary Surgery: Experience with 409 Patients. J Neurol Surg Part B Skull Base. https://doi.org/10.1055/s-0041-1729980

    Article Google Scholar

  44. Bohl MA, Ahmad S, Jahnke H et al (2016) Delayed Hyponatremia Is the Most Common Cause of 30-Day Unplanned Readmission After Transsphenoidal Surgery for Pituitary Tumors. Neurosurgery 78:84–90. https://doi.org/10.1227/NEU.0000000000001003

    Article PubMed Google Scholar

  45. Doherty GM, Nieman LK, Cutler GB et al (1990) Time to recovery of the hypothalamic-pituitary-adrenal axis after curative resection of adrenal tumors in patients with Cushing’s syndrome. Surgery 108:1085–1090

    CAS PubMed Google Scholar

  46. Sippel RS, Elaraj DM, Kebebew E et al (2008) Waiting for change: Symptom resolution after adrenalectomy for Cushing’s syndrome. Surgery 144:1054–1061. https://doi.org/10.1016/j.surg.2008.08.024

    Article PubMed Google Scholar

  47. Derendorf H, Möllmann H, Barth J et al (1991) Pharmacokinetics and Oral Bioavailability of Hydrocortisone. J Clin Pharmacol 31:473–476. https://doi.org/10.1002/j.1552-4604.1991.tb01906.x

    CAS Article PubMed Google Scholar

  48. Suzuki K, Nonaka K, Ichihara K et al (1986) Hypercalcemia in Glucocorticoid Withdrawal. Endocrinol Jpn 33:203–209. https://doi.org/10.1507/endocrj1954.33.203

    CAS Article PubMed Google Scholar

  49. Oyama Y, Iwafuchi Y, Narita I (2021) A case of hypercalcemia because of adrenal insufficiency induced by glucocorticoid withdrawal in a patient undergoing hemodialysis. CEN Case Rep. https://doi.org/10.1007/s13730-021-00619-5

    Article PubMed PubMed Central Google Scholar

  50. Berr CM, Di Dalmazi G, Osswald A et al (2015) Time to Recovery of Adrenal Function After Curative Surgery for Cushing’s Syndrome Depends on Etiology. J Clin Endocrinol Metab 100:1300–1308. https://doi.org/10.1210/jc.2014-3632

    CAS Article PubMed Google Scholar

  51. Gad HEM, Ismail AM (2020) The role of vertebroplasty in steroid-induced vertebral osteoporotic fractures. Egypt Spine J 35:41–52. https://doi.org/10.21608/esj.2020.34844.1140

    Article Google Scholar

  52. Vogel F, Braun LT, Rubinstein G et al (2020) Persisting Muscle Dysfunction in Cushing’s Syndrome Despite Biochemical Remission. J Clin Endocrinol Metab 105:e4490–e4498. https://doi.org/10.1210/clinem/dgaa625

    Article PubMed Central Google Scholar

  53. Vogel F, Braun L, Rubinstein G et al (2021) Patients with low IGF-I after curative surgery for Cushing’s syndrome have an adverse long-term outcome of hypercortisolism-induced myopathy. Eur J Endocrinol 184:813–821. https://doi.org/10.1530/EJE-20-1285

    CAS Article PubMed Google Scholar

  54. Andela CD, van Haalen FM, Ragnarsson O et al (2015) MECHANISMS IN ENDOCRINOLOGY: Cushing’s syndrome causes irreversible effects on the human brain: a systematic review of structural and functional magnetic resonance imaging studies. Eur J Endocrinol 173:R1–R14. https://doi.org/10.1530/EJE-14-1101

    CAS Article PubMed Google Scholar

  55. Bride MM, Crespo I, Webb SM, Valassi E (2021) Quality of life in Cushing’s syndrome. Best Pract Res Clin Endocrinol Metab 35:101505. https://doi.org/10.1016/j.beem.2021.101505

    CAS Article PubMed Google Scholar

  56. Starkman MN, Gebarski SS, Berent S, Schteingart DE (1992) Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing’s syndrome. Biol Psychiatry 32:756–765. https://doi.org/10.1016/0006-3223(92)90079-F

    CAS Article PubMed Google Scholar

  57. McEwen BS, Gould EA, Sakai RR (1992) The Vulnerability of the Hippocampus to Protective and Destructive Effects of Glucocorticoids in Relation to Stress. Br J Psychiatry 160:18–23. https://doi.org/10.1192/S0007125000296645

    Article Google Scholar

  58. van Aken MO, Pereira AM, Biermasz NR et al (2005) Quality of Life in Patients after Long-Term Biochemical Cure of Cushing’s Disease. J Clin Endocrinol Metab 90:3279–3286. https://doi.org/10.1210/jc.2004-1375

    CAS Article PubMed Google Scholar

  59. Zorumski CF, Paul SM, Izumi Y et al (2013) Neurosteroids, stress and depression: potential therapeutic opportunities. Neurosci Biobehav Rev 37:109–122. https://doi.org/10.1016/j.neubiorev.2012.10.005

    CAS Article PubMed Google Scholar

Download references

Acknowledgements

We thank Recordati Rare Diseases for their support with literature review and figure preparation to the authors’ designs.

Funding

XH is supported by grant T32DK07245 from the National Institutes of Diabetes and Digestive and Kidney Diseases.

Author information

Affiliations

  1. Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA

    Xin He & Richard J. Auchus

  2. Department of Medicine, Division of Endocrinology and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA

    James W. Findling

  3. Endocrinology Center and Clinics, Medical College of Wisconsin, Milwaukee, WI, USA

    James W. Findling

  4. Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA

    Richard J. Auchus

  5. Lieutenant Colonel Charles S. Kettles Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA

    Richard J. Auchus

Contributions

All authors contributed to the manuscript conception, design, and content. All authors read, edited, and approved the final manuscript.

Corresponding author

Correspondence to Richard J. Auchus.

Ethics declarations

Financial Interests

Dr. Auchus has received research support from Novartis Pharmaceuticals, Corcept Therapeutics, Spruce Biosciences, and Neurocrine Biosciences and has served as a consultant for Corcept Therapeutics, Janssen Pharmaceuticals, Novartis Pharmaceuticals, Quest Diagnostics, Adrenas Therapeutics, Crinetics Pharmaceuticals, PhaseBio Pharmaceuticals, OMass Therapeutics, Recordati Rare Diseases, Strongbridge Biopharma, and H Lundbeck A/S. Dr. Findling has received research support from Novartis Pharmaceuticals and has served as a consultant for Corcept Therapeutics and Recordati Rare Diseases.

Human Subjects and Animals

No human subjects or animals were used to collect data for this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

About this article

Cite this article

He, X., Findling, J.W. & Auchus, R.J. Glucocorticoid Withdrawal Syndrome following treatment of endogenous Cushing Syndrome. Pituitary (2022). https://doi.org/10.1007/s11102-022-01218-y

Download citation

From https://link.springer.com/article/10.1007/s11102-022-01218-y