Risk Comparison and Assessment Model of Deep Vein Thrombosis in Patients with Pituitary Adenomas After Surgery

Abstract

Background

Deep vein thrombosis (DVT), a major component of venous thromboembolism (VTE), is a common postoperative complication. Its occurrence after pituitary adenoma surgery is influenced by multiple factors.

Methods

This retrospective study analyzed 1440 pituitary adenoma cases treated at Beijing Tiantan Hospital (2018–2023). The incidence of postoperative DVT was recorded, and logistic regression was used to identify associated risk factors. Differences across pituitary adenoma subtypes were compared. Additionally, Regression and machine learning models were developed to predict DVT.

Results

Among 397 patients who underwent postoperative lower limb ultrasound, 104 (7.2 %) developed DVT. Significant risk factors included advanced age, higher body mass index (BMI), intravenous cannulation, prolonged hospital stay, shorter preoperative activated partial thromboplastin time (APTT), longer thrombin time (TT), elevated platelet count, and higher postoperative D-dimer levels. Patients with Cushing’s disease exhibited a significantly higher DVT incidence, potentially related to decreased pre- and postoperative APTT and PT/INR values. Conversely, patients with prolactin-secreting adenomas had a lower DVT incidence, possibly due to younger age and higher postoperative PT values. A support vector machine (SVM) model showed strong predictive performance (AUC: 0.82; accuracy: 86.08 %; specificity: 96.72 %).

Conclusion

DVT incidence varies by pituitary adenoma subtype. Machine learning enhances predictive models for postoperative DVT in pituitary adenoma patients.

Introduction

Venous thromboembolism (VTE), encompassing both deep vein thrombosis (DVT) and pulmonary embolism, is a common cardiovascular disorder. It typically presents with clinical symptoms such as lower limb swelling, chest pain, tachypnea, and, in severe cases, may result in fatal outcomes [1]. The development of VTE is influenced by three factors known as the Virchow triad: altered venous blood flow, endothelial or vessel wall damage, and hypercoagulability [2]. Surgical procedures can increase the risk of VTE, particularly DVT in the lower extremities, due to intraoperative injuries and postoperative hemodynamic changes [[3], [4], [5]]. In the absence of anticoagulant prophylaxis, the incidence of VTE following brain tumor surgery ranges from 3 % to 30 % [[6], [7], [8]]. Although pituitary adenomas are commonly considered benign cranial tumors, emerging evidence suggests that patients undergoing resection of pituitary adenomas may have a higher risk of postoperative VTE compared to those with other sellar or parasellar tumors such as craniopharyngiomas, meningiomas, or chordomas [9].
This disparity may be attributed to the unique hormone secretion functions of pituitary adenomas, as well as dysregulation of water and electrolyte balance—following surgery. Despite this, the risk factors contributing to the development of postoperative VTE in pituitary adenomas have not been extensively explored. Limited studies have identified a particularly elevated VTE risk in patients with Cushing’s disease, a hormone-secreting subtype of pituitary adenoma [10]. Given the relatively high incidence of postoperative DVT in this population, the present study aims to systematically investigate risk factors associated with lower extremity DVT after pituitary adenoma surgery. Furthermore, we seek to compare thrombotic risk across different clinical subtypes of pituitary adenomas and to construct a tailored risk prediction model to guide perioperative thromboprophylaxis in affected patients.

Risk for thrombotic events high after Cushing’s syndrome surgery

Approximately 20% of a cohort of adults with Cushing’s syndrome experienced at least one thrombotic event after undergoing pituitary or adrenal surgery, with the highest risk observed for those undergoing bilateral adrenalectomy, according to findings from a retrospective analysis published in the Journal of the Endocrine Society.

“We have previously showed in a recent meta-analysis that Cushing’s syndrome is associated with significantly increased venous thromboembolic events odds vs. the general population, though the risk is lower than in patients undergoing major orthopedic surgery,” Maria Fleseriu, MD, FACE, professor of neurological surgery and professor of medicine in the division of endocrinology, diabetes and clinical nutrition in the School of Medicine at Oregon Health & Science University and director of the OHSU Northwest Pituitary Center, told Healio. “However, patients undergoing many types of orthopedic surgeries have scheduled thromboprophylaxis, especially postsurgery, which is not the standard of care in patients with Cushing’s syndrome. In this study, we wanted to look in more detail at the rates of all thrombotic events, both arterial and venous, in patients at our specialized pituitary center over more than a decade.”

In a retrospective, longitudinal study, Fleseriu and colleagues analyzed data from 208 individuals with Cushing’s syndrome undergoing surgical (pituitary, unilateral and bilateral adrenalectomy) and medical treatment at a single center (79.3% women; mean age at presentation, 45 years; mean BMI, 33.9 kg/m²; 41.8% with diabetes). Individuals with severe illness and immediate mortality were excluded. Thromboembolic events (myocardial infarction, deep venous thrombosis [DVT], and pulmonary embolism or stroke) were recorded at any point up until last patient follow-up. Researchers assessed all patients who received anticoagulation in the immediate postoperative period and up to 3 months after surgery, recording doses and complications for anticoagulation.

Within the cohort, 39 patients (18.2%) experienced at least one thromboembolic event (56 total events; 52% venous), such as extremity DVT (32%), cerebrovascular accident (27%), MI (21%), and pulmonary embolism (14%). Of those who experienced a thromboembolic event, 40.5% occurred within 60 days of surgery.

Researchers found that 14 of 36 patients who underwent bilateral adrenalectomy experienced a thromboembolic event, for an OR of 3.74 (95% CI, 1.69-8.27). Baseline 24-hour urinary free cortisol levels did not differ for patients with or without thromboembolic event after bilateral adrenalectomy.

“Despite following these patients over time, results almost surprised us,” said Fleseriu, also an Endocrine Today Editorial Board Member. “The risk of thromboembolic events in patients with Cushing’s syndrome was higher than we expected, approximately 20%. Many patients had more than one event, with higher risk at 30 to 60 days postoperatively. Use of a peripherally inserted central catheter line clearly increased risk of upper extremity DVT.”

Among 197 patients who underwent surgery, 50 (25.38%) received anticoagulation after surgery with 2% experiencing bleeding complications.

“We clearly need to understand more about what happens in patients with Cushing’s syndrome for all comorbidities, but especially thrombosis, and find the factors that predict higher risk and use anticoagulation in those patients,” Fleseriu said. “We have shown that among patients who had anticoagulation, risks were minimal. We also have to think more about timelines for these thromboembolic events and the duration of anticoagulation, and probably to expand it up to 30 to 60 days postoperatively if there are no contraindications, especially for patients undergoing bilateral adrenalectomy.”

Fleseriu cautioned that the findings do not necessarily suggest that every individual with Cushing’s syndrome needs anticoagulation therapy, as the study was retrospective. Additionally, sex, age, BMI, smoking status, estrogen or testosterone supplementation, diabetes and hypertension — all known factors for increased thrombosis risk among the general population — were not found to significantly increase the risk for developing a thromboembolic event, Fleseriu said.

“As significantly more patients have exogenous Cushing’s syndrome than endogenous Cushing’s syndrome and many of these patients undergo surgeries, we hope that our study increased awareness regarding thromboembolic risks and the need to balance advantages of thromboprophylaxis with risk of bleeding,” Fleseriu said. – by Regina Schaffer

For more information:

Maria Fleseriu, MD, FACE, can be reached at fleseriu@ohsu.edu.

Disclosure: Fleseriu reports she has received research funding paid to her institution from Novartis and Strongbridge and has received consultant fees from Novartis and Strongbridge.

 

From  https://www.healio.com/endocrinology/neuroendocrinology/news/online/%7Bce267e5a-0d32-4171-abc8-34369b455fcf%7D/risk-for-thrombotic-events-high-after-cushings-syndrome-surgery

Identification Of Potential Markers For Cushing’s Disease

Endocr Pract. 2016 Jan 20. [Epub ahead of print]

Abstract

OBJECTIVE:

Cushing’s disease (CD) causes a wide variety of nonspecific symptoms, which may result in delayed diagnosis. It may be possible to uncover unusual combinations of otherwise common symptoms using ICD-9-CM codes. Our aim was to identify and evaluate dyads of clinical symptoms or conditions associated with CD.

METHODS:

We conducted a matched case-control study using a commercial healthcare insurance claims database, designed to compare the relative risk (RR) of individual conditions and dyad combinations of conditions among patients with CD versus matched non-CD controls.

RESULTS:

With expert endocrinologist input, we isolated 10 key conditions (localized adiposity, hirsutism, facial plethora, polycystic ovary syndrome, abnormal weight gain, hypokalemia, deep venous thrombosis, muscle weakness, female balding, osteoporosis) with RR varying from 5.1 for osteoporosis to 27.8 for hirsutism. The RR of dyads of these conditions ranged from 4.1 for psychiatric disorders/serious infections to 128.0 for hirsutism/fatigue in patients with vs. without CD. Construction of uncommon dyads resulted in further increases in RR beyond single condition analyses, such as osteoporosis alone had RR of 5.3, which increased to 8.3 with serious infections and to 52.0 with obesity.

CONCLUSION:

This study demonstrated that RR of any one of 10 key conditions selected by expert opinion was ≥5 times greater in CD compared to non-CD, and nearly all dyads had RR≥5. An uncommon dyad of osteoporosis and obesity had an RR of 52.0. If clinicians consider the diagnosis of CD when the highest-risk conditions are seen, identification of this rare disease may improve.

KEYWORDS:

Cushing’s disease; delay in diagnosis; disease markers; insurance claims; relative risk

PMID:
26789346
[PubMed – as supplied by publisher]

From http://www.ncbi.nlm.nih.gov/pubmed/26789346